مطالعه تغییرات متابولیت‌های سازگاری و فعالیت آنزیم‌های آنی اکسیدانت
زنوتیپ‌های گندم در شرایط نش رطوبی

همچنین

به منظور مطالعه تأثیر نش رطوبی بر متابولیت‌های سازگاری و فعالیت آنزیم‌های آنی اکسیدانت پنج زنوتیپ گندم آزمایشی به صورت فاکتوریال در قالب طرح کاملاً تصادفی در سال 1393 به صورت گلایی در شرایط کلیاتی در دانشگاه محقق اردبیلی انجام گرفت. نویسنده مسول، نشانی پست الکترونیکی: ebadi@uma.ac.ir

چکیده:

به منظور مطالعه تأثیر نش رطوبی بر متابولیت‌های سازگاری و فعالیت آنزیم‌های آنی اکسیدانت پنج زنوتیپ گندم آزمایشی به صورت فاکتوریال در قالب طرح کاملاً تصادفی در سال 1393 به صورت گلایی در شرایط کلیاتی در دانشگاه محقق اردبیلی انجام گرفت. نویسنده مسول، نشانی پست الکترونیکی: ebadi@uma.ac.ir

مقدمه:

تنسج‌های محیطی از مهم‌ترین عوامل تعیین کننده گرخ‌های
پراکنش‌گاهی در سطح جهان می‌باشد و تن به خشکی نیز به
سهم خود تعیین کننده بخش از این پراکنش می‌باشد (زاکی،
پدونی، 1387). نظیم اسمزی یکی از مهم‌ترین مکانیسم‌های

کلمات کلیدی: پرپلون، میکروبی، کتانال، پراکسیداز.

Downloaded from jispp.iut.ac.ir at 14:23 IRDT on Monday June 10th 2019
تأثیر شرایط نش یا دیدگاه افراد منجر به عدم نشاط در انجام فعالیت‌های آموزشی پیش‌درآمدی (Galil et al., 2001). در نتیجه این مطالعه، نحوه نشاط در این شرایط از طریق استفاده از کتاب‌هایی مثل "آزمایشگاه" و "آزمایشگاه ادبیات"، این فعالیت‌ها را به عنوان یکی از عوامل اصلی نشاط در این مطالعه تاثیرگذاری می‌کند.

کتاب "آزمایشگاه" (Leinhose and Beragman, 1995) یکی از مقدماتی این مطالعه است که در پایان تحلیل اجرای سلول کاهش می‌باید. (Ciccek, 2002) همچنین تحقیق بر روی سبب حفظ از بازارهای آموزشی مورد نظر در سال 2014 شده است. (KaviKishor et al., 2005) (Petger et al., 2005) نتیجه‌گیری می‌کنند که شکایت‌های آموزشی در سطح منطقی افزایش یافته است. (Paul and Robert, 1999) کتاب "آزمایشگاه" بخشی از بازارهای آموزشی و سیاست‌های تربیتی را به‌طور کلی بررسی می‌کند.

مطالب و روش‌ها

این پژوهش به صورت فاکتوریال مختلط طرح کاملاً تصادفی به صورت گل단ی در گلشکه‌های تحصیلی دانشگاه محقق اردیبهشت مورد مطالعه قرار گرفت.
پتناسیل استمری محاسبه شد. در این رابطه ربق سازی پتناسیل استمری بر حسب بار است.

\[
\text{ wicht(Df)} = \frac{\text{مقدار آموز وجدان در یک گرم بافت آیه}}{25 \text{ ماده}}
\]

\[
\text{EC}_{50} = \frac{0.36 \times \text{df}}{0.987}
\]

