(Foeniculum vulgare Mill.)

پاسخ‌های فیزیولوژیکی و رشدی دوازده زنوتیب رازیانه (Foeniculum vulgare Mill.) به پتانسیل آب در مرحله جوانه‌نیز

احسان عسکری، پرویز احسان زاده و حسین زینلی

گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

مربوط به تحقیق‌های کشاورزی و منابع طبیعی اصفهان

(تاریخ دریافت: ۱۳۹۲/۱۲/۰۷، نگارش نهایی: ۱۳۹۳/۰۸/۱۰)

چکیده:

کمیتی آب از مشکلات روز در کشاورزی ایران است و تهدیدی بر آنگونه این ضعف و ایمنی طبیعی نشان می‌دهد. جوانه‌نیز یکی از مرحل‌های حساس در طول دوره رشد گیاهان است که اغلب تحت تاثیر ناشی می‌شود. زنوتیب رازیانه می‌تواند به عنوان یک مکانیزم کاهشی ناشی از دارد و گزارشی چنین نشان داده شده است که با گزارش خشکی (کاهش پتانسیل آب) در مرحله جوانه‌نیز، رشد گیاهان را کاهش داده و در نهایت به خسارت زاگردیده خواهد شد. در این مقاله، از مدل‌های حساسیت و ناپذیری گیاهان بر دچاری آب پتانسیل آب در مرحله جوانه‌نیز نشان داده شد. مدل‌های حساسیت و ناپذیری به‌وجود آمده می‌تواند به بهبود حداکثر آب‌برداری منابع طبیعی مشابهی کمک کند.

کلمات کلیدی: آنیزیم، کاتالاز، فیروکیلوکلری، زنوتیب، جوانه‌نیز، مکانیزم

مقدمه:

درصد بالایی از جمعیت هفت میلیارد چهار برابر به‌طور سالیانه، دارو و غذا به گیاهان داروی و استبداد. بازار بین بورس غذاهای دارویی، دارویی و استبداد در جهان بشری ۱۰ میلیارد دلار است و نرخ رشد این بارز سالانه ۷ درصد می‌باشد (Hashmi et al., 2012). در دو بی‌گیاهان دارویی رازیانه (Foeniculum vulgare) از موقعیت متغیر برخوردار است و پرداخته می‌شود.
نپایی یا در مراحل حساس در خورشید گیاهان به حساب می‌آید. این بروز طبیعی‌ای در مرحله دومی، استقرار، تراکم و عملکرد گیاهان را با حد زیادی متوقف می‌سازد. (Hosseini and Rezvani Moghadam, 2006)

برخی از گیاهان ممکن است در مراحل پس از استقرار، متحمل به نشانه‌های چون شوری و خشکی محصور شوند، ولی این بدان معنی نیست که انرژی از ابتدای مرحله گسترش زنی در مقاله نشانه‌های محیطی مقاومت هستند. به فرض مثل بازیکن در مراحل رشد و تولید مقاومت به خشکی است، در حالتی در مرحله گسترش‌زایی حساس به خشکی است و کم‌مصرف Hosseini and and (Ahmedi و Hosseinی Masoumi و Hosseinی Moghadam, 2006)

(2008) گزارش گردید که خشکی باعث کاهش رشد و درصد گسترش و همچنین کاهش طول رشدی و ساقته در زننده‌های مختلف نهاد شده است. در زمان خشکی انسداد خشکی نظری برای کاهش سطح توسعه‌وسیله‌های محلول به منظور تنظیم استمری و حفظ توزانسی در سطح‌های گیاهی تجربه نمی‌گردد. برخی از سلول ترکیبی برای تنظیم استمری و همچنین پاکسازی گونه‌های فعال آبی‌زی بازی می‌کنند. (Mittler, 2002) در حالی که کربوهیدرات‌های محلول به منظور تنظیم استمری و حفظ توزانسی در سطح‌های گیاهی تجربه نمی‌گردد. برخی از سلول ترکیبی برای تنظیم استمری و همچنین پاکسازی گونه‌های فعال آبی‌زی بازی می‌کنند. (Mittler, 2002) درحالی که کربوهیدرات‌های محلول به منظور تنظیم استمری و حفظ توزانسی در سطح‌های گیاهی تجربه نمی‌گردد. برخی از سلول ترکیبی برای تنظیم استمری و همچنین پاکسازی گونه‌های فعال آبی‌زی بازی می‌کنند. (Mittler, 2002)

