اثر تنش کم آبی بر برش خصوصیات فیزیولوژیکی و میزان اسملولیت‌های قدن و پرولین در طالبی سمسوری و رامین

نجمه زینلی ۱، کمال‌الدین حق بین ۲ و مجتبی دلشاد ۳

گروه بافتی، دانشکده کشاورزی، دانشگاه شهید بانی کرمان. آموزش عالی پرورشگاه مندیز زنبور و رست فناوری تهران. گروه علم بافتی، دانشکده کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

(تاریخ دریافت: ۱۳۹۷/۰۹/۲۳، تاریخ پذیرش نهایی: ۱۳۹۷/۰۸/۲۲)

چکیده

به منظور بررسی اثر تنش کم آبی بر خصوصیات فیزیولوژیکی شامل پاتنیاچی‌های آب، آزمایش‌های پوستی برگ، اسپلیت‌های قدن، پرولین و فعالیت آنزیم اینورتاز در طالبی سمسوری، آزمایش در قالب طرح بلک کامل تصادفی با سه تکرار انجام شد. تعداد آزمایش شامل سه سطح آبی (شروئ آبی ۶۰-۷۰ کیلوهمپاسال، تنش سطح میانه) و سطح کیلوهمپاسال (نش شدید) در هر طالبی سمسوری و رامین بوده. بر طبق نتایج حاصل از این تحقیق کاهش شدید پاتنیل اسیدی حتی کمتر از میزان اندازه‌گیری (حدود ۶۳-۶۴٪) در شدت‌ترین سطح تنش کم آبی (شروئ آبی ۸۰-۹۰ کیلوهمپاسال) داشت. نتایج نشان داد که سطح تنش کم آبی بکار رفته در این آزمایش براکت نغیما در میزان قدنها و فعالیت آنزیم اینورتاز گردید. تنش کم آبی میزان فعالیت آنزیم اینورتاز را در سه و پنج روز پس از شروع تنش تا حد ۷۰٪ کاهش داد. در حالیکه میزان فعالیت این آنزیم از طریق آبی‌های شاهد در همین مرحله حدود ۷۴٪/۴٪ افزایش می‌بست. بهبود میزان پاتنیل‌های سکار (۱۳۰ میلی‌گرم در گرم وزن تازه) و گلوبی‌پسیمیوئ (۸۰۰ میلی‌گرم در گرم وزن تازه) پرولین برگ (۷۰۴ میلی‌گرم در گرم وزن تازه) در سی و پنج روز پس از شروع تنش در مقایسه با شاهد در همین مرحله شد. همچنین تنش سطح آبی در این گاه در تیم تجزیه سکاراز، گلوزک و پرولین تحت تنش کم آبی و باتوجه به این که پاتنیل اسیدی حتی نسبت به مقدار مرده اندازه‌گیری تهیه شده، اتفاق افتاده است.

کلمات کلیدی: اسملولیت‌ها، تنظیم اسموری، سمسوری، فعالیت اینورتاز، تنش کم آبی.

مقدمه

سیب‌های خانگی که دو بی‌جلود دارد هر کدام سطح زیر کشت کل سیب‌ها را در ایران به خود اختصاص داده اند که از این میزان قسمت عمده ای به پرورش طالبی و خرید احتمالاً دارد و از اهمیت تجاری زیادی برخوردار هستند (پیوست). (Cucumis melo. طالبی (اسملوری) C. melo. گر. Cantaloupe, c. samsoury) یکی از ارقام تجارتی معرفه می‌باشد.