برای اندازه‌گیری میزان پروتئین/5 گرم نمونه تر برگی در هالفون چنی، کوده و سپس 3 میلیلتر بفری اسپاخ جه که سه میلیلتر ۵% کلرید یک مولار، ۲۰۰ میکرولیتر NaEDTA یک مولار و ۱۰۴ درصد (7/۷- ۲ - مراکز اتومال) می‌باشد. مخلوط شده و مخلوط حاصل به مدت ۲۱ دقیقه با سرعت ۱۵۰۰ دور در دقیقه در دمای ۴ سانتی‌گراد سانتریفوژ (مدل ۵۰۷۵ ساخت اندورف آلمان) شد. سپس براز خارج کردن تمام ناخالص‌های موجود در نمونه قسمت بالایی داخل لوله مجددا به مدت ۲۰ دقیقه در ۲۰۰۰ دور در دقیقه سانتریفوژ شد و ۵۰۰۰ میکرولیتر از محلول برابری و ۲۹۰ میکرولیتر یک مولار و ۱۰ میکرویلتر عصاره استخراج را مخلوط کرده و بعد از ورودی میزان جذب طول موج ۵۵۰ نانومتر قرار دید. میزان پروتئین بر حسب میلی‌گرم بر گرم و رنث محاسبه شد (Bradford, 1976).

درجه سانتی‌گراد منتقل شد و سپس صفات مورد نظر اندازه‌گیری شد. خاصیت ترکیبی دارد. برای تعیین میزان آب مورد نیاز به هر برای نژاد، در این میزان رطوبت خاک در حد مورد نظر خاک تعیین و سپس گلدانا به صورت روانی و نیز در صورت کمتر به دو وزن گلدانا از حد مورد نظر آب مورد نیاز جهت Riahinia (2013) گلدانا پلاستیکی با طول ۱۰ کیلوگرم چه انتخاب شده و به کم از آنها مقدار مصرفی ۱ کیلوگرم خاک اضافه گردید. همچنین براساس تجربه خاک (جدول ۲) اندازه، میزان NPK همچنین محلول‌پاشی عناصر زیرزمینی مورد نیاز گیاه به هر گلدانا اندازه گرفت.

میزان پتناسیل استمری بافت گیاهی به واسطه Jnanardhan (1985) برای مدقق مایه‌ای در این روش یک میلی‌لتر بفری نشته برگ، هن و آب EC یراده انتخاب کرده و سپس در میلی‌لتر اسید فسفریک ۲ مولار به آن اضافه کرده و سپس در میلی‌لتر اسید استیک کلرید خالص اضافه گردید. لوله به مدت یک ساعت در سطح آب گرم قرار داده شد و سپس چهره میلی‌لتر تولید به یک هک سپس از لوله اضافه و به مدت ۱۵ تا ۲۰ ثانیه ورتکس گردید. پس از تشکیل دو فاز جداگانه، فاز صورت گرفت. تیمارهای آزمایش شامل نشتن کمک‌آمیز در سطح ۴۰ و ۳۵ درصد مورد فرزاد و زدنده‌های گندم یا به تکرار در سال ۱۳۵۳ انگیم. مشخصات زدنده‌های گندم در جدول ۲ آن جهت است. مختصات جغرافیایی منطقه انجام آزمایش شامل شمال ۹۸/۳۷ و شرقی ۱۴۸/۳۰ همکاران ۱۵۰۰ متری از این مدوری نسبت به دمای متوسط نخ ۲۷ درجه سانتی‌گراد و رطوبت نسبی ۴۷ درصد در طول اجرا آزمایش بود.

در این پژوهش نشتن رطوبتی در مرحله ۳ برگی انگلی قلم و در مرحله ۵ برگی نمونه پرده‌ای از بیان جهت اندازه‌گیری میزان تلف‌های محلول، پرولین، لیزین، پروتئین، زدده‌های آنزیم‌های آنتی اسیدانترایک، پراکسیمال و پیل فل اسیدازا. پتناسیل استمری و پیمای میوژه سرین گرفت. درجه سانتی‌گراد منتقل شد و سپس صفات مورد نظر اندازه‌گیری گریبد. خاصیت ترکیبی دارد. برای تعیین میزان آب مورد نیاز به هر برای نژاد، در این میزان رطوبت خاک در حد مورد نظر خاک تعیین و سپس گلدانا به صورت روانی و نیز در صورت کمتر به دو وزن گلدانا از حد مورد نظر آب مورد نیاز جهت Riahinia (2013) گلدانا پلاستیکی با طول ۱۰ کیلوگرم چه انتخاب شده و به کم از آنها مقدار مصرفی ۱ کیلوگرم خاک اضافه گردید. همچنین براساس تجربه خاک (جدول ۲) اندازه، میزان NPK همچنین محلول‌پاشی عناصر زیرزمینی مورد نیاز گیاه به هر گلدانا اندازه گرفت.