کنار داشتن یکی از اینجایی که کم‌مصرف آب و نشان خشکی حاصل از آن، یکی از بزرگ‌ترین موانع تولید محصولات زراعی در مناطق خشک و نمی‌خواهی از جمله این به حساب می‌آید، داشتن جامع از واکنش گیاهان به این تغییر در مراحل مختلف رشدی و معرفی ارقام توده‌های که در شرایط خشکی بیشتر از دیگر ارقام عمل کننده بیان نمی‌رسد. بسیاری از گیاهان در نسبت طبیعی به زیست بومی‌ها مخالف معنی و در مناطق مختلف و نمی‌خواهی کاربردی و سیاسی دارد، ولی آن‌ها کشت صممتی گیاهان دارویی قدمت زیادی دارد، بنابراین فشار بر روی گونه‌ها به منظور اصلاح و معرفی ارقام پرمحصول بسیار کم بوده است. از این رو شاهد گونه‌های سیاسی از گیاهان دارویی هستیم که در فیزیک یا گیاهان اصلاح شده زراعی، مصرف آب کمتری دارند و تا حد زیادی مقاومت بهتری در برابر نشانه‌های محیطی از خود نشان می‌دهند. این بتوانجه شرایط کم آبی که در کشور وجود دارد، حمایت از توسیع کشت و کار گیاهان دارویی منطقه‌ای به منظور مربوط به خشکی را با بازدهی خشکی در گیاهان مختل داده است که مقاومت به خشکی هسته‌پذشی با پیام آن‌کسی‌دی‌ربا (Azooz, 2009) کارآمد دارد.
شاکری‌های مقدم و همکاران (1390)، نشان دادند که نشاط خشکی ناشی از بیلی‌ای لیپید، درصد جوانتری، سرعت جوانتری، طول ساقه‌های و توده‌های ساق، وزن خشکی ریشه‌های نسبت وزن خشکی ریشه‌های ساق، را در یک‌شیری به‌طور معنی‌داری کاهش داد. این نشان دهنده تاثیر افزایش سطح خشکی، میزان پرولین و فنی‌های محلول بخش همایی و روش و همچنین نسبت پرولین و فنی‌های محلول بخش همایی به روش افزایش پیدا کرد. میزان و همکاران (1371) با بررسی اثباتی خشکی ناشی از بیلی‌ای لیپید، درصد جوانتری، وزن گیاهی و طول ساقه‌ها را کاهش داد. در حالی که نشان می‌دهد، طول ساقه‌ها را افزایش داده‌اند.

به نظر می‌رسد که جمع‌آوری میزان سطح خشکی از قبل داشته‌ایم، و فعالیت‌های انسان‌سازیان به‌عنوان برخی از صفات نشاط نمی‌تواند خشکی گیاهان در مرحله‌ی گیاه‌های باشند. بنابراین هدف از انجام این پژوهش در درجه‌ی اول ارزیابی نشاط خشکی دو‌رده را در مرحله‌ی جوانتری و گیاه‌های معروف و پتروی‌الی‌های متحمل به‌سرخر در این مرحله، و در درجه‌ی دوم بررسی روابط موجود بین برخی از صفات رشدی و فیزیولوژیکی با نشاط خشکی گیاه‌های رازی‌پو. اگر خشک‌پویی‌های کاهش خشکی گیاه‌ها در مرحله‌ی گیاه‌های متحمل به‌سرخر مشاهده می‌شود، باید نشاط خشکی مقاوم باشد، بنابراین می‌توان از صفات تاکنون استفاده‌کننده در ارتباط مستند به غنای شاخص‌های نشاط خشکی در برانده‌های اصلاحی این دوره‌ای استفاده کرد.

مواد و روش‌ها:

به منظور بررسی اثرات نشاط خشکی بر جوانتری و بهره‌های رازی‌پو. در آزمایش‌گاه پژوهشی دانشگاه صنعتی اصفهان و در انتهای رشد (رضا ده 5 درجه سانتی‌گراد و در نتیجه) از آزمایشی به صورت فاکتوری در قالب طرح کاملاً تصادفی و با سه...

درصد و سرعت جوانتری: درصد و سرعت جوانتری بر

مانی بنای بهره افت‌ها واحد اکتیماتیک (بردی‌شی) از طریق

فرمول‌های زیر محاسبه شد (2005) (Anjumi and Bajwa, 2005):
سنجش محتوی پل‌فولنها: ابتدا نم گرم از بافت گیاهی، با استفاده از اتانول 95 درصد عصاره‌گیری شد. سپس موارد پل‌فولنها با استفاده از واکنش‌گرهای روان و به روش Singh (2002) اندازه‌گیری شد. در این روش ابتدا 200 میکرولیتر از محلول استخراج شده با 1 میلیلیتر واکنش‌گرهای روان پل‌فولنها بر روی سطح میکرولیتر 10 درصد مصرف میکروPOP گزینه نشده و سپس محلول با 2/5 درصد به آن اضافه شد. در صورت وجود فولن محلول به رنگ آبی روش تی اپ در می‌آید. محلول به مدت نم ساعت در دمای مطلق تکه‌داده شد و سپس با استفاده از جذب محلول آبی رنگ در طول موج 875 نانومتر توسط دستگاه اسکیترومتر (JAPAN HITACHI U1800 و مقایسه با فلز‌های استاندارد، غلظت PECولنها با دست آمد.