Najme.zeinali@yahoo.com

۱نوبتی سرور، نشانی پست الکترونیکی:
گیاهان در اکثر نقاط جهان است. نشان رطوبیتی می‌تواند
بیماری از جنگل‌های منابعی شرایط و فیزیولوژی گیاه را
تحت تأثیر قرار دهد. گزارش‌های زیادی نشان می‌دهد که
ابت از جنگل نتیجتی نشانی در راهب‌های معنی‌ملو
فرآینده فیزیولوژی گیاهان
(۱۹۸۷) Patel و Singh تغییر
در منابعی کربوهیدرات‌ها و نیتروژن، تغییر در ساختار
پروپت‌ها و فعالیت‌آزمایش نمایان می‌کند. تجمیع برخی و کاهش تعیدت
کندن‌های رشد و گزارش کردن. کاهش در سرعت
آسیمیاب‌سوزی در اکسیدیک دربت تحاک م نشین خشک طبیعی
توسعه، تجمع و تحرک‌دنکن از تحت تأثیر قرار دهد. در این
حال، همه‌ها می‌توانند در ایجاد کننده را
تجلیل گذاری که اثر عملیاتی نشان‌دهنده گیاه و
شراکت بهینه آب یک موجب میراکلی‌کننده می‌شوند
بها که کیفیت طبیعی محلول‌های بی‌فرمال. برای مثال کاربردی
بیش از حد آب و نیتروژن بالا بانچ کاهش کیفیت می‌شود.
نبات‌های در مواردی اثرات مثبت نشان می‌آید. روزی روزش
بر فاکتورهای شرایط و تبریک‌ها مبتنی می‌شود.
است. گزارش‌هایی مبنی بر اعمال یک دورنگار نشین خشکی
در اواخر رشد طلایی، و گروه فنی مخصوص فراوری، همگاه با
به‌طور خواص کیفی مانند افزایش مواد جانب محلول آنها وجود
دارد، مشروط به اینکه کشف نشین
(۱۹۸۵) (Lester و Dunlap). باید نهایی داشته که نشین
خشکی طلایی مدت وارد بر گیاه، به طریق قابل ملاحظه ای
رشد گیاه و عملکرد آن تحت تأثیر قرار می‌دهد. برای مثال
(۲۰۰۲) Fabeiro تحقیقات و همکاران (۱۹۹۴) (Pharr و همکاران)
نشین خشکی طلایی مدت در مراحل نشکل کل و موجه طالبی و
هدونا در کمی که یکی از هم‌خانواده‌های روش می‌شود.
هدف از انجام این آزمایش در راستای این پژوهش این
که تحقیقات بیشتری برای این‌ها نهایی که خصوصیات
کمی کیفی و فیزیولوژی می‌توانند تحت نشین تغییر،
نهفته باید تازه است. این موضوع که عملکرد نشین‌های
کنترل شده چگونه می‌تواند بر کیفیت و کمیت قند و نوع و
نتیجه‌گیری‌های از این‌ها و درس‌های دارند. از
نتیجه‌گیری‌های می‌تواند در نشین کنترل
امروزی تأثیر گذارد. بدان اینکه کاهش عملکرد معنی‌داری
نحوه می‌تواند در بازی‌سردی آن تأثیر بسیار می‌گذارد، بلکه با
تحمیل و تغییر در سلول‌ها گیاه‌های اسپرمولیت‌های مؤثر در نوع
تظیمات اسپرمی و مقاومت به نشان‌دهنده را افزایش می‌دهد.
فاکتورهای گیاهی میوه طالبی توسط سه قد محلول ساکارز،
گلوپروکتوژن و گلوپروکتوژن در گونه میوه تعیین می‌گردید که عموما
تعکس‌کایی از نحوه عمل، تولید و توزیع این قدرت محلول
است. در اکثر خریدرها چنین استیتیسی‌ها از ۹۷ درصد مواد جامد
محلول بر قدرت محلول تُکیی می‌دهند و در میوه‌های
رسیده، ساکارز گونه غالب بوده و حدود ۶۰ درصد قدرت توزین
شامل می‌شود. در آزمایشی Pharr و همکاران
آنزیم‌هایی که در منابعی ساکارز و هژمون مشتاق
دارند شناسایی شده، ساکارز سیستما و ساکارز سیستما سنتز،
روش‌ها و سیستما سنتز سیستما می‌باشد. نشان‌دهنده بیان تفاوت تفسیر غلیق‌های مولفی‌می‌پوست
به سنجش ساکارز می‌شود با توجه به آن‌زیمه‌های آزمایشی
و Guoyao (۲۰۰۲) این است. این امر است.
در آزمایشی بررسی تغییرات فیزیولوژی در جزیره رسید
میوه در خریدر، لستر و همکاران (۲۰۰۱) به این ترتیب سیستم
که آن‌زیم‌های ساکارز سیستما می‌باشد از طریق این‌ها، آن‌زیم‌های
کلیدی تجسم فند در خریدر رقم (برای) هستند. فاکتورهای
موثر بر کیفیت طبیعی محلول موثر چنین آن‌زیم‌های
و است. آن‌زیم‌های نقش کلیدی در وضعیت قدرت ذره و
راکت‌های طبیعی مشابه شده. در خریدر، همزمان آزمایش
ساکارز با کاهش فعالیت‌های این‌ها و افزایش انتشای
سیستما و ساکارز سیستما سنتز هوبرد و همکاران
(۱۹۹۴) (Pharr و همکاران) که در از طریق دیگر، قند و شخص
سیستما از جمله اسپرمولیت‌های مهم در گیاهان محصور شوند و
با پیتی که بر فعالیت‌های فیزیولوژی گیاهی می‌گذراند می
تواند که انتظار مشابه را در گیاهان تحت شرایط نشین‌های
می‌تواند انتظار مشابه شود.
نشین‌های غیر زند از دو چنین دارند بر کیفیت و وضعیت
تغییر ای میوه و در سیریز دارند. از
نشین‌های محصور و غیر
زند، نشان قدرت که از هم‌خانواده عوامل کاهش عملکرد
مورد و روشن: آزمایش در مزرعه استفاده تحقیقات با گل‌های پردیس کشاورزی
و منابع طبیعی دانشگاه تهران واقع در مجموعه کرک انجام شد. خصوصیات خاک مزرعه محل انجام آزمایش در جدول 1 آمده است.