میزان پتناسیل استمری بافت گیاهی به واسطه Jnanardhan (1985) برای مدقق مایه‌ای در این روش یک میلی‌لتر بفری نشته برگ، هن و آب EC یراده انتخاب کرده و سپس در میلی‌لتر اسید فسفریک ۲ مولار به آن اضافه کرده و سپس در میلی‌لتر اسید استیک کلرید خالص اضافه گردید. لوله به مدت یک ساعت در سطح آب گرم قرار داده شد و سپس چهره میلی‌لتر تولید به یک هک سپس از لوله اضافه و به مدت ۱۵ تا ۲۰ ثانیه ورتکس گردید. پس از تشکیل دو فاز جداگانه، فاز صورت گرفت. تیمارهای آزمایش شامل نشتن کمک‌آمیز در سطح ۴۰ و ۳۵ درصد مورد فرزاد و زدنده‌های گندم یا به تکرار در سال ۱۳۵۳ انگیم. مشخصات زدنده‌های گندم در جدول ۲ آن جهت است. مختصات جغرافیایی منطقه انجام آزمایش شامل شمال ۹۸/۳۷ و شرقی ۱۴۸/۳۰ همکاران ۱۵۰۰ متری از این مدوری نسبت به دمای متوسط نخ ۲۷ درجه سانتی‌گراد و رطوبت نسبی ۴۷ درصد در طول اجرا آزمایش بود.

در این پژوهش نشتن رطوبتی در مرحله ۳ برگی انگلی قلم و در مرحله ۵ برگی نمونه پرده‌ای از بیان جهت اندازه‌گیری میزان تلف‌های محلول، پرولین، لیزین، پروتئین، زدده‌های آنزیم‌های آنتی اسیدانترایک، پراکسیمال و پیل فل اسیدازا. پتناسیل استمری و پیمای میوژه سرین گرفت. درجه سانتی‌گراد منتقل شد و سپس صفات مورد نظر اندازه‌گیری گریبد. خاصیت ترکیبی دارد. برای تعیین میزان آب مورد نیاز به هر برای نژاد، در این میزان رطوبت خاک در حد مورد نظر خاک تعیین و سپس گلدانا به صورت روانی و نیز در صورت کمتر به دو وزن گلدانا از حد مورد نظر آب مورد نیاز جهت Riahinia (2013) گلدانا پلاستیکی با طول ۱۰ کیلوگرم چه انتخاب شده و به کم از آنها مقدار مصرفی ۱ کیلوگرم خاک اضافه گردید. همچنین براساس تجربه خاک (جدول ۲) اندازه، میزان NPK همچنین محلول‌پاشی عناصر زیرزمینی مورد نیاز گیاه به هر گلدانا اندازه گرفت.
جدول 1- مشخصات زنوتیپ‌های گندم مورد استفاده.

<table>
<thead>
<tr>
<th>مشخصات</th>
<th>Orom</th>
<th>Zarea</th>
<th>مهین</th>
</tr>
</thead>
<tbody>
<tr>
<td>زنوتیپ</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2- نتایج تجزیه حاکم استفاده در آزمایش

<table>
<thead>
<tr>
<th>شرایط (pH)</th>
<th>pH هر سوخت</th>
<th>pH نیترژن</th>
<th>pH فسفر</th>
<th>pH پتاسیم</th>
<th>pH کربن آلی</th>
<th>pH بند ی 100</th>
<th>pH BND 139</th>
</tr>
</thead>
<tbody>
<tr>
<td>15/7</td>
<td>نیترژن</td>
<td>فسفر</td>
<td>پتاسیم</td>
<td>کربن آلی</td>
<td>بند ی 100</td>
<td>بند ی 139</td>
<td></td>
</tr>
<tr>
<td>0.69</td>
<td>0.49</td>
<td>0.12</td>
<td>0.46</td>
<td>0.41</td>
<td>0.72</td>
<td>0.74</td>
<td></td>
</tr>
</tbody>
</table>

میانگین عاصر فنی جذب در سیستم گندم یا اس‌کی‌پی‌دی و در پنج حالت مختلف pH کربن آلی به‌طور میانگین 0.72، بند ی 100 به‌طور میانگین 0.74، بند ی 139 به‌طور میانگین 0.72، فسفر به‌طور میانگین 0.12، نیترژن به‌طور میانگین 0.49 و pH کربن آلی به‌طور میانگین 0.41 بود.