سنجه‌ی محتوی پلوپون: برای تعیین غلظت پلوپون از روش و همکاران (1973) استفاده شد. در ابتدا، برای نم 95 درصد، اقترب 1/25 گرم از این ماده، داخل اهریم ریخته شد و به آن 30 میلیلیتر استیکدانس و 30 میلیلیتر سولفوردیک 6 مولار اضافه گردید. سپس محلول حاصل به آرامی حرارت داده شد تا نهیدرین به طور کامل حل شود. بر اساس پراکندگی نم 95 درصد، حداقل مقدار نم گرم از بافت گیاهی، در حالت آزاد، در محدوده 100 یک میلیلیتر در لیتر نم گردید و کل میزان ماده آزمایی روی آنها انجام کردید و نهایتا میزان جذب آنها در طول موج 275 نانومتر با دستگاه اسکیترومتر اندازه‌گیری شد. برای نم 100 میلیلیتر از بافت گیاهی در یک هاون سرد شده، با یک میلیلیتر بافر استخراج پریلوردون یک درصد، تریوتون X100 نم درصد و بافر سفتان تناسب 100 میلیلیتر (PH = 7) تکثیب شده بود. عصاره حاصل با دور 15000 دور در دقیقه و در دمای 4

سنجش فعالیت آنزیمی آنتی‌کیدان: برای اندازه‌گیری فعالیت ویژه آنزیمی آنتی‌کیدان، ابتدا 100 میلیگرم از بافت گیاهی در یک هاون سرد شده، با یک میلیلیتر بافر استخراج پریلوردون یک درصد، تریوتون X100 نم درصد و بافر سفتان تناسب 100 میلیلیتر (PH = 7) تکثیب شده بود. عصاره حاصل با دور 15000 دور در دقیقه و در دمای 4

آخرین روز آزمایش = i
عدد دفر بر جوان‌زمدز روز (1-3)
روزهای آزمایش = n

سنجه‌ی محتوی پل‌فولنها: ابتدا نم گرم از بافت گیاهی، با استفاده از اتانول 95 درصد عصاره‌گیری شد. سپس موارد پل‌فولنها با استفاده از واکنش‌گرهای روان و به روش Singh (2002) اندازه‌گیری شد. در این روش ابتدا 200 میکرولیتر از محلول استخراج شده با 1 میلیلیتر واکنش‌گرهای روان پل‌فولنها بر روی سطح میکروPOP گزینه نشده و سپس محلول با 2/5 درصد به آن اضافه شد. در صورت وجود فولن محلول به رنگ آبی روش تی اپ در می‌آید. محلول به مدت نم ساعت در دمای مطلق تکه‌داده شد و سپس با استفاده از جذب محلول آبی رنگ در طول موج 875 نانومتر توسط دستگاه اسکیترومتر (JAPAN HITACHI U1800 و مقایسه با فلز‌های استاندارد، غلظت PECولنها با دست آمد.

سنجه‌ی محتوی پلوپون: برای تعیین غلظت پلوپون از روش و همکاران (1973) استفاده شد. در ابتدا، برای نم 95 درصد، اقترب 1/25 گرم از این ماده، داخل اهریم ریخته شد و به آن 30 میلیلیتر استیکدانس و 30 میلیلیتر سولفوردیک 6 مولار اضافه گردید. سپس محلول حاصل به آرامی حرارت داده شد تا نهیدرین به طور کامل حل شود. بر اساس پراکندگی نم 95 درصد، حداقل مقدار نم 95 درصد، نم گرم از بافت گیاهی، در حالت آزاد، در محدوده 100 یک میلیلیتر در لیتر نم گردید و کل میزان ماده آزمایی روی آنها انجام کردید و نهایتا میزان جذب آنها در طول موج 275 نانومتر با دستگاه اسکیترومتر اندازه‌گیری شد. برای نم 100 میلیلیتر از بافت گیاهی در یک هاون سرد شده، با یک میلیلیتر بافر استخراج پریلوردون یک درصد، تریوتون X100 نم درصد و بافر سفتان تناسب 100 میلیلیتر (PH = 7) تکثیب شده بود. عصاره حاصل با دور 15000 دور در دقیقه و در دمای 4

