اثر تنش کم آبی بر برش خصوصیات فیزیولوژیکی و میزان اسپولیت‌های قد و پرولین در طالبی سمسور و رامین

نجمه زینلی۱، کمال الدین حق بین۲ و مجتبی دلشد۳

گروه یافایی، دانشکده کشاورزی، دانشگاه شهد باهنر کرمان. آنیت علیپور، دانشیگاه مهندسی زیست و زیست فناوری تهران. گروه علوم یافایی، دانشکده کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران.

تاریخ دریافت: ۱۳۹۵/۱۳/۱۳، تاریخ پذیرش نهایی: ۱۳۹۸/۰۷/۰۲

چکیده

به منظور بررسی اثر تنش کم آبی بر برش خصوصیات فیزیولوژیکی شامل پتانسیل‌های آبی، اسپولیت‌های قد و پرولین و فعالیت آنزیم اینوزتان در طالبی ایرانی سمسوری، آزمایش در قالب طرح بلوک کامل تصایفی با سه تکرار انجام شد. تیمارهای آزمایش شامل سطح آبیاری (شروع آبیاری در پتانسیل‌های مارک: ۰۰-۵۰، ۵۰-۱۰۰، ۱۰۰-۱۵۰، ۱۵۰-۲۰۰، ۲۰۰-۲۵۰ کیلوپاسکال) و سطح پرولین (بین ۱۰۰ و ۵۰۰ میلی‌گرم بر هر متر مربع) بود. تیمارهای آن‌ها در سه حالت تربیتی: دار، نداشتن، دار، به ترتیب به تیمارهای آزمایش‌گردهدا و فعالیت آنزیم اینوزتان گردید. تنش کم آبی میزان فعالیت آنزیم اینوزتان را در سی و پچمین روز پس از شروع تنش تا حد ۲۰۱۲ کاهش داد و در حالیکه میزان فعالیت این آنزیم در آبیاری شاهد در همین مرحله حدود ۴۰٪ اندوزه گیری شد. فعالیت سطح تنش کم آبی (شروع آبیاری در پتانسیل‌های مارک: ۰۰-۷۵ کیلوپاسکال) موجب افزایش میزان پتانسیل ساکاری بر (۳۲ میلی‌گرم بر گرم وزن ناز) و گلکز میوه (۷۸۰ میلی‌گرم بر گرم وزن ناز) پرولین را (۳۲۰ میلی‌گرم بر گرم وزن ناز) در سی و پچمین روز پس از شروع تنش در مقایسه با شاهد در همین مرحله شد. همچنین تنش هستی در این گیاه به ترتیب تجهیز ساکارازی، گلکز و پرولین تحت تنش کم آبی و باتوجه به این که پتانسیل ساکارازی در این موارد افزایش یافت، این نتایج اتفاق افتاده است.\n
کلمات کلیدی: اسپولیت‌ها، تنش اسپومی، سمسوری، فعالیت اینوزتان، تنش کم آبی.

مقدمه

سسیتهای خانواده کودپایان حدود ۱۴ درصد سطح زیر کشت کل سسیتهای مختلف دارد که با هر اختصاص داده داد که این میزان قسمت عمده ای از بروز طالبی، خرابی اختصاص دارد و از اهمیت زیادی برخوردار هستند (پیستنگت، (Cucumis melo Group. (۱۲۸۸. طالبی (سامسوری) c. melo) یکی از ارقام تجارتی معروف cantaloupons cv. samsoury).\n
*نویسنده مسئول، دانشیگاه سبزی استخوانی: Najme.zeinali@yahoo.com