بیالمی رنگی با دقت جدا و جداب آن با دستگاه اسپکتروفوتومتر (محل‌یوی، 2010) پلی‌آسم (2100 ساخت پاتئک آمریکا) با سطح برش 50 سانتیمتر قرانت و بر بیمار آب‌رین گرم وزن تر اعلام شد. اندازه‌گیری شدن محصول بر روی عرض سفارش سولفوردیک (Dubois et al., 1956) با کمی تغییر صورت گرفت. بیمار 50 گرم از نمونه‌های جوان‌ترین گرم پوست نشان یافت را با دو میلی‌لیتر یافتر سفاس (pH = 7) سپرده و با سرعت 10000 دور در دقیقه به مدت 20 دقیقه در دمای چهار درجه سانتی‌گراد سانتری foyer شدند. از محلول روی 10 میکرویولتر بردی آماده و به 990 میکرونتریا مغز‌افزوده شد. به مدت 50 میلی‌لیتر از محلول حاصل به مدت 25 میلی‌لیتر یافتر سفاس (98 درصد) افزوده شد. پس از تثبیت یافتر به مدت 10-15 دقیقه در دمای 70-75 درجه سانتی‌گراد شروع گرفت و جذب نمونه‌ها در طول میان‌گردان صورت گرفت. میانگین فاقدان محصول نیز بر حسب میلی‌گرم گرم وزن تر است.
مطالعه تغییرات متابولیت‌های سازگاری و فعالیت آنزیم‌های آنتی اسکینت...

233

پرونده: میزان پرولین نیز تحت تأثیر اثرات اصلی و اثرات مقابلی نش کم آبی و زنیتی‌های گندم در دستگاه سانتریپوز به مدت 20 دقیقه و با سرعت 13000 دور نموده‌ها دایری‌ها در طول مراحل انجام هستند و پس از اضافه کردن میکروفلوئی در داخل انواع فرآیند انزیم‌های کانالاز و پراکسیمایا و پایین قفل اکسیداز استفاده شد. برای اندازه‌گیری فعالیت کانالاز 98 میکروفلوئی از عصاره پروتئینی را در 250 میلی‌لیتر بار تریس می‌کرد. هم‌اکنون، میزان پرولین نیز با چاپ و 3 میلی‌لیتر آب اکسیداز 5 میلی‌متر متابولیسم زردرنگ در حذف یک اضافه نموده و میزان جذب در طول موج 240 نانومتر قرانت شد (اضریت خاموشی 3/6 میلی‌متر بر سانتی‌متر، برای پراکسیمایا نیز 50 میکروفلوئی عصاره پروتئینی را در 250 میلی‌لیتر بار استخراج که شامل بار تریس 100 میلی‌متر و آب اکسیداز 5 میلی‌متر و پروتئین 10 میلی‌متر مول بود در حذف یک اضافه نموده و میزان جذب در طول موج 245 نانومتر قرانت شد (اضریت خاموشی 3/6 میلی‌متر بر سانتی‌متر). برای اندازه‌گیری فعالیت آنزیم پلی اکسیداز pH=7/6 و 1/2 میلی‌متر، اسید کاربگلیک 2 مولار با R=0/0 مولار را با هم مخلوط کرد و سپس 0 میلی‌متر لیتر از عصاره پروتئینی استخراج کرده نما آنها افزوده و سپس وریکس شده و به مدت 5 دقیقه در بین ماری از دما 25 درجه سانتی‌گراد قرار داده و سپس با استفاده از دستگاه استخراج و طول موج 400 نانومتر قرانت گردید (اضریت خاموشی 0/4 میلی‌متر بر سانتی‌متر). فعالیت آنزیم‌ها (اضریت خاموشی 0/4 میلی‌متر بر سانتی‌متر) متابولیسم البرزیت جذب در سطح و میزان پروتئین با اختلاف 3 یونه از هر گلدان و خشک کردن آنها در دمای 70 درجه به مدت 48 ساعت و محاسبه بیمار تک بوتیت صورت گرفت. تجربی آماری داده‌های توسط نرم‌افزار SAS 9.1 و مقایسه میانگین با استفاده از آزمون LSD و SPSS 22 استفاده از Excel 2013 صورت گرفت.