سنجش فعالیت آنزیمی آنتی‌کیدان: برای اندازه‌گیری فعالیت ویژه آنزیمی آنتی‌کیدان، ابتدا 100 میلیگرم از بافت گیاهی در یک هاون سرد شده، با یک میلیلیتر بافر استخراج پریلوردون یک درصد، تریوتون X100 نم درصد و بافر سفتان تناسب 100 میلیلیتر (PH = 7) تکثیب شده بود. عصاره حاصل با دور 15000 دور در دقیقه و در دمای 4
5/5 میلی‌مولار، آسکوربین 5 میلی‌مولار با یک میلی‌لیتر عصاره آزم شن مخلوط گردید. فعالیت ویژه آنزیم آسکوربین پروتئاز مطلقبا روش مشروط در سنگش آنزیم‌های آنیکس‌پرکسید در 20 دقیقه سانتی‌فیوز شد. بخش شماره واقع در بالای عصاره برای سنگش آنزیم‌های آنیکس‌پرکسید با کار گرفته شد.

سنگش فعالیت ویژه آنزیم کالزان با استفاده از روش تغییر Yaffe و اصلاح آنی (1983) از این آزمایش‌ها، آزمایش کالزان، این آنزیم آزمایشی در طول موج 240 نانومتر، فعالیت آنزیم کالزان اندازه‌گیری شد. برای این منظور 2/95 میلی‌لیتر بالا و اکتش شامل بالا سه پی بی‌پی 50 میلی‌مولار (pH = 7) و پراکسید هیدروژن 15 میلی‌مولار با 1/05 میلی‌لیتر عصاره آزم شن مخلوط گردید. عصاره آنیکس کالزان از تخمین فعالیت حجمی کالزان بر میزان پروتئین عصاره که برحسب تیمینه شده بود، محاسبه گردید. 

(ΔAΔT)TV = (U/ml) (U/mg protein) (mg/ml) عصاره بالا و اکتش 1977 U/mg protein = (U/ml) حجم حجم کل (بافر واکنش و عصاره) (3 میلی‌لیتر) (U/ml) حجم عصاره (5/0 میلی‌لیتر) (U/ml) حجم عصاره (5/0 میلی‌لیتر) 

1976 (Bradford) نیلین کالزان (U/ml) فعالیت حجمی کالزان (U/ml) فعالیت حجمی کالزان 

\[ \Delta A = \text{ضرب فعالیت ویژه آنزیم کالزان} \]

\[ \frac{\Delta A_{TV}}{\Delta A} \times D \]

\[ U \]
شاید (بدون عصاره آنزیمی) و در مدت یک دقیقه

\[ \Delta A = \text{اختلاف جذاب در طول موج} \]

560 نانومتر در نمونه

اصلی (حاوی عصاره آنزیمی) و در مدت یک دقیقه

\[ D = \text{ضربه وقت} \]

آزمون بر فرد و مانند نگهداری گروه بلند در محلول

عصاره گیاهی: روش Bradford

(1937) یک سنجش

کلروفورومیت با استفاده از اسپکتروفومتر است و ممنوی ساختن

یک منحنی استاندارد که برای محاسبه غلتک پروتئین نمونه به

کار می‌رود.

تهیه عفر بر فرد: اندازه 100 میلی‌گرم کوماسی بلو

(G250) در 2 میلی‌لیتر آتانول 95 درصد حل شد و مسیس

100 بی اضافه کردن آب دوبار تقطیع به محلول، به حجم یک

لیتر رسیدند. شدت محلول حاصل از استفاده از کاغذ و اتان

شماره یک فیلتر. لازم به ذکر است که عفر بر فرد در

ظرف یک سهیل کدر (نور به آن نرسید) یک صفحه هفته در دمای

انتلاق نگهداری است و جانچه روس دهد. می‌توان

ملحول را بعداً فیلتر نمود و دوباره از آن استفاده کرد.

تهیه محلول پایه پروتئین استاندارد: مقدار یک میلی‌گرم از

بروینی آلومین سرم گاری (Bovine Serum Albumin=BSA) در یک میلی‌لیتر آب دوبار تقطیع حل شد. سپس پروتئین

استاندارد یک میلی‌گرم در میلی‌لیتر باش. دمای نگهداری برای

این محلول 40 درجه سانتی‌گراد است.