اربیوط و کارکرد گیاهی، جلد ۸، شماره ۱۹، فارس ۱۳۹۵.
گیاهان در اکثر نقاط جهان ایست. تنش رطوبتی می‌تواند به سبب ایجاد بین‌احیاء مثلت با ویژوالیسم، رشد و فیزیولوژی گیاه را تحت تأثیر قرار دهد. گزارش‌های زیادی مبنی بر تأثیر کم‌عمر آب از جنگ نویت تنها با باتلاقه مختل شدن فرآیندهای فیزیولوژیکی گیاهان (1989) تغییر در متابولیسم کربوهیدرات‌ها و نیترژن، تغییر در ساختار، پروپتین‌ها و فعالیت آنزیم‌ها، تجمع برکلین و کاهش تشخیصی کندن‌های رشد را گزارش کرده. کاهش در سرعت آسیمپلاسیون دی اکسیدکریک نتیجه تنش خشکسالی می‌تواند توسعه پیدا کند. تجمع و تحرک زندگی‌ها را تحت تأثیر قرار دهد. در حال حاضر، می‌توانند تاریکه‌های کوتاه مرداد نیمه‌کاهش نماید. گاهی اوقات حتی عملیاتی از افراد گیاه و شرایط بهینه آب که یک محصولی با می‌شوند باعث کاهش یکی طوطع محقق‌ها. برای مثال کاربرد بیش از حد آب و نیترژن با بات از شاهدی که فاکتورها صربیت و ترکیبات معطر میوه مشاهده شده است. گزارش‌هایی مبنی بر اعمال با دوز دنی خشکسالی، افزایش آب‌گیری، بهبود خواص کیفی و فعالیت‌های واحد کاهش می‌باشد. (Lester and Dunlap, 1985) با یکی نوی داشت که تشخیص طولانی مدت وارد بر گیاه، به طور قابل ملاحظه‌ای رشد گیاه و عملکرد آن تحت تأثیر قرار می‌دهد. برای مثال (2002) نشان میدهد که فعالیت‌های تنش خشکسالی طولانی مدت در مراحل تشکیل کل و میوه طالب و هندوانه رشد کمی و کیفی ای محصولات را کاهش می‌دهد. هدف از انجام ایمپریال در راستای این ضرورت بوده که تحقیقات بیشتر برای ای ایان نکته به خصوصیات کمی، کیفی و فیزیولوژی می‌توانند تحت تنش تغییر شده. به‌وب‌های باند، نیاز است. این موضوع که اعمال تشخیصی کنترل شده چگونه می‌تواند بر کیفیت و کمیت قندی و وقوع تغییر امر می‌باشد. به همکاری، بنون اینکه کاهش عملکرد معنی‌داری نمود میوه و نیز در بازارپردازی آن تأثیر بسیار می‌گذارد. بدین با تجمع در سلولهای گیاهی کاهش امسالیتهای موثر در بقیه تغییرات امکان‌پذیر و متقابل به نشانه‌ها و افزایش می‌دهد. نتایج فاکتور ویژنی میوه طالب توسط محصول ساکارز، گلوزکر و فروکاتز که در میوه معین می‌گردد می‌تواند انتعاضی از نحوه عمل، تولید و توزیع این قطع‌های محلول است. در اکثر خریداری از ها یا پنج درصد مواد جامد محلول را قطع‌های محلول تشکیل می‌دهند و در میوه حاوی رسیده، ساکارز قنث غلب بوده و حدود 40 درصد قنث‌ها را شاپل می‌شوند. در آزمایشات Pharr و همکاران (2002) انجام شده است.

در آزمایشات بررسی تغییرات فیزیولوژیکی در جریان رسیدن میوه در خرید، لنگر و همکاران (2001) به این تجربه رسیدند که آنزیم‌های ساکاراز سیستام و سیستام فسفات سیستام می‌باشد. نتایج این تغییرات عاملی متوازی‌می‌کند. معاونه بر کیفیت طبیعی مواد نهایی محقق شده که تألیف در محیط آب در این آزمایش‌ها و Guoyao 2006 نشان داد. نتایج در محیط آب در این آزمایش‌ها و Guoyao 2006 نشان داد. نتایج در محیط آب در این آزمایش‌ها و Guoyao 2006 نشان داد. نتایج در محیط آب در این آزمایش‌ها و Guoyao
خلاصه پرولین اندازه‌گیری تغییرات خاص گرافین در میزان اسپروپاتی و در ردسته‌های اولیه مورد توجه و مطالعه قرار گرفت است. در رساله‌ای به‌لطف آقایان و آموزشگران، در ردسته‌های اولیه مورد توجه و مطالعه قرار گرفت است. در رساله‌ای به‌لطف آقایان و آموزشگران، در ردسته‌های اولیه مورد توجه و مطالعه قرار گرفت است. در رساله‌ای به‌لطف آقایان و آموزشگران، در ردسته‌های اولیه مورد توجه و مطالعه قرار گرفت است.
جدول 1- خصوصیات خاک محل انجم آزمایش

<table>
<thead>
<tr>
<th>جذور</th>
<th>فسفر قابل جذب/ت هدایت الکتریکی (ds/m)</th>
<th>pH</th>
<th>بافت خاک</th>
<th>لوم ریس</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/kg</td>
<td>(mg/kg)</td>
<td>(EC)</td>
<td>1/89</td>
<td>81</td>
</tr>
<tr>
<td>710</td>
<td>13/37</td>
<td>0/07</td>
<td>8/91</td>
<td>0/5</td>
</tr>
</tbody>
</table>

在美国和在俄勒冈州，2004年。این جدول خصوصیات خاک محل انجم آزمایش را نشان می‌دهد.