نتایج و بحث:

پرونده: میزان پرولین نیز تحت تأثیر اثرات اصلی و اثرات مقابلی نش کم آبی و زنیتی‌های گندم در سطح 1 درصد...
شکل ۱- تغییرات میزان پرولین در زنوتیپ‌های مختلف گندم در شرایط تنش رطوبتی. حروف نامه‌ای نشان دهنده تفاوت معنی‌دار آزمون LSD در صرف ۵ درصد است.

شکل ۲- تغییرات میزان قندهای محلول در زنوتیپ‌های مختلف گندم در شرایط تنش رطوبتی. حروف نامه‌ای نشان دهنده تفاوت معنی‌دار آزمون LSD در صرف ۵ درصد است.

کلمات کلیدی: تنش، رطوبت، انباشتهای مختلف، سبک‌های کشت، آزمون LSD، تغییرات، فرمول‌های آماری.
مطالعه تغییرات منابع‌های سازگاری و فعالیت آنزیم‌های آنتی‌اکسیدان... ٢٣٥

پروتکین: میزان پروتکین کل گیره‌تحت تأثیر تنش رطوبتی و زندرهب‌تهات، میزان استگنام کند و اثرات متغیر آن در قرار گرفتن (جدول ۴) تناسب مقایسه میانکننر آناتا متغیر آن در گیره‌تحت Zona ویک بوده که میزان پروتکین در شرایط بدون تنش (۸۵٪ فضای زرعی) و کمترین مقدار پروتکین از Zarea و زندرهب‌تهات "ZSOBAYKA" به دست آمده. همچنین بالاترین مقدار پروتکین در شرایط بدون تنش (۲۵٪ فضای زرعی) سطح تنش "Zarea" و کمترین مقدار آن از Znophone و Mihan مشاهده شد (شکل ۴).

تغییرات کمی و کیفی پروتکین در شرایط تنش آب گزارش شده است و با توجه به از کاهش‌های فیزیولوژیکی وجود می‌باشد (Korotaeva et al., 2003). بطور نظریسکن که اکثراً سه‌گونه می‌باشد پروتکین تحت تنش کم آبی در نتیجه واکنش پروتکین با رادیکال‌های آزاد و در نتیجه تغییر استرآمدی، افزایش فعالیت آنزیم‌های تجزیه کننره پروتکین، کاهش سنتز پروتکین و نیز تجربه استفاده آمنی آزاد از جمله پروتکین مرتب است. همچنین گزارش شده است که مکانیسمی که به ندرد برای ایجاد محافل که سلولها در طی تنش کم آبی استفاده می‌نماید. شامل جایگزینی گروه هیدروئزن فنده به عنوان قسمت آب دوست بوده و تأثیر مناسب بر پروتکین و غشاء سلولی در طی از دست رفتن آب دارد. به

ساخته شدن فنده‌ها محول در رنگ‌ها می‌باشد. خصوصیات آنزیم‌یکی Miron et al. (2001). می‌تواند تنش اساسی در پروتکین تغییر محکم‌های بسیار بر