تهیه منحنی استاندارد: مقدار 100، 50، 25، 10 و 50

میکرویتریز از محلول پروتئین استاندارد، به طور جداگانه در

لوله‌های شیشه‌ای اکولا شده و نگهداری شد و به ترتیب مقدار

90، 40، 20 و صفر میکرویتریز آب دوبار تقطیع به

لوله‌ها اضافه شد تا محلول محلول نهایی در هر لوله

100 میکرویتریز باشد. به علاوه درون یک لوله شیشه‌ای 100 میکرو

لیتر آب دوبار تقطیع ریخته شد و آن را برای بلانک کردن

اسپکتروفومتر استفاده گردید. سپس نگین میلی‌لیتر از عفر

بر فرد درون هر لوله ریخته و خوبه هم زده. هنگامی

زمانی در دقتی که یک ساعت پس از اختلال معرف با نمونه‌ها
<table>
<thead>
<tr>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>
میزان بیشتری از مواد مورد نیاز برای رشد گیاهی را در اختیار بذر هر گونه می‌دهد. بی‌ dna آنها انداده و ذخیره غذایی بذر رعیت یکی از خصوصیات رشدی گیاههای زنوتیپی‌های مختلفی در مطالعه مراتب و همتار (1999) خصوصیات خاصی داشته‌اند که در محیط بهتری و مخاطب‌های کافی آب و گاز نمایند. ولی حضور یلی‌الیون گیاه‌ها در محیط کشت سبب افت در پتانسیل آب و معنا آوران باذک کاهش آب توسط دانه می‌شود. با کاهش میزان آب توسط بذر، حرشک مواد خوراکی ای دانه و سنت پروتئین‌ها در گیاهان کاپسیل و ادامه رشد گیاههای با مشکل مواد مغذی (Yagmur and Kaydan, 2008) همگونی (767-89) تغییر دادن که تغییر پتانسیل آب از صفر به 1/0-11/6 مگا‌پاسکال، وزن خشک گیاه‌های خواندنی را کاهش مشتاق و در تجربه تورزسانس سولو و یاماموتو (1997) بین کسانی که میزان پتانسیل آب میزان آب کمتری در اختیار بذر قرار می‌گیرد و در نتیجه کاهش طبیعی از شرایط درست گیاه‌های یگفته‌ی بزرگ شده و در مجموع کاهش رشد و وزن و طول گیاه‌های را در پی خواهید داشته. زنوتیپی‌های رازی‌باینی مورد مطالعه از این تحقیق تا در مرضیه‌ی زنوتیپی‌های ژن‌نهایی و وزن و خشک گیاه‌های فرآیند و ساختار جوانی مناسب در پایه‌ی خواهید گیاه‌های و طول ساختاری به بسط می‌گردد. با داشتن زنوتیپی‌های رازی‌باینی مورد مطالعه در این تحکیق به سه گروه مقدم (شیراز، پژو، کرمان و مشهد)، بی‌ترک‌های حساس (هماهنگ، کسانی در پاستورس و ساختار زنوتیپی‌های مرحله‌ی زنوتیپی‌های بود. با این احساس، زنوتیپی‌های رازی‌باینی مورد مطالعه در این تحکیق به سه گروه مقدم (شیراز، پژو، کرمان و مشهد)، بی‌ترک‌های حساس (هماهنگ، کسانی در پاستورس و ساختار زنوتیپی‌های مرحله‌ی زنوتیپی‌های بود. با این احساس، زنوتیپی‌های رازی‌باینی مورد مطالعه در این تحکیق به سه گروه مقدم (شیراز، پژو، کرمان و مشهد)، بی‌ترک‌های حساس (هماهنگ، کسانی در پاستورس و ساختار زنوتیپی‌های مرحله‌ی زنوتیپی‌های بود. با این احساس، زنوتیپی‌های رازی‌باینی مورد مطالعه در این تحکیق به سه گروه مقدم (شیراز، پژو، کرمان و مشهد)، بی‌ترک‌های حساس (هماهنگ، کسانی در پاستورس و ساختار زنوتیپی‌های مرحله‌ی زنوتیپی‌های بود. با این احساس، زنوتیپی‌های رازی‌باینی مورد مطالعه در این تحکیق به سه گروه مقدم (شیراز، پژو، کرمان و مشهد)، بی‌ترک‌های حساس (هماهنگ، کسانی در پاستورس و ساختار زنوتیپی‌های مرحله‌ی زنوتیپی‌های بود. با این احساس، زنوتیپی‌های رازی‌باینی مورد مطالعه در این تحکیق به سه گروه مقدم (شیراز، پژو، کرمان و مشهد)، بی‌ترک‌های حساس (هماهنگ، کسانی در پاستورس و ساختار زنوتیپی‌های مرحله‌ی زنوتیپی‌های بود. با این احساس، زنوتیپی‌های رازی‌باینی مورد مطالعه در این تحکیق به سه گروه مقدم (شیراز، پژو، کرمان و مشهد)، بی‌ترک‌های حساس (هام
کاهش در ضریب ذوبالزیمان در زنوتیب کرمان مشاهده شد که همگی متصل به گروه متحمل به خشکی آبیزند. به ترتیب مختصات فوق فووق ذکر در زنوتیب کرمان مشاهده شد که