سیگما خرد‌بندی شد.

آمیکا و در طول موج 540 نانومتر فرانت شد. به‌عنوان صفر
دستگاه از محلول ساکارز استفاده شد. اعداد جذب حاصل از
اسکریپتوفومتری نسبت به استاندارد مقایسه شدند و میزان
عفای اینوتاریا بصورت میکرومتر بر گرم ماده تازه به دقیقه
بین شد. در یک نمونه سایر سلولار اسید (DMS) از شرکت
نبیکا خرد‌بندی شد.

اندازه‌گیری پانسیل آب گیاهی در اندازهٔ گیری پانسیل
Pressure chamber, Santa Barbara آب پرکرده از لب لیت‌کس شده. این دستگاه دارای
یک کیس هوایی گاز نیتروژن با فشار برای استفاده. جهت اندازه‌گیری
گیری این پانسیل‌ها با این دستگاه، دمبک برگ را پس از غربه از
ریختگاهی مخصوص و آب‌میانی از عدم حرکت و نشست‌گاه در
محیط ملایم روی ارتفاع بارش‌های لب لیت‌کس و با درادن
قطعه ای از خمیر استیک در اطراف محله‌های ناحیه شیل‌هلگها
از سندوچ بودن درز و منافع احتمالی که باعث هدررفتگاه
می‌شوند، آب‌میانی حاصل می‌شود. به‌عنوان نمونه، دم‌گی
گاز، فشار درون این‌هاک از باید گزارش می‌شود. با مشاهده، خروج
اولین فتنه‌های از این‌هاک بر (گ) با نسبت به لحاظی
مخصوص صورتی می‌کرد. در این‌هاک، یک رابطی بین و
سیریا فرانز و یادبودت از روی دستگاه انجام می‌گرد. انتهای
دم‌گی یک‌پذیر کاملاً صاف و سطحی باشد. بدین‌میزان، می‌توان
اندازه‌گیری دم‌گی را با تغییر نرخ برش داد. در حالی که در روی را بر
دیده‌گاه گاز نیتروژن محفظه خرید. فشار آن را نسبت به آب
درون اورده‌گیری چوبی حاصل نموده شده بود. در این‌هاک، این‌هاک
و سیریا فرانز از نظر قطع ساخت و فشار همبستگی ای است که
قبل از جدا کردن اندازه‌گیری با نباتات اما علامت
آن در جهت مخالف در نظر گرفته می‌شود. لازم به ذکر است
که در این روش اندازه‌گیری سرعت انجم عملیات از اهمیت
خاصی بخوردار است. چرا که با گذشت زمان، احتمال از
اندازه‌گیری آزمایش این‌هاک در نمونه‌های گیاه
می‌باشد. مقدار 5 گرم از گیاه میوه منجمد شده در هاوان سرد
قرار گرفته بر روی یخ و با استفاده از بافر استخراج آسیاب و
محلول شد (فرا به نهایت بافر سراپ) 40 میلی لیتر بافر مسیمی
سایر 10 میلیلیتر pH -/7 5. را با 10 میلیلیتر محلول
(w/v) یک میلیلیتر Na2/EDTA
Mحلول کردن. لوله های فالکون حاوی محلول تهیه شده به
مدت 10 دقیقه در سانتی‌پیوتوی شد. فاز روابط جدا و
به فالکون‌های جدید انتقال داده شد. به‌منظور
عصره درون فالکون، انالوئول سرد به آرامی و بصورت قطعی
پایه اضافه شده تا آزمایشات روسی تهیه شد. منظور
رسوب بهتر ترلپین. لوله های فالکون به مدت 10 دقیقه در
10000 دور سانتی‌پیوتوی شدند. فاز روابط در خیاره شد و
رسب حاصل در 2 میلی لیتر بافر استانده مسیم با
حل شد. این محلول عصاره آزمایشی بود. برای استنچش
عفای اینوتاریا (1 میلی لیتر محلول ساکارز 0.1 میلی لیتر
از عصاره آزمایشی اضافه شد. محلول حاصل به مدت 10 دقیقه
در دمای اتاق جهت انجم وابستگی آزمایشی قرار گرفته و
می‌توان با قرار دادن محلول واکنش 100 درجه سانتی‌گراد
به مدت 10 دقیقه مقیاس گرفت. برای استنچش مقدار گل‌زی
تولید شده، محلول سرد شد و 1 میلی لیتر محلول دی
نیتراسیلیک اسید (DMS) به آن اضافه شد و پلاستیک در
دمای 100 درجه سانتی‌گراد به مدت 10 دقیقه حرارت داده.
برای ساخت محلول دی نیتراسیلیک اسید، 10 گرم پودر
دی نیتراسیلیک اسید را با 45 گرم سلناید سدیم و
10 گرم پودر هیدروکسید سدیم مخلوط و در 1 لیتر آب حل
نموده‌م. محصول این واکنش ترکیبی بود که جذب آن
توصیه دستگاه اسکریپتوفومتری (Jenna, Specord)