لیزین و میتوئین: اثر متفاوت تنش رطوبتی و Znophone گند بر میزان میتوئین در سطح ۲ درصدی می‌تواند دارد (جدول ۳). افزایش تنش رطوبتی کاهش میزان میتوئین در Znophone های گند شد به طوری که بیشترین میزان میتوئین در زندرهب "ZSOBAYKA" تحت شرایط بدون تنش با میانگین (۸۸٪) می‌تواند (۱۲۰۰۸ میکروگرام بر گرم وزن تر) و کمترین میزان آن مربوط به Znophone "Mihan" تحت تنش ثابت (۵٪ ظرفیت زراعی) با میانگین (۲۰۱۰۰ میکروگرام بر گرم وزن تر) مشاهده شد (شکل ۳). میزان لیزین تحت تأثیر اثرات اسلو و مناسب تنش رطوبتی و Znophone گند شد (جدول ۴) با افزایش شدت تنش افزایش می‌کند در اثر Znophone گند کاسته شد. در شرایط بدون تنش (۸۵٪ ظرفیت زراعی) بالاترین میزان لیزین از Znophone "ZSOBAYKA" و "Orom" به "JS217" دست آمده. بالاترین مقدار لیزین در تنش ۳۵٪ ظرفیت زراعی از Znophone "Zarea" مشاهده شد (شکل ۴).

نتایج پژوهش بر روی رشد و همکاران (۱۴۶۳) نشان داد که کاهش میزان میتوئین و لیزین در اثر تنش در لوپیا بودند. آنها هدفی از کاهش را به توصیه می‌توانند. پروتکین نسبت دادند برخلاف اکسیژن انсерفری، اکسیژن فعال از میل ترکیبپالایی با بیومیکولهای خیال سلول برخوردار بوده، به طوریکه سوپرکسید قادر است، اسیدآمینهای میتوئین، هسته‌های و تری‌توفان را اکسید نماید و از طریق موجب کاهش مقدار آنها در اثر تنش کمآبی شود (Breusgem et al., 2001). میتوئین پیش ماده ستون پی‌آمی‌ها از جمله اسپرمهای و اسپرمهای نشان (۲۰۰۷) که تقابقت‌کننده سبک‌ساز دفعی گیاه در برای کم آب محصول می‌شوند. در طی تنش تجزیه این است که آن موجب افزایش
شکل ۳- تغییرات میزان متوسط در ژنوتیپ‌های مختلف گندم در شرایط تنش رطوبتی. حروف نامشته نشان دهنده تفاوت معنی‌دار آزمون LSD در سطح ۵ درصد است.

شکل ۴- تغییرات میزان لزیج در ژنوتیپ‌های مختلف گندم در شرایط تنش رطوبتی. حروف نامشته نشان دهنده تفاوت معنی‌دار آزمون LSD در سطح ۵ درصد است.

شکل ۵- تغییرات میزان آنزیم کائالاز در ژنوتیپ‌های مختلف گندم در شرایط تنش رطوبتی. حروف نامشته نشان دهنده تفاوت معنی‌دار آزمون LSD در سطح ۵ درصد است.

تنش رطوبتی و ژنوتیپ‌های گندم در سطح ۱ درصد بر فعالیت آنزیم کائالاز تأثیر معنی‌داری داشت. همچنین اثر متقابل تنش رطوبتی در ژنوتیپ‌های بر میزان فعالیت کائالاز معنی‌دار بود (جدول ۳). مقایسه میانگین ارزات متقابل نشان داد، با افزایش این ترتیب کروهیدراتها به سیلیک تأثیر متقابل با پروتئینها و غشاها از طریق پوندن هیدروژنی از غیرطبیعی شدن پروتئینها جلوگیری می‌کند (Al- Rumaiah, and Al- Rumaiah, ۲۰۰۷).

کاتالاز: نتایج تجزیه واریانس‌ها نشان می‌دهد، اثرات اصلی
شده نش رطوبتی میزان فعالیت این آنزیم در تمامی زنوتیپ های افزایش یافته. در شرایط بدون نش زنوتیپ بالاترین فعالیت را خود نشان داده، این در حالی است که در نش (0% ظرفیت زراعی) زنوتیپ های "Zarea" بالاترین فعالیت کاتالاز را به خود اختصاص داد و "Orom" همگی در یک کلاس آماری قرار گرفتند. با شدت یافتن نش به (25% ظرفیت زراعی) تفاوت زنوتیپ های پرشتر بود. در این شرایط زنوتیپ "Zarea" بالاترین فعالیت کاتالاز را نشان داده بود.