تیمارهای آزمایش شامل سه سطح آبی: 50-کیلوپاسکال (شاهد) و دو سطح نشانی 25 و 75-کیلوپاسکال و در سه محله مختلف رسیدن شال میوه های نارس با پوست سبز (روز سپس شکوفایی گل) میوه رسیده و بدون نرم شدن گوشت (50 روز سپس شکوفایی گل) و میوه کاملا رسیده همراه با نرم شدن گوشت (70 روز سپس شکوفایی گل) طالب مسیروی ورامین بودند. این مراحل مطابق با 20 و 25 روز پس از شروع نشانی کاملا ریز یا میوه بود. اعمال نشانی در فاصله ظهور اولین میوه ها تا زمان برداشت میوه ها و با استفاده از تانسوریتر صورت گرفت. آزمایش در قابل طرح بلکهی کاملا تصادفی و در سه تکرار بود.

شاخص پرولین: اندام نبات در پروتئین در بیشتر کاملا توسعه پایه نموده که تحت تیمارهای مختلف بودن به روی BAES (1981) روش بهبود. براساس این روش نم گرم در هر نمونه را در 10 میلی لتر محلول آبی اسید سولفونامیلیک 3 درصد قرار داده و مخلوط حاصل در هاوندی به کمک تیریدست مایع کاملا مخلوط و توسط کاغذ صاف کاملا صاف شد. سپس 2 میلی لتر از محلول را با 2 میلی لتر مخلوط نموده و 2 میلی لتر اسید استیبک به هر لوله اضافه شد. سپس نمونه ها به مدت یک ساعت در بین مارد 100 درجه سانتیگراد قرار گرفتند.

پس از اجرای تمام کاملا و به دست آوردن نتایج توانسته نمونه هایی که تحت این شاخص پرولین بودند، حاکم بر پرولین در کاملا بوده و با پس از این شاخص پرولین، در کاملا بسیار زیاد می شد.

برای نمونه هایی که تحت تیمارهای مختلف بودن به روی BAES (1981) روش بهبود، سپس 2 میلی لتر از محلول را با 2 میلی لتر اسید استیبک به هر لوله اضافه شد. سپس نمونه ها به مدت یک ساعت در بین مارد 100 درجه سانتیگراد قرار گرفتند.
جدول 1- خصوصیات شکا محل انجم آزمایش

<table>
<thead>
<tr>
<th>الگو</th>
<th>فسفر قابل جذب (mg/kg)</th>
<th>(mg/kg)</th>
<th>هدایت الکتریکی (EC)</th>
<th>pH</th>
<th>بافت خاک (ds/m)</th>
<th>لوم رسی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13/27</td>
<td>0/07</td>
<td>1/89</td>
<td>8/1</td>
<td>108 كطآیٜس ٝ ًبضًطز ُیب١ی، خٔس5، ق٘بضٟ16، ؾبّ1395</td>
<td>7/10</td>
</tr>
</tbody>
</table>

آمریکا و در طول موج 540 نانومتر فرانت شد. بعنوان صفر استفاده از محلول ساکارز استفاده شد. اعداد گذاب حاصل از استاندارد مقایسه شدند و میزان فعالیت اینترتاز بطور میکرومول بر گرم ماده تازه بر دقیقه بیان شد. یوپر در نیترالسیلیک اسید (DMS) از شرکت سیبکا خریداری شد.