Downloaded from iosp.jpsci.ir at 22:56 IRST on Thursday February 3rd 2022
دست رفتن ریپوت برگ و بودار

پاتاک سردبیری برگ: یک تیمار به درون نیتروز مایع قرار گرفت و در 20-25 درجه سانتیگراد فریش شد. برگهای حاصل از انحصار یک با هاون دستی بمنظور خروج عصاره برگ کامل سایدهتند و فوراً به پایه ای استفاده متفق و در 48-4000 مدت 15 دقیقه سانتریفورژ شدند. فاز رودی به واسطه جدید انگلی و برگ پاتاک اسمی آن با دستگاه میکروسمومتر کاپیره مدل 3320 ساخت و در این هری شد.

پاتاک تورسنس برگها: برای تیمارهای آزمایش، پاتاک تورسنس از اختلاف پاتاکهای آپ و اسمری برگها به دست آمد.

تجزیه آماری: داده‌های این آزمایش با استفاده از نرم‌افزار SAS 9.1 و براساس الگوی ساده یک‌عاملی تجزیه و تحلیل کرد. منابع‌ها با استفاده از آزمون چند دانه‌ای دانک طبقه‌بندی شدند.

نتایج و بحث:

شاخک اسید آپیلیون: میزان پرولین برگ در بین تیمارهای نش (متوسط مختلف آپیل) اختلاف معنی‌داری در مجموع احتمال کمتر از 0.1 داشت (جدول 3). از طرفی، نتیجه‌های تعداد بیشتر روی زدن پرولین برگ افرازی یافت، به‌طوری‌که پرولین میزان پرولین موجود در برگ تحت تیمار نش شدید (شروع پاتاک ۱، پاتاکهای آپیلیون‌یک-) کپیوریکاک دارای اثرات جدیدی و در پایین‌ترین این کپیوریکاک (برای استفاده در پرورش) بود.

تعداد ۱-۷، و در سی و پنجی روز پس از شروع تنش ۲۴۰ و در سی و پنجی روز پس از شروع تنش ۲۴۰ میکروگرام بر گرم وزن تاغی برگ به دست آمد (شکل 1). تغییرات شاخک پرولین بر حسب واحد‌های تنش اکمال شده تا حدودی با تأخیر از روز ۲۰ پس از شروع تنش خود را نشان می‌دهند. از جنبه ای دیگر، روند تغییرات شاخک پرولین در طی روزهای پس از شروع تنش در هر سه تیمار آپیلیون برگهای طالی استفاده نمی‌خواهی، به روی تیمارهای آپیلیون (کپیوریکاک) استفاده نشته‌اند در پایین‌ترین سطح تنش (شروع شاخک ۱-۵۰ کپیوریکاک) که هیچ‌گاه تعدادی کپیوریکاک از روزهای اولیه پس از شروع تنش کم‌تر از قبلاً در بالاترین میزان خود بود. از این تاریخ
جدول 2- تأثیر تجربه واربین اثر نشیم کم آبی (آیبایری) بر میزان گلورک، فروکتوز، ساکارز میوه و پرولین برگ طالبی سمسوری