آنژیمز آنی کاتکسادان در گیاهان گروهی از سازه‌ها

پراکسیداز: فعالیت آنی پراکسیداز نیز تحت تأثیر اثرات اصلی و متقابل نش رطوبتی و زنوتیپ‌های آنی در سطح 1 درصد قرار گرفت (جدول 4). نش رطوبتی بر فعالیت پراکسیداز زنوتیپ‌های گام دمای بود. پیش‌ترین فعالیت پراکسیداز در شرایط بدون نش (85% ظرفیت زراعی) از
سکل ۱- تغییرات فعالیت آنزیم پرکسیداز در زنوتیب‌های مختلف گندم در شرایط تنش رطوبتی. حروف ناشابه نشان دهنده تفاوت معنی‌دار آزمون LSD در سطح ۰/۰۵ است.

سکل ۲- تغییرات فعالیت آنزیم پلی فل فل اکسیداز در ارگان مختلف گندم در شرایط تنش رطوبتی. حروف ناشابه نشان دهنده تفاوت معنی‌دار آزمون LSD در سطح ۰/۰۵ است.

جدول ۴- تأثیر تجزیه واریانس برای مقایسه شده زنوتیب‌های مختلف گندم تحت تنش از رطوبتی.

<table>
<thead>
<tr>
<th>میانگین مربوط به اندازه‌گیری</th>
<th>درجه آزادی</th>
<th>تنش رطوبتی</th>
<th>زنوتیب‌های گندم</th>
<th>اثر منفی</th>
<th>خطا</th>
</tr>
</thead>
<tbody>
<tr>
<td>قبل از اکسیداز</td>
<td>پرکسیداز</td>
<td>کانالوز</td>
<td>پنتاسیل اسمری</td>
<td>پنتاسیل بیوماس</td>
<td>پنتاسیل بیوماس</td>
</tr>
<tr>
<td>۱۵۳٪ / ۰/۰۵</td>
<td>۱۹۴٪ / ۰/۰۵</td>
<td>۱۸۴٪ / ۰/۰۵</td>
<td>۱۸۴٪ / ۰/۰۵</td>
<td>۱۸۴٪ / ۰/۰۵</td>
<td>۱۸۴٪ / ۰/۰۵</td>
</tr>
</tbody>
</table>

، *، **** به ترتیب مربوط به مقایسه، شرایط و مکانیکی و ۱/۰۰۰۰ به ترتیب در سطح احتمال ۵٪ و ۰/۰۵٪ است.

(Thipyapong et al., 2004) و (Celina و همکاران، ۲۰۰۴) در گندم مطالعات دارد. فعالیت آنزیم پلی فل اکسیداز از تولید بیش از حد اجزای خطی انتقال الکترون در واکنش مهرل جلوگیری می‌کند.
مطالعه تغییرات منابعی‌های سازگاری و فعالیت آنزیم‌های آتی اکسیدان...

میزان بیوماس: نتایج تجزیه واریانس نشان داد میزان بیوماس در سطح 1 درصد از نش نش رطوبی‌ها تغییر معنی‌دار با نمود (جدول 4). نش رطوبی‌های کاهش میزان بیوماس شد به‌طوری که بالاترین مقدار میزان بیوماس در 85٪ فرطیت زراعی (با میانگین 279 گرم بر بوته) و کمترین آن در نش شدید داشت (35٪ فرطیت زراعی) با میانگین 127 گرم بر بوته بود.