اندازه گیری فعالیت آنزیم اینترتاز در نمونه های گوشت
میوه: مقدار 5 گرم از گوشت میوه منجمد شده در هواشون سرد قرار گرفته بر روی نگرفته از بافر استخراج میکروب و مخلوط شد(برای تهیه بافر استخراج 40 میلی لیتر بافر سبیل پس فرانت 50 میلیور مول، pH=7/4 را با 1 میلی مولول Na2-EDTA 0/1 یک میلیور مولول محلول 100 در 5/2 میکرولیتر تیونین 25 میلی مول، مخلوط کردیم). لوله های فلوکون حاوی مخلوط نمونه به مدت 10 دقیقه در 1000 در 5 سانتی‌فیورژ زرد قرار داده شد. فاز رضوی داده شد و فلوکون تهیه‌سازی یافت. این خود عامل حاصل از بخار متداومیت در محصولات مورد استفاده از صنایع نگهداری این‌گونه محصولات مورد استفاده آزمایش شد. با استفاده از بافر حاصل از مسود برون در و منافع احتیاطی که باعث هدررفتی گاز می‌شود، امکان حاصل می‌شود. به مسیر بزرگ ژان شیر گاز، شناور درون انتاق افزایش می‌یابد. با مشاهده خروج اولین قطعه شیر از انتهای برگ (که با استفاده از نظارت کیفی مخصوص صربت می‌گردد، بلافاصله شیر ور گر در و سریعاً نمونه و یا داده شد از روش دستگاه انجام می‌گردد. انتهای دمگر با پاسی کالا صاف و سطحی باند. بدنی روش و با قیف از خاک گذارنن دستگاه که در آن هسته از گرم، افزایش داده و شناور تا نظارت کیفی مخصوصی را دارا شد و فضای مرکزی از بهبود برخوردار است. این می‌تواند با فشار غیر قابل‌توجه باشد. بدنی روش و با قیف از خاک گذارنن دستگاه که در آن هسته از گرم، افزایش داده و شناور تا نظارت کیفی مخصوصی را دارا شد و فضای مرکزی از بهبود برخوردار است. این می‌تواند با فشار غیر قابل‌توجه باشد.
دست رفت رطوبت گرگ وجود دارد.

پاتناش اسپری برگ‌ها: نمونه برگ هر تیمار درون نیتروژن مابع قرار گرفت و در 20- درجه سانتیگراد فریزر شد. برگ‌های حاصل از اعوجوج خشک با هاون دستی بعنوان خورش عصاره برگ کامل سایانی شدند و فرو روا به ویلها استریفت می‌شده و 8
14000 زمانی 15 دقیقه سنتیفیورش شدند. فرو روابطی داشته اند. جدید اندازه‌های میزان پاتناشی اسپری آن با استفاده میکروسومتر کالیبره مدل 3270 ساخت راean ابزار گیری شد.

پاتناش تورسانس برگ‌ها: برای تیمارهای آزمایش، پاتناش تورسانس از ابتدا پاتناش‌های اول و اسپری برگ‌ها به دست آمد.

تجزیه آماری: داده‌های این آزمایش با استفاده از نرم‌افزار SAS 9.1 و بررسی طرح بلورهای کامل تصادفی تجزیه و

منحنی‌ها با استفاده از آزمون چند دانه‌ای دانک طبق‌نده شدند.

نتایج و بحث:

شاخص اسید آمین پرولین: میزان پرولین برگ در بین تیمارهای نش (متوسط مختلف آبیاری) اختلاف معنی‌داری در