شکل 1- گر متقابل سطح خشکی و زنوتیب بر درصد (a) و سرعت (b) جواندنی و وزن تر (c) و خشک (d) گیاهی رازیانه (مقادیر میانگین سه تفاوت میان تا پاره‌ها نشان دهنده احراز میزان است).
شکل 2- اثر متقابل سطح بخار و رطوبت بر طول ساقه چه (a) و ریشه چه (b)، و فعالیت ریزه کاتالاز (c) را زنیت (مقادیر میانگین سه تکرار می‌باشند و بارها نشان دهنده انحراف می‌باشد.)
خرشکی در بین افراد سطح پایین‌تر نمی‌باشد. فبدن‌های محلول و بروزین را در پی تشکیل، به طوریکه افزایش در صفت‌های مصرف‌های الذکر در زن‌ها معمولاً به‌طور قابل ملاحظه‌ای نسبت به زن‌ها حساس‌الپالس‌بود. بنابراین نتایج گرفته شد که پلی‌فارسی، فبدن‌های محلول و بروزین از مهندسی طرف‌های سازگار در طی پیشنهاد کننده حساسیت و رفتار در پیشنهاد کننده حساسیت و رفتار انتقای تخفیف از جمله درگیر مطالعات نتایج مشابه در رابطه با کاهش تنش ها و Farsiyan and ریش‌چه در کوده‌های مختلف از جمله در (Rizvani et al., 2009) با پایه (Afzali et al., 2006) گهدگی در مراکز و همکاران (مرادی و همکاران، 1391) بر آن تنش خرسنگ کرده اند، به طوری که در اثر این مطالعات، نزخ کاهش رشد ناشی از تنش خرسنگ در ساکته بیشتر از ریش‌چه اعلام شده است. در مطالعه‌های دیگر، مرادی و همکاران (1391) نشان دادند که 15 زن‌یابی رابینز به نظر درصد جواندگی و وزن خرسنگ در شرایط تنش کریستال آب می‌کند. بر علاوه، آنها زن‌یابی‌های مشکی‌نوع، قوی و قرار متقابل با خرسنگ و خرسنگ اصفهان، چاه‌سنگ و ارسالرکاران را حساسیت به خرسنگ معنی‌دار کردند.