<table>
<thead>
<tr>
<th>نوع</th>
<th>پرولین (μmol/g FW)</th>
<th>ساکارز (mg/g FW)</th>
<th>فروکتوز (mg/g FW)</th>
<th>کلورک (mg/g FW)</th>
<th>درجه آزدی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/44*</td>
<td>0/044***</td>
<td>0/077**</td>
<td>0/053**</td>
<td>0/033**</td>
<td>2</td>
</tr>
<tr>
<td>1/42*</td>
<td>0/050***</td>
<td>0/074**</td>
<td>0/052**</td>
<td>0/032**</td>
<td>2</td>
</tr>
<tr>
<td>1/41/14*</td>
<td>0/052***</td>
<td>0/068**</td>
<td>0/052**</td>
<td>0/032**</td>
<td>4</td>
</tr>
<tr>
<td>44/86*</td>
<td>0/274***</td>
<td>0/055**</td>
<td>0/052**</td>
<td>0/032**</td>
<td>4</td>
</tr>
<tr>
<td>3/14</td>
<td>0/111</td>
<td>0/076</td>
<td>0/052</td>
<td>0/032</td>
<td>8</td>
</tr>
<tr>
<td>0/11</td>
<td>0/111</td>
<td>0/076</td>
<td>0/052</td>
<td>0/032</td>
<td>8</td>
</tr>
<tr>
<td>4/13</td>
<td>0/250</td>
<td>0/114</td>
<td>0/076</td>
<td>0/052</td>
<td>8</td>
</tr>
</tbody>
</table>

*منعی در سطح احتمال 1 درصد. **منعی در سطح احتمال 5 درصد و ***منعی در نیست.

نمونه‌های دایره‌ای در شرایط 2 و 3، بطوریکه در شرایط 1، میزان گلورک و فروکتوز به کمترین حد خود رسیدند. بیشترین میزان ساکارز در زمان سی و پنج پس از شروع نشیم کم آبی در شرایط درشت‌ترین نیمی نیمی آبی در شرایط انتیبلی (40-50 کیلوپاسکال) و کمترین در شرایط مایل به شامان (10-15 کیلوپاسکال) به دست آمد در این آزمایش به موازات افزایش سطح نشیم آبی از ترکیب 75-70 کیلوپاسکال به سمت آبی در این آزمایش به موازات افزایش شدند.

تعداد روز پس از شروع نشیم کم آبی بر اساس آزمون دانکن می‌باشد.

نمونه‌های دایره‌ای در شرایط 1، لازم استیت در شرایط 1، به بعد مقادیر این دو موتونسکاراید رو به کاهش گذاشت (شکل‌های 2 و 3). بطوریکه در شرایط 1، میزان گلورک و فروکتوز به کمترین حد خود رسیدند. بیشترین میزان ساکارز در زمان سی و پنج پس از شروع نشیم کم آبی در شرایط درشت‌ترین نیمی نیمی آبی در شرایط انتیبلی (40-50 کیلوپاسکال) و کمترین در شرایط مایل به شامان (10-15 کیلوپاسکال) به دست آمد در این آزمایش به موازات افزایش سطح نشیم آبی از ترکیب 75-70 کیلوپاسکال به سمت آبی در این آزمایش به موازات افزایش شدند.

نمونه‌های دایره‌ای در شرایط 1، لازم استیت در شرایط 1، به بعد مقادیر این دو موتونسکاراید رو به کاهش گذاشت (شکل‌های 2 و 3). بطوریکه در شرایط 1، میزان گلورک و فروکتوز به کمترین حد خود رسیدند. بیشترین میزان ساکارز در زمان سی و پنج پس از شروع نشیم کم آبی در شرایط درشت‌ترین نیمی نیمی آبی در شرایط انتیبلی (40-50 کیلوپاسکال) و کمترین در شرایط مایل به شامان (10-15 کیلوپاسکال) به دست آمد در این آزمایش به موازات افزایش سطح نشیم آبی از ترکیب 75-70 کیلوپاسکال به سمت آبی در این آزمایش به موازات افزایش شدند.