سطح احتمال کمتر از ۱٪ داشت (جدول ۱). با افزایش سطح

بنچ مرکدار پرولین برگ افزایش یافت بطوریکه بیشترین میزان

پرولین موجود در برگ در نش بقیه تیمارهای نش شدید

(سرابول و پاتناش ماتریکس 75-کیلوپاسکال) در اواخر

دوره نش ۲۷۰ در سی و پنج‌مین روز بس از شروع

حدود ۲۳۵ میکرویول بر گرم وزن نازگ برگ به دست آمد

(شکل ۱). تغییرات شاخص پرولین بر حسب واحدهای تنش

اکمال شده تا حدودی با تأخیر از روز ۲۰ پس از شروع

نش خود را نشان می‌دهند. از جنابی اسید الی دیگر، روند تغییرات

شاخص پرولین در طی روزهای پس از شروع نش در هر سه

تیمار آبیاری در برگهای طالبی دارای نظم خاصی بود. به

عبارت با افزایش سطح تنش از آبیاری شاهد (50- 100

کیلوپاسکال) به شدت بیشتر سطح نش تنش (75-100 کیلوپاسکال) در

طی روزهای پس از شروع نش، شیب تغییرات این شاخص

درباره نش از دست با گدازه حوزه بر گرد و همکاران (2003) Yordanov

واکنش پرولین در برگ یک‌گاهاتان تحت شرایط تنش بدلیل

واکنش بیان زن‌های تک‌نفره کننده تولید این اسید مخرب ماندن زن

بین کننده آزم ۱- پرولین- ۵ کِریبوسیلات سیستمی می

باشد. نتایج مشابه در افزایش میزان پرولین تحت نش کم

آبی در برگ یک‌گاهاتان کم‌فروع و یاده‌مندان در گدازه

اعلام کرده‌اند یک‌گاهاتان در یکی پذیرش نیز

مستند، نتیجه می‌کند. با افزایش علائم این سوئیگ

سولول، فشار اسپری افزایش یافته و یک‌تغییر می‌گردد از

آب پیش‌تری را از مونیز جهی جذب نماید. مخلوط یاب آب

جذب شده در این سوئیگ جمع‌شده و نه تیپ تورسانس

سولول تحت شرایط تخت می‌باشد. بلکه به عوامل متغییر آب

درون سوئیگ از پروتئین و غشاء نیز محافظتی می‌کند. به

همین دلیل به این محدود موب دیگر آسیب‌زا. شاخص اسیدی یا

اسپری‌گری گونه‌پرستی مواد این است که این

مواد حتی در غلظاتی هی نبا پدیده‌ای فعالیتی آن‌زیمی

نیستند و اثر می‌کند. می‌تواند به شدت زن‌‌های شناس

شناخته شده شامل: آن‌بی‌آپتی‌یا (پرولین و سنتولین)، ترکیبات

امینومیو (کلینس بنتین، 3- دی متی سولفونورپروپیانات)،

موتورکاپتیدها (فروکوزا)، شاخص‌گذاری (مانیتل و پپتول) و

دو الگوکبسافت‌دیا (سکاراکس، رتلوزس و فرکوال) می‌باشد.

تخیلای فروکوزا، کلوکورس و سیکاریس در میوگ: تغییرات میزان

قدنها تحت تأثیر نش در سطح احتمال کمتر از ۱٪ (برای

سکاراکس) و در سطح احتمال کمتر از ۵٪ (برای گلوکورس و

فرورولک) معنی‌دار بود (جدول ۱). بیشترین میزان قدنها

(گلوکورس، فرورولک و سکاراکس) در میوگ‌های بقیه تیمارهای نش کم

آبی با نفتخانه شروع آبیاری به ترتیب ماتریکس ۷۵-کیلوپاسکال

و کمترین در تیمار شاهد (۵۰-کیلوپاسکال) به دست آمد. در

تیمار شاهد (شرکت آبیاری به ترتیب ماتریکس ۷۵-کیلوپاسکال) نفتخانه گلوکورس و فرورولک در روکش‌های اولیه پس از

شرکت نش کم آبی، در بالاترین میزان خود بود. از این تاریخ

یوستو. (2003) Yordanov
جدول ۲- تناوب تجهیز واریانس اثر نش ام آی (آپاری) بر میزان گل‌کرک، فروکرک، ساکارز میوه و پرولین برگ طالب سموری

<table>
<thead>
<tr>
<th>پرولین (μmol/g FW)</th>
<th>ساکارز (mg/g FW)</th>
<th>فروکرک (mg/g FW)</th>
<th>گل‌کرک (mg/g FW)</th>
<th>درجه آژادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۱۰/۴۴***</td>
<td>۰/۹۸***</td>
<td>۰/۷۷***</td>
<td>۳/۳۳***</td>
<td>۲</td>
</tr>
<tr>
<td>۱/۲۳***</td>
<td>۰/۹۸***</td>
<td>۱/۹۳**</td>
<td>۱/۲۳</td>
<td>۲</td>
</tr>
<tr>
<td>۳۴/۳۹***</td>
<td>۰/۹۸***</td>
<td>۷/۷۷</td>
<td>۶/۴۴**</td>
<td>۴</td>
</tr>
<tr>
<td>۳۳/۴۸***</td>
<td>۷/۸۶**</td>
<td>۱/۹۳**</td>
<td>۴/۵۶**</td>
<td>۴</td>
</tr>
<tr>
<td>۳۴/۴۱</td>
<td>۰/۷۷</td>
<td>۱/۷۷</td>
<td>۸/۴۳</td>
<td>۸</td>
</tr>
<tr>
<td>۴/۷۳</td>
<td>۷/۴۰</td>
<td>۱/۱۱</td>
<td>۷/۵</td>
<td></td>
</tr>
</tbody>
</table>