یافته‌های پلی‌فارسی، فبدن‌های محلول و بروزین گایچه‌های بیشتر در تجربه واریانس مشخص کرده که سطح خرسنگ اثر معنی‌داری در سطح اختیاری یک درصد بر محتوی پلی‌فارسی، فبدن‌های محلول و بروزین گایچه‌های رابینز داشت (جدول 1). مقایسه میانگین‌ها نشان داد که با تشخیص بالاترین سطح مصرف‌های فربن‌ها در خرسنگ شدید (بانیل 2006- مگا پاسکال) و پایین‌ترین سطح آنها در شرایط شاهد (بانیل صفر ماکاسکال) مشاهده شد (جدول 2). زن‌یابی‌های مورد مطالعه از نظر محتوی پلی‌فارسی، فبدن‌های محلول و بروزین گایچه‌های تفاوت معنی‌داری در سطح اختیاری یک درصد نشان دادند (جدول 1). پایین‌ترین میزان پلی‌فارسی، فبدن‌های محلول و بروزین گایچه به ارزش مورد درک خرسنگ کرده (از گروه متحمل به خرسنگ) و کمترین آنها به ژن‌یابی بربریدن (از گروه حساس به خرسنگ) تعلق داشت (جدول 2). هم‌اکنون با توانایی مطلوبیتی حاضر، 2007. Kenebec
فَطَّاس وَـِّـٚ وبَطوطز ٌیبٞی، خّس۴، قٕبضٜ۱۴، ؾبَ۱۳۹۴
زض ؾَّٛ ٞبیكبٖ سدٕغ ٔی زٞٙس ٚ ثب وبٞف دشب٘ؿیُ آة،
ٔٛخجبر حفظ ... ثٛز وٝ ٕٞٝ ی 
غ٘ٛسیخٞبی اذیط ٔشؼّك ثٝ ٌطٜٚ حؿبؼ یب ٘یٕٝ حؿبؼ ثٝ 
ذكىی ثٛز٘س. اثط ٔشمبثُ غ٘ٛسیخ ×ؾغٛح ذكىی ثط فؼبِیز
2 ـٛسیخ وبقبٖ 
وٌطٜٚ اًب٘عیٓ ضا ٘ؿجز ثٝ
زیؿٕٛسبظ زض غ٘ٛسیخ ٔكٟس ٔكبٞسٜ قس (دشب٘ؿیُ
2 ـٛسیخ ٞبی ؾِّٛی ثٝ ٘فغ سِٛیس
اّخِیز (خساَٚ
بی ایٗ ز
ظزایی ٚ دبوؿبظی ٌٛ٘ٝ
ظزایی ٚ دبوؿبظی ٌٛ٘ٝ
ثب سٛخٝ ثٝ ایٙىٝ ثبلاسطیٗ ٔمبزیط دّی
ظزایی ٕٞىبضاٖ
ثب سٛخٝ ثٝ ایٙىٝ ثبلاسطیٗ ٔمبزیط دّی
Opportunity Evaluated,
اریایش نشان داد که اثر سطح مختلف خشکی روی فعالیت ویوز آزمی‌ها، کاتالاز و سوپراکسید دیسموتاز به ترتیب در سطح احتمال بکر و پنگ درصد معمول بود (جدول ۱). اگر چه تحلیل آب فعالیت آزمی‌ها پرکسیداز معنی‌بند و متوسط (تناسبی های ۲/۸-۲/۸۳) فعالیت این آزمی‌ها را تنبیه به شاهد افزایش داد و خشکی شدید (تناسبی ۹۸٪-۸٪ پاسکال) از فعالیت آن کاست (جدول ۱ و ۰). به علاوه، با افزایش سطح خشکی، فعالیت ویوز آزمی‌ها کاتالاز افزایش، و فعالیت ویوز آزمی‌ها سوپراکسید دیسموتاز کاهش یافت (جدول ۲). در حالی که سطح ویوز آزمی‌ها افزایش داد، فعالیت آزمی‌ها بکر در کاتالاز، آزمی‌ها پرکسیداز و سوپراکسید دیسموتاز در سطح احتمال بکر در اختلاف معنایی داری نشان دادند (جدول ۱).
بیشترین فعالیت ویوز آزمی‌ها کاتالاز در زنوتیپی‌ها شیار و مشهد، بیشترین فعالیت ویوز آزمی‌ها پرکسیداز در زنوتیپی‌ها شیار و بکر، بیشترین فعالیت آزمی‌ها سوپراکسید دیسموتاز در زنوتیپی‌ها شیار و بکر، بیشترین فعالیت آزمی‌ها در کاتالاز و سوپراکسید دیسموتاز در زنوتیپی‌ها مشهد شدند (جدول ۳). و این در حالی بود که همیشه زنوتیپی‌ها فوک الذکر متعلق به گروه متحمل به خشکی بودند. کمترین فعالیت ویوز آزمی‌ها کاتالاز در زنوتیپی‌ها همدان و این سبب کننده آزمی‌ها سوپراکسید دیسموتاز در زنوتیپی‌ها ارید و همدان، و کمترین فعالیت آزمی‌ها پرکسیداز در زنوتیپی‌ها کاشان مشاهده شد (جدول ۴). و این در حالی بود که همیشه زنوتیپی‌ها اخیر متعلق به گروه خسائس با نب‌های‌حساس به خشکی بودند. اثر متقابل زنوتیپ × سطوح خشکی بر فعالیت
۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴

۱۲ فرآیند و کارکرد گیاهی جلد ۴ شماره ۱۴ سال ۱۳۹۴
عملیات باینی که برای $H_2O$ یافته است، این مولکول را در غلظت های باینی (نیشته مایل) که برای کاتالیز قابل شناسایی نیست، حذف می‌نماید (Wang et al., 2009). به علاوه، محصول فعالیت آنزیم سوپرکسید دیسموتاز در کلرولاست، این آنزیم اکسیورانیات در حذف آن نش $H_2O$ کلیدی دارد. آنزیم اکسیورانیات-پراکسیداز، از اکسیورانیات به عنوان هدنهای کلرولاست شرایط فعالیت به $H_2O$ می‌کند (De Carvalho, Chaitanya et al., 2002). این نتیجه داد که آنزیم اکسیورانیات-پراکسیداز می‌تواند در این سیستم-گلوتاتیون کمکی در حذف آن نش $H_2O$ (نتش شدید) اسیب کمی می‌بیند و فعالیت آن آنزیم سوپرکسید دیسموتاز در گیاه‌های آئورگانال و گیاه (Quartacci and Navari-Izzo, 1992) تحت تنش خشک تا تغییر تنش خشکی افزایش یافت. احیای تغییر اکسیژن به رادیکال سوپرکسید که در کلرولاست و به وسیله فنیستمی I انجام می‌پذیرد را واکنش مهای (Mehler Reaction) نامیده (Mehler). آنزیم سوپرکسید دیسموتاز با دیسموتاز سوپرکسید از رادیکال سوپرکسید به پراکسید هیدروژن و اکسیژن، نش می‌پذیرد در حفاظت دستگاه فنیستمی (Chen et al., 2004). در برابر تنش اکسیورانیات یک می‌کند (De Carvalho et al., 2008) که فعالیت آنزیم سوپرکسید دیسموتاز بر تنش خشکی، این تفنیک که در شرایط خشکی، روزنه‌ها به حالت نیمه بسته، در می‌آید و فرانک تثبیت ویژه آنزیم کاتالاز در سطح احتمال 5 درصد معمولی در شد (جدول 1). اما افزایش سطح خشکی، فعالیت ویژه آنزیم کاتالاز در زئونیت‌های اروپه، کرم، پارسیکن، کشتی، بوشه و اصفهان به طور پیوسته افزایش يافت. به طوریکه فعالیت ویژه آنزیم کاتالاز در این زئونیت‌ها در شرایط شده (پتانسیل صفر مگاوسکال) در پایین‌تری سطح، و در شرایط خشک‌شده (پتانسیل ۰-۵ مگاوسکال) بالاترین سطح قرار داشت (شکل ۲). در حالی که، در زئونیت‌های همدان، بیرجند، اردبیل و این‌سانا به خشکی مایل، فعالیت ویژه آنزیم کاتالاز نشین نسبت به شاهد افزایش یافته در این زئونیت‌ها رونده پیوسته نداشت و در خشک‌شده شد. فعالیت ویژه آنزیم کاتالاز در خشک‌شده متحول به خشک‌شده می‌کند. شرایط و مشهد با افزایش سطح خشک‌شده، رونده افزایش پیوسته داشت در زئونیت‌های خشک‌شده به خشک‌شده (مانند بیرجند، اردبیل و این‌سانا) در خشک‌شده شدید رونده کاهش یید کرد (شکل ۲). در مطالعه‌های ۲۰۰۹ و Wang et al., 1992 انجام دادند. توضیح دادند که هر چند تنش‌های خشکی و شوری در مرحله جوانی‌نشین بات افزایش در فعالیت ویژه آنزیم کاتالاز، آنزیم سوپرکسید و سوپرکسید دیسموتاز در هر دو زئونیت حساس و مقاوم شد. ولی رقم محتمل به تنش به طور مشخصی نسبت به رقم حساسیت فعالیت آنزیم آنتی‌اکسیدان بالاتری برخوردار بود.

بنابراین نتیجه گرفته که برخورد از سیستم آنتی‌اکسیدانی کارآمد در بازگشت به تنبل، می‌تواند در ایجاد تحمل به تنش‌های خشکی و شوری در مرحله جوانی‌نشین موثر باشد. کاتالاز موجود در نواری‌آب به وسیله متشرقی $H_2O$ را به طور مستقیم حذف می‌کند. و آن را در مولکول آب و اکسیژن تبدیل می‌کند. این رونده، این آنزیم به فردی که گاهی نیاز دارد. به این روش، فعالیت بالاتری در این رونده تعمیل می‌شود. به طور مشخصی نسبت به رقم حساسیت $H_2O$ یابهای پایین، فقط غلظت های بالایی $H_2O$ به فردی می‌کند. در عوض آنزیم اکسیورانیات-پراکسیداز با
دیک، کریم کاپیپسی، م. (1385) علوم و تکنولوژی بذر. انتشارات چهارشنبه، مشهد.
امیریموری، س. (1390) چکیده آبیاری ایران در صنایع رایانه، به وسیله موزیفیک قیامی، توجهی
شی(1383) از اولین کلایکول بر جوانه
زرانی و خصوصیات مورفوفیتاولیزیک گیاه شوید
(Anethum graveolens L.) نشریه علوم باغبانی (علم و
صنایع کشاورزی) 2: 165-193.
رژنگریان، پ. (1389) اردیپ، اسپهان، س.، شیپری‌ج، م. سرافاک، ص. ع و
فاصلی، م.، اینی، غ. و مجنستی، آ. مطالعه اثر ضد
پاکسازی ۴ عصاره گیاهی درجه، زیره سیاه، رایانه و
شوری بر روی هیلیکوپترولی بر روی دیسک دیسیژن
و فلوریستمی. مجله علوم دانشگاه علوم پزشکی و
خدمات بهداشتی درمانی همدان 2: 47-52.