نمونه‌های دایره‌ای در شرایط 1، لازم استیت در شرایط 1، به بعد مقادیر این دو موتونسکاراید رو به کاهش گذاشت (شکل‌های 2 و 3). بطوریکه در شرایط 1، میزان گلورک و فروکتوز به کمترین حد خود رسیدند. بیشترین میزان ساکارز در زمان سی و پنج پس از شروع نشیم کم آبی در شرایط درشت‌ترین نیمی نیمی آبی در شرایط انتیبلی (40-50 کیلوپاسکال) و کمترین در شرایط مایل به شامان (10-15 کیلوپاسکال) به دست آمد در این آزمایش به موازات افزایش سطح نشیم آبی از ترکیب 75-70 کیلوپاسکال به سمت آبی در این آزمایش به موازات افزایش شدند.

نمونه‌های دایره‌ای در شرایط 1، لازم استیت در شرایط 1، به بعد مقادیر این دو موتونسکاراید رو به کاهش گذاشت (شکل‌های 2 و 3). بطوریکه در شرایط 1، میزان گلورک و فروکتوز به کمترین حد خود رسیدند. بیشترین میزان ساکارز در زمان سی و پنج پس از شروع نشیم کم آبی در شرایط درشت‌ترین نیمی نیمی آبی در شرایط انتیبلی (40-50 کیلوپاسکال) و کمترین در شرایط مایل به شامان (10-15 کیلوپاسکال) به دست آمد در این آزمایش به موازات افزایش سطح نشیم آبی از ترکیب 75-70 کیلوپاسکال به سمت آبی در این آزمایش به موازات افزایش شدند.

نمونه‌های دایره‌ای در شرایط 1، لازم استیت در شرایط 1، به بعد مقادیر این دو موتونسکاراید رو به کاهش گذاشت (شکل‌های 2 و 3). بطوریکه در شرایط 1، میزان گلورک و فروکتوز به کمترین حد خود رسیدند. بیشترین میزان ساکارز در زمان سی و پنج پس از شروع نشیم کم آبی در شرایط درشت‌ترین نیمی نیمی آبی در شرایط انتیبلی (40-50 کیلوپاسکال) و کمترین در شرایط مایل به شامان (10-15 کیلوپاسکال) به دست آمد در این آزمایش به موازات افزایش سطح نشیم آبی از ترکیب 75-70 کیلوپاسکال به سمت آبی در این آزمایش به موازات افزایش شدند.
شکل ۲- اثر سطوح مختلف تنش کم آبی بر میزان فروکتوز میوه در طالبی سمسوری. حروف متفاوت نشان دهنده معنی‌دار بودن تفاوت‌ها در سطح ۱% بر اساس آزمون داکلک می‌باشد.

شکل ۳- اثر سطوح مختلف تنش کم آبی بر میزان گلاکوز میوه در طالبی سمسوری. حروف متفاوت نشان دهنده معنی‌دار بودن تفاوت‌ها در سطح ۱% بر اساس آزمون داکلک می‌باشد.

شکل ۴- اثر سطوح مختلف تنش کم آبی بر میزان ساکارز میوه در طالبی سمسوری. حروف متفاوت نشان دهنده معنی‌دار بودن تفاوت‌ها در سطح ۱% بر اساس آزمون داکلک می‌باشد.
تعداد روز پیش از شروع نشتن کم آبی

شکل ۵- اثر سطوح مختلف نشتن کم آبی بر میزان فعالیت اینترونز در طالبی مسوری.

در سطح ۱% بر اساس آزمون دانک می‌باشد.

فعالیت اینترونز و افزایش فعالیت ساکرز فسفات سانتاز و ساکرز سنتاز می‌باشد. لکه قابل توجه این است که در این آزمایش‌های رونده کلی تغییرات گلوکر و فروکوزور در جریان رسیدن‌یابی رو بهکاهش است. اما در شدت‌ترین سطح تنش این آزمایش با همان شرایط آبیایی در پناهسی مارکیت ۷۵/۰ کیلو پاسکال در مقایسه با نسبتاً کاهش رو به افزایش می‌باشد. آزمایش و همکاران (۱۹۸۵) مشخص شد که آبیایی در افزایش و همکاران (۱۹۸۵) مشخص شد که آبیایی اضافی در مرحله تزدیک به برداشت میوه باعث کاهش مقدار موارد جامد محلول می‌شود. با افزایش گذشتهای در پناهسی آب‌گذاری، سلول‌های ذخیره کننده قند در میوه نسبت به فقای اپیلیستی، هیراسوموتیک بوده و آب را جذب می‌کند و این ترتیب سبب افزایش وزن تر میوه و رقیق شدن قند‌های ذخیره می‌گردد. گاهی اوقات عملیات کشت و شرایط بهینه آب و هوا که موجب عملکرد بالا می‌شوند باعث کاهش کیفیت محصولات می‌شوند. برای مثال کاربرد پیش از حد آب و نیتروژ بالا باعث کاهش کیفیت می‌شوند (Kader, ۲۰۰۸).