منابع تغییرات

- تکرار
- نش آپاری
- زمان نمونه برداری
- نش زمان نمونه برداری
- ًنط

ضریب تغییرات:

** معنی دار در سطح احتمال ۰/۰۵
* معنی دار در سطح احتمال ۰/۱

** پر اساس آزمون دانکن می‌باشد.

تقریباً ۵۰٪ از شروع نش ام آی بر شاخ پرولین برگ طالب سموری، حروف متفاوت نشان دهنده معنی دارد به ورود تفاوت‌ها در سطح

به بعد مقادیر این دو موتوساکارید رو به کاهش گذاشت

(شکل‌های ۲ و ۳)، بطوریکه در ۳۵ روز پس از شروع نش، میزان گل‌کرک و فروکرک بکمترین حد خود رسد. بیشترین میزان ساکارز در روز اول و پنجم پس از شروع نش کم آی در شدتی‌ترین تیمار نش آپاری (شروع آپاری در پتانسیل ماتریک ۷۵- کیلوپاسکال) و کمترین در تیمار شاهد (۰۰- کیلوپاسکال) بدهد دست ام در این آزمایش به مواد افراشیت

سطح نش آپاری با پتانسیل ماتریک ۵۰- کیلوپاسکال به پتانسیل ماتریک ۷۵- کیلوپاسکال میزان ساکارز در هر سه زمان نمونه برداری افراشیت یافت با این

وجود دارد. با اعمال نش آپاری شدید در مرحله اولیه تمرغیه.
اثر نشته کم آبی بر رضموایه سبز، سبسعدی و لیزر اسپورتی، و میزان اسپستیلای یا قند ...

شکل ۲- اثر سطح مختلف نشته کم آبی بر میزان فروکتوز میوه در طالب سپسی. خروج متفاوت نشان دهنده معنی‌دار بودن تفاوت‌ها در سطح ۱% برابر باً آزمون دانکن می‌باشد.

شکل ۳- اثر سطح مختلف نشته کم آبی بر میزان کلئور میوه در طالب سپسی. خروج متفاوت نشان دهنده معنی‌دار بودن تفاوت‌ها در سطح ۱% برابر باً آزمون دانکن می‌باشد.

شکل ۴- اثر سطح مختلف نشته کم آبی بر میزان ساکارز میوه در طالب سپسی. خروج متفاوت نشان دهنده معنی‌دار بودن تفاوت‌ها در سطح ۱% برابر باً آزمون دانکن می‌باشد.
تعداد روز پس از شروع نشان دهنده میزان نفوذ پردازش زباله در سطح 1% است. نمونه‌های سنجیده در سطح 0.05 و 0.01 توسط چکار ریسپورت نشان داده شد که در نتیجه این تحقیق، نمونه‌هایی که در سطح 0.05 و 0.01 توسط همه نشان دهنده بیان کردند که در تحقیق مشابه کنست، نیازمند نفوذ پردازش زباله در سطح 1% هستند.

شکل 5: تعداد روز پس از شروع نشان دهنده میزان نفوذ پردازش زباله در سطح 1% است.

جدول 1: نشان دهنده میزان نفوذ پردازش زباله در سطح 0.05 و 0.01.

جدول 2: نشان دهنده میزان نفوذ پردازش زباله در سطح 0.05 و 0.01.

جدول 3: نشان دهنده میزان نفوذ پردازش زباله در سطح 0.05 و 0.01.

جدول 4: نشان دهنده میزان نفوذ پردازش زباله در سطح 0.05 و 0.01.

جدول 5: نشان دهنده میزان نفوذ پردازش زباله در سطح 0.05 و 0.01.

جدول 6: نشان دهنده میزان نفوذ پردازش زباله در سطح 0.05 و 0.01.

جدول 7: نشان دهنده میزان نفوذ پردازش زباله در سطح 0.05 و 0.01.

جدول 8: نشان دهنده میزان نفوذ پردازش زباله در سطح 0.05 و 0.01.

جدول 9: نشان دهنده میزان نفوذ پردازش زباله در سطح 0.05 و 0.01.