دست آمد (شکل 10) و Mohammadi (2006) و همکاران (2010) نیز نتایج مشابهی می‌برکه‌ها کاهش میزان بیوماس در اثر نش خشکی گزارش کرده‌اند. گلبرو و همکاران (1381) نیز نشان دادند که بین میزان بیوماس و عملکرد دانه و تعداد سبزه در گیاه رابطه معنی‌دار و مثبت بوده است. بنابراین نش خسارت به کاهش میزان بیوماس در اثر نش خسارتی، کاهش عملکرد طبیعی می‌باشد. همچنین با این که نش‌های پتپسیل اسیری گردید که در شرایط بدون نش، تغییرات پتپسیل اسیری "Mihan" بالاترین پتپسیل اسیری و "Zotzicon" کمترین پتپسیل اسیری را بود اختصاص داد. با وجود این در شرایط نش (35٪ فرطیت زراعی) بالاترین و کمترین پتپسیل اسیری به ترتیب متعلق به "Zotzicon" و "Mihan" با میانگین‌های 38 و 13 درصد (شکل 8).
نتیجه‌گیری:
با توجه به نتایج مشاهده‌هایی که کاهش رطوبتی به شکل می‌گزند، توجه به تأثیر مقدار موجود در شکل 11 مشاهده می‌شود. بین تغییرات پتانسیل اسمی و میزان بیوماس یک رابطه خطا وجود دارد. پتانسیل اسمی طی تنش رطوبتی کاهش یافته که این تغییر می‌تواند به دلیل از دست دادن آب آزاد سولولها و تولید املاح کاهش پتانسیل اسمی در محیط سولول و باشند. نتایج تحقیق یافته که کاهش رطوبتی به دلیل کاهش پتانسیل اسمی، طرفتی فسترزی گیاه را برای تولید محصول کاهش داده و موجب کاهش بیوماس می‌گردد. همچنین کاهش پتانسیل اسمی از طریق تاثیر پتانسیل توگر سولولهای دی‌سوی سولول و رشد گیاه ناکار می‌گردد.

(Bajii et al., 2001)

منابع:
جابری ف.، احمدی ع.، پوستینی ک.، علیزاده، م (1387) بررسی ارتباط فعالیت بروز آتی‌آزمایی آنتی‌اکسیدان‌ها با پایداری غشاء سولولی و کلروفیل در ارتفاع ارتفاع نان مقاوم و حساس به تشخیص. مجله علمی کشاورزی ایران، 27: 316-317.

رازی‌پور، حبیب‌الله (1384) بررسی اثر انرژی شوری و خشکی بر فعالیت آنزیم سفت‌انزیم در نان در مراحل اولیه. جوان‌های، پایان‌نامه کارشناسی ارشد. دانشگاه تهران.

رشیدی س.، علی‌تقی، ع.، قه‌بانی‌خسروی، س. (1977) اثر بیان ورود بی‌غذایی در میزان پروتئین نان بر واکنش‌های واکنش‌های سلولی و بیوشیمیایی نان. شرایط نان کمی، پوستینی وکارد کیهی 3: 104-110.

طالق‌آحدی، س.، حداد، روشن (1389) اثر سیلیس‌سوزی بر فعالیت آنزیم‌های پدرو، که احتمالاً تحت اثر مجدد سولولهای دی‌سولولی و سولولهای دی‌سولولی در پروتئین‌های مقاوم و حساس کننده‌ها این کننده‌ها در دو گنده در شرایط نان خشکی. مجله له‌رود و نهال و بذر. جلد 26: 260-267.

(Puccinia striiformis fsp tritici)

غلیضی، چ.، جهان‌بختی شهید، س.، رزمجوری، ج.، علی‌تقی، ع. (1991) بررسی بیان پروتئین‌های آنتی‌اکسیدانهای آنرژی‌های این آب‌پوش‌شناخته‌ها 2 بعید. پایان‌نامه کارشناسی ارشد. دانشگاه ایرانی، ایران.

قیامی‌نیا، م.، نیکاک، م. (1385) بررسی تأثیر نان خشکی بر روی میزان اکسیداسیون کلروفیل در قبیل‌کن‌های گیاه. کلیپر و در نازی، ع. (1388) اثر بیان در حساس کننده‌ها این کننده‌ها در دو شرایط نان خشکی. مجله و بذر. 14: 150-165.

Water deficit effect on solute contribution to osmotic adjustment as a function of leaf ageing in three wheat cultivars performing differently in arid conditions. Plant Science 160: 669-681.

Effect of limited irrigation on the accumulation of proline, free soluble sugars and potassium in bread wheat cultivars. 10th Iran. Cong Agron. Plant Breed Science .430p.

Antioxidant Enzymes and Human Disease chemical Biochemistry 32: 595-603.

Metabolism and function of polyamines in plants. Recent development (new approaches). Plant Growth Regulation 34:135-148.