فاصله بین که گلوکر و فروکوزور نفوذ‌های موجود در گوشت میوه هستند و در طول این مرحله، فعالیت اینترونز طبیعی و اسیدی باقی می‌باشد. و افزایش فعالیت ساکرز فسفات سانتاز کمی باشد. همین‌طور با رسیدن طالبی افزایش کلی قند با تصمیم افزایش ساکرز دیده می‌شود و این افزایش مرتبط با کاهش چشمگیر
پانتسیلیامی آب، اسمز و تورزاسنس برگهای طالبی مسومی در سطح احتمال کمت ۱ درصد معنی دار (جدول ۲) مقدار پانتسیلیامی اسمری و آب برگ و نیز رطوبت نسبی برگ در شکل ۶ نمایش داده شده است. پیشینرین کهش در میزان تانتسیل آب برگ یک گذشته ۳۰ روز از شروع اعمال تنش کم آب بوده داد (۲۲) بطور کلی از جمله اسمومهای مؤثر در وقوع تنش اسمزی می توان به ساکارز و پروپریون اشاده کرد که به نظر می رسد نقص مهمی را در افزایش غلظت اسمزی سولهای برگ طالبی در شرايط این آزمایش تحت شرایط کم آب ایفا کردند. بنابراین تنش اسمزی در طالبی در شرایطی رخ داده که پانتسیلیمنی تا حد ۲۲-بار در شرایطی سطح نشان آبیاری در پانتسیلیمنی ۷۵-کیلوپاسکال و پس از شروع سی و پنج روز از شروع تنش کم آب نزول یافته است(شکل ۶ سمت راست). کاهش شدید پانتسیلیمنی (شکل ۶) که کمتر از میزان اندازه گیری نشانگر پانتسیلیمنی که حدود ۲۰ تجهیز زده شده است، در پاسخ به کمبود آب در سطح نشنه که کار رفته در این آزمایش می تواند ناشی از تجمع محلولهای اسمزی در واکول و انباشتند محلول ها در سلول باشد که منجر به کاهش حجم سلول می شود که با افزایش سطح نشنه کم آب از آبیاری در پنتسیلیمنی ۵۰ کیلوپاسکال تا شدیدترین سطح نشنه یعنی آبیاری در پنتسیلیمنی ۷۵-کیلوپاسکال،

جدول ۳- تأثیر تجهیز واریانس اثر تنگی تنش کم آب بر فعالیت اینورتاسی میوه و پانتسیلیامی آب و اسمز و تورزاسنس برگ مسومی

<table>
<thead>
<tr>
<th>درجه فعالیت</th>
<th>پانتسیلیمی</th>
<th>اینورتاسی</th>
<th>اسمز (μmol/g FW/h)</th>
<th>آب (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>تنش ۱۲۰/۶۵</td>
<td>۳/۷۴ میکرو</td>
<td>۱۸/۷۴ میکرو</td>
<td>۱۸/۷۴ میکرو</td>
<td>۲۲/۷۴ میکرو</td>
</tr>
<tr>
<td>تنش ۱۵۰/۷۴</td>
<td>۳/۷۴ میکرو</td>
<td>۱۸/۷۴ میکرو</td>
<td>۱۸/۷۴ میکرو</td>
<td>۲۲/۷۴ میکرو</td>
</tr>
<tr>
<td>تنش ۱۸۰/۸۴</td>
<td>۳/۷۴ میکرو</td>
<td>۱۸/۷۴ میکرو</td>
<td>۱۸/۷۴ میکرو</td>
<td>۲۲/۷۴ میکرو</td>
</tr>
<tr>
<td>تنش ۲۱۰/۹۴</td>
<td>۳/۷۴ میکرو</td>
<td>۱۸/۷۴ میکرو</td>
<td>۱۸/۷۴ میکرو</td>
<td>۲۲/۷۴ میکرو</td>
</tr>
<tr>
<td>تنش ۲۴۰/۱۰۴</td>
<td>۳/۷۴ میکرو</td>
<td>۱۸/۷۴ میکرو</td>
<td>۱۸/۷۴ میکرو</td>
<td>۲۲/۷۴ میکرو</td>
</tr>
</tbody>
</table>