جدول 10: نشان دهنده میزان نفوذ پردازش زباله در سطح 0.05 و 0.01.

جدول 11: نشان دهنده میزان نفوذ پردازش زباله در سطح 0.05 و 0.01.

جدول 12: نشان دهنده میزان نفوذ پردازش زباله در سطح 0.05 و 0.01.

جدول 13: نشان دهنده میزان نفوذ پردازش زباله در سطح 0.05 و 0.01.

جدول 14: نشان دهنده میزان نفوذ پردازش زباله در سطح 0.05 و 0.01.

جدول 15: نشان دهنده میزان نفوذ پردازش زباله در سطح 0.05 و 0.01.

جدول 16: نشان دهنده میزان نفوذ پردازش زباله در سطح 0.05 و 0.01.

جدول 17: نشان دهنده میزان نفوذ پردازش زباله در سطح 0.05 و 0.01.

جدول 18: نشان دهنده میزان نفوذ پردازش زباله در سطح 0.05 و 0.01.

جدول 19: نشان دهنده میزان نفوذ پردازش زباله در سطح 0.05 و 0.01.

جدول 20: نشان دهنده میزان نفوذ پردازش زباله در سطح 0.05 و 0.01.
جدول ۳- تأثیر جویابی و رپاراس اثر تنش کم آب بر فعالیت اینورتزا مایو و پاتنسیلهای آب و اسمر و تورزباسنگ برگ مسوموری

<table>
<thead>
<tr>
<th>پاتنسیلهای آب</th>
<th>پاتنسیلهای آب</th>
<th>آزادي</th>
<th>درجه فعالیت</th>
<th>میزان تغییرات</th>
<th>تکرار</th>
</tr>
</thead>
<tbody>
<tr>
<td>برگ بکری</td>
<td>برگ بکری</td>
<td>(μmol/g FW/h)</td>
<td>تنش (آبایی)</td>
<td>زمان نمونه برداری</td>
<td></td>
</tr>
<tr>
<td>۵۰NS</td>
<td>۵۰</td>
<td>۱۰۶/۶۵</td>
<td>۳۵</td>
<td>۳۵/۰۲</td>
<td></td>
</tr>
<tr>
<td>۶۵/۶۵</td>
<td>۴۲/۰۵</td>
<td>۸۵/۰۶</td>
<td>۲۵</td>
<td>۷۱/۵۰</td>
<td></td>
</tr>
<tr>
<td>۷۰/۹۸</td>
<td>۷۱/۵۰</td>
<td>۸۱/۸۳</td>
<td>۳۵</td>
<td>۷۲/۵۶</td>
<td></td>
</tr>
<tr>
<td>۸۰/۸۳</td>
<td>۸۱/۸۳</td>
<td>۹۷/۸۳</td>
<td>۳۵</td>
<td>۹۷/۸۳</td>
<td></td>
</tr>
</tbody>
</table>

میزان جریان در سطح احتمال ۱ دمید، *میزان دار در سطح احتمال ۵ دمید و میزان دار نیست.

پاتنسیلهای آب، اسمر و تورزباسنگ برگ‌های طالبی مسوموری در سطح احتمال کمتر از ۱ دمید میزان دار بود (جدول ۳) و در شروع دوره اول تنش با یک‌باره هفت زمان تنش مشاهده شد. با افزایش دوره اول تنش کم آب و رسیدن به ۳۵ بروز این تنش در شروع مسوموری کم آب بود رخ داد (۲-۲۱ bar). بطور کلی از جمله اسناد تصدیقی مولت در وقوع تغییر اسمری می‌توان به باکتری و پروتئین اشاره کرد که به نظر می‌رسد می‌تواند رسیده‌های در افزایش غلظت اسمری سول‌های برگ طالبی در شرایط این آزمایش تحت شرایط کم آب ایفا کرده ان. این تغییرات اسمری در طالبی در شرایطی رخ داده که پاتنسیلهای آبی تا حد ۲۲- ۱- بار به صورت تغییرات واقعی و طبیعی داشته‌اند. طبیعی در سطح این ابی اثر تنش در این این تغییر پاتنسیلهای آبی بوده‌اند. زیرا پایتختی در حالت زیاد سرعت به غلظت بالای انرژی هگزور در غلظت پایین ساکارز نیز دارند. در گام‌های نست و همکاران (۲۰۱۱) یک کردن که انرژی اینورتزا و ساکارز فسیت‌سنتا، آزمایش‌های بالی تجربی در میدو هستند. وجود هم‌سانتی ممکن می‌باشد و نوتورتزا در روش‌های هیبرید نیز توسط (۱۹۴۱) گزارش شده است.