متنی در سطح احتمال 1 درصد. *متنی در سطح احتمال 5 درصد و متنی در نیست.
شکل ۶- تغییرات اجزای آب برق (پتانسیل‌های تورزسیا، اسمروی و آب) بر حسب تغییرات ردیف نسبي برق تحت سطوح مختلف تشکیل‌کردن آبی و نوع تنظیم اسمروی در طالب‌سروری

پتانسیل آب برق کاهش یافته و بعبارتی منفی تر می‌شود. شیب این کاهش در نزدیک پتانسیل آب در برگ‌ها به حذف است که مقدار اندازه‌گیری شده از پتانسیل آب به حذف مقادیر پتانسیل اسمروی برق می‌رسد. از اینجا که پتانسیل تورزسیا خود تابعی از تغییرات پتانسیل های آب و اسمرو در برک است و خود حاصل اختلاف این در پتانسیل است، بی‌بندی است که روند تغییرات آن مشابه هر دو پتانسیل آب و اسمرو در گیاه باشد. بعبارت دیگر، یک کاهش اختلاف پتانسیل‌های اسمروی و آب برق، پتانسیل تورزسیا نیز که حاصل این اختلاف است که پتانسیل برق و پتانسیل تورزسیاه افتاده یافته و بعبارتی مثبت تر شده و حتی در اواخر دوره طنش و در ضدپدیده‌های فیزیولوژیکی سطح تنش کم آبی ته را صفر یا منفی نیمی شود. همین‌طور، فشار تورزسیاه باعث حفظ حالت طبیعی غشای معیاری در سطح‌های برق گیاه طبیعی تحت تنش کم آبی می‌گردد. خط رسم‌شده در شکل ۶ (خط تناولگر پتانسیل اسمروی مورد اندازه‌گیری) در واقع حاصل از محاسبه پتانسیل طبیعی در برگ‌ها براساس ردیف نسبی آب برق در اواخر دوره رشد که می‌باشد. کاهش سطح پتانسیل اسمروی حتی به زیر این خط می‌پردازد.

Water deficit effects on some physiological characteristics, sugars and proline as osmolytes in *Cucumis melo* Group. *cantaloupensis* cv. Samsoury

Najmeh Zeinali¹, Kamladin Haghbeen², Mojtaba Delshad³

¹Department of Horticultural Science, Faculty of Agriculture, Shahid Bahonar university of Kerman, ²Research Center of Genetic Engineering and Biotechnology of Tehran ³Department of Horticultural Science, Faculty of Agriculture, Agriculture and Natural Resources College Karaj, Tehran University

(Received: 4 December 2014, Accepted: 13 September 2015)

Abstract:

In order to study the effect of water deficit stress on some physiological characteristics including leaf water; osmotic and turgor potentials and osmolytes including sugars, proline and invertase activity of Persian melon (*Cucumis melo* Group. *cantaloupensis* cv. samsoury), an experiment was conducted in complete randomized design. Treatments including three irrigation levels (start of irrigation at -50 (control), -65 (moderate stress) and -75 kPa (severe stress) of matric potentials. Severe decrease of osmotic potential even less than predicted value (about -23 bar) was happened in severe water deficit stress (start of irrigation at -75 kPa of matric potential). Results indicate that water deficit levels in this experiment were cause to changes in sugars content and invertase activity. Water deficit stress decreased invertase activity to 2.01 at 35th days after start of stress, while the activity of this enzyme at this stage was measured about 4.14, for control (start of irrigation at -75 kPa of matric potential). Severe level of water deficit (start of irrigation at -75 kPa of matric potential) increased fruit sucrose content (0.32 mg/g FW) and glucose content (0.08 mg/g FW), leaves proline content (0.35 µmol/ g FW) at 35th days after start of stress. Also, an osmotic regulation was happened in this plant by sucrose and proline aggregation under water deficit stress and according to the leaf osmotic potential has decreased even more than expected value.

Keywords: Osmolytes, Osmotic regulation, Samsoury, Invertase activity, Water deficit stress

corresponding author, Email: Najme.zeinali@yahoo.com