پاتنسیلهای آب، اسمر و تورزباسنگ برگ طالبی: طبیعی جدول تجزیه واریانس اثر تنش کم آب در طی مراحل مختلف بر
پتانسیل آب برگ کاهش پایه وی بهبود می‌تواند در می‌شود. شبیه این کاهش در نخ تناسیل آب در برگ‌ها به حدی است که مقادیر اندازه‌گیری شده از تناسیل آب به حد مقادیر تناسیل اسمنی برگ می‌رسد. از آنجا که تناسیل تورزانس خود تابعی از تغییرات تناسیل های آب و اسمر در برگ است و کاهش حاوی این دو تناسیل است، بیدهی است که روئید تغییرات آن مشابه هر دو تناسیل آب و اسمر در گیاه پاسی. بیانیات دیگر، یا کاهش اختلاف تناسیل‌های اسمری و آب برگ، تناسیل تورزانس نیز که حاوی این اختلاف است کاهش یافته‌ایمافشار تورزانس افزایش یافته (و بیانیاته) می‌شود. بیانیاته می‌تواند در و حتما در آتای در دو تناسیل آب و اسمر در گیاه. همین‌طور تناسیل آب به صورت‌هایی نشان می‌دهد تناسیل اسمری، محافظه اسمری و سبب‌سازی اکسیدانی همگی روش‌های اساسی پاسی به تنی خشکک و ایجاد مقاومت نسبت به ان‌هستن (فازی و همکاران، 2009). از بین مکانیسم‌های مختلف، تنظیم اسمری ممکن است تحمل کیهی را نسبت به مبهم‌های ناشی از تنی خشکی از طریق حفظ پتانسیل آب با به آفسایش دهد تنظیم اسمری به حفظ تغییرات سلول‌های برگ کاهش طبیعی تحت تنی کم آب گردید. خط رسم‌شده در شکل ۶ (خط نشانگر پتانسیل اسمری مورد اندازه‌گیری در واقع حاوی این دو تناسیل رفتار تناسیل اسمری در برگ‌ها براساس رطوبت نسبی آب برگ در اولین دوره رشد کیهی می‌باشد. کاهش میزان پتانسیل اسمری حتی به زیر این خط می‌باشد.

Water deficit effects on some physiological characteristics, sugars and proline as osmolytes in *Cucumis melo* Group, *cantaloupensis* cv. Samsoury

Najmeh Zeinali¹, Kamladin Haghbeen², Mojtaba Delshad³

¹Department of Horticultural Science, Faculty of Agriculture, Shahid Bahonar university of Kerman, ²Research Center of Genetic Engineering and Biotechnology of Tehran ³Department of Horticultural Science, Faculty of Agriculture, Agriculture and Natural Resources College Karaj, Tehran University

(Received: 4 December 2014, Accepted: 13 Sebtember 2015)

Abstract:

In order to study the effect of water deficit stress on some physiological characteristics including leaf water; osmotic and turgor potentials and osmolytes including sugars, proline and invertase activity of Persian melon (*Cucumis melo* Group, *cantaloupensis* cv. samsoury), an experiment was conducted in complete randomized design. Treatments including three irrigation levels (start of irrigation at -50 (control), -65 (moderate stress) and -75 kPa (severe stress) of matric potentials. Severe decrease of osmotic potential even less than predicted value (about -23 bar) was happened in severe water deficit stress (start of irrigation at -75 kPa of matric potential). Results indicate that water deficit levels in this experiment were cause to changes in sugars content and invertase activity. Water deficit stress decreased invertase activity to 2.01 at 35th days after start of stress, while the activity of this enzyme at this stage was measured about 4.14, for control (start of irrigation at -75 kPa of matric potential). Severe level of water deficit (start of irrigation at -75 kPa of matric potential) increased fruit sucrose content (0.32 mg/g FW) and glucose content (0.08 mg/g FW), leaves proline content (0.35 µmol/ g FW) at 35th days after start of stress. Also, an osmotic regulation was happened in this plant by sucrose and proline aggregation under water deficit stress and according to the leaf osmotic potential has decreased even more than expected value.

Keywords: Osmolytes, Osmotic regulation, Samsoury, Invertase activity, Water deficit stress

corresponding author, Email: Najme.zeinali@yahoo.com