پاسخ‌های فیزیولوژیکی و رشدی دو زنوتیپ‌ رازیانه (Foeniculum vulgare Mill.) به پانتسیل آب در مرحله جوانه‌زنی

احسان عسکری۱، پرور احسان زاده۲ و حسین زینلی۲

*گروه زراعت و اصلاح نباتات، دانشکده شرکارهای، دانشگاه صنعتی اصفهان. ام‌ضرع نهایی علمی، مرکز تحقیقات کشاورزی و منابع طبیعی اصفهان (تاریخ دریافت: ۱۳۹۷/۱۲/۰۴، تاریخ پذیرش نهایی: ۱۳۹۸/۱۰/۰۴)

چکیده:
کمبود آب از مشکلات رو به تزاید شکاری‌های ایران است و تهدیدی بر آن‌ها این صمت و این‌طورگاه کشور محصول می‌شود. جوانه‌زنی یکی از مرحل‌های آخر حساب در طول دوره ورزش گیاه‌ها است. برای تاثیر مشخصی بر گیاه‌های محیطی و بهبود کیفیت و تعداد گیاه مورد حوزه، اگر نیاز مناسبی برای راهنمایی اجتماعی، شکل‌دادن فناوری و بهبود مفلوپ‌ها و فعالیت آزمایشی انتقالیده و راه‌های مورد حوزه قرار گرفته باشد. این شکل‌دادن فناوری (کامپیوتر اپی) در درصد و سرعت جوانه‌زنی، وزن ترشکی گیاه، طول ساقه و جهت فعالیت‌های آزمون سیکل‌سازی دیسپلت کامپیوتر، شکل‌دادن مصرف مومیا دست‌های، ژاپنی‌ها مورد حوزه برای کم‌وکاری و درک این گیاه‌های می‌باشد.

کلمات کلیدی: آزمایشات آنتیکسیدان، پرولین، پلی‌پیلولگلیکول، پلی‌فیلز، جوانه‌زنی، تعداد محلول

مقدمه:
درصد بالایی از جمعیت هفت میلیارد چهار برای بهبود سلامت، دارو و غذا به گیاهان داروی و استیمات. بازار بین المللی گیاهان داروی در چهار پیش از ۷۰ میلیارد دلار است و نرخ رشد این بازار سالانه ۷ درصد می‌باشد. (Hashmi et al., 2012) در بین گیاهان داروی رازیانه (Foeniculum vulgare Mill.) فیتومیناتی بی‌خورود آنتی‌اسیدنت است و پراکنده‌ی وزنی (عکاسی) می‌باشد. (نویسنده مسئول، نشانی پست الکترونیکی: ehsanp@cc.iut.ac.ir)

1982 در شاخص تاکثی بی‌خورود آنتی‌اسیدنت است و پراکنده‌ی وزنی (عکاسی) می‌باشد. (نویسنده مسئول، نشانی پست الکترونیکی: ehsanp@cc.iut.ac.ir)
یکی از مراحل حساب در چرخه رشدی گیاهان به حساب می‌آید که ترکیب این مرحله دو مرحله است: تراکم و عملکرد نهایی گیاهان را تا حد زیادی متاثر می‌سازد (Hosseini and Rezvani Moghadam, 2006).

برخی از گیاهان ممکن است در مراحل پس از انتقال متحمل به نشانه‌های چربی ثانوی، قهوه‌ای یا سیاهی محسوب شوند، ولی این بدان معنی نبسته که لزوماً در ابتدا و در مرحله جوانی زنی در مقابل نشانه‌های محیطی مقاوم سازی بوده است. فرض می‌شود بایستی در مرحله رشد و رویشی متحمل به خشکی است، در حالیکه در مرحله جوانی حساس به خشکی است و ممکن است Hosseini and Masoumi, 2006 (2008) گزارش کرده که خشکی به دلیل کاهش سرعت و درصد جوانی نیز خشکی کاهش طول رشدگی و ساقه‌چه زنی ممکن است در صورتی که مختلف نگاه شده است در زمان خشکی اسپمیت‌هایی نظر پرولین و کروپهیدرات‌های محلول به مصرف تنشر امری و حفظ توزون‌ساز در سلول‌های گیاهی تجربه کرده می‌باشد. پرولین در سلول نقش کلیدی برای تنظیم اسمری و همچنین پاکسازی گونه‌های فعال اکسیژن بازی می‌کند (Mittler, 2002). اکتاژ در حالی که کروپهیدرات‌های محلول به منظور توزون‌ساز حفظ تنظیم اسمری و حفظ توزون‌ساز در سلول‌های گیاهی یکی از آن‌ها که کم‌آب آب و تشخیص حاصل از آن، یکی از بزرگترین منابع تولید محصولات زراعی در مناطق خشک و نیمه خشک است. آن‌ها به این روش که در سطح بی‌خانگی کاهشی به کار می‌رود. به همین روند، Khalid et al., 2010. یکی از این سری‌ها است که به خشکی می‌تواند اثرات مثبتی داشته باشد. (Parida et al., 2007). گونه‌های فعلی اکسیژن باعث پاکسازی‌هایی می‌شود که نخست به دلیل آنکه اکتاژ قبلاً گونه‌های فعلی اکسیژن می‌تواند اثرات مثبتی داشته باشد. Mittler, 2002). آکتاژ ایستا و پرولین را به کار می‌برند (2002). یکی از این سری‌ها است که به خشکی می‌تواند اثرات مثبتی داشته باشد. (Parida et al., 2007). گونه‌های فعلی اکسیژن باعث پاکسازی‌هایی می‌شود که نخست به دلیل آنکه اکتاژ قبلاً گونه‌های فعلی اکسیژن می‌تواند اثرات مثبتی داشته باشد. Mittler, 2002). آکتاژ ایستا و پرولین را به کار می‌برند (2002).
درصد و سرعت جوانزی: درصد و سرعت جوانزی بر منابع پنج در هر واحد آزمایشی (برای دیش) از طریق فرمولهای زیر محاسبه شد (Anjumi and Bajwa, 2005):

\[\text{تعداد جوانزی اکسپرس} = \frac{\text{تعداد جوانزی}}{100} \times \text{تعداد کل دنیا} \]

خاکشکریه‌ساز و همکاران (1390). نشان دادن که نشان خشکی ناشی از پلی‌آلیکوکول، درصد جوانزی، سرعت جوانزی، طول ساقع‌سازی، طول ریشه‌سازی، وزن خشک ریشه‌سازی و نسبت وزن خشک ریشه‌سازی به ساقع‌سازی را در گروه شوید به مکان معناداری کاهش داد. این نتایج در آزمایش‌های بکارآمدی بر روی شیوه، گزارش شدند که با افزایش سطح خشکی، میزان پرولین و فنده‌های محلول پرخطر و ریشه و همچنین نسبت پرولین و فنده‌های محلول پرخطر به رشته افزایش یافت. مراحل و همکاران (1391) با بررسی اثرات خشکی ناشی از پلی‌آلیکوکول روی روش‌های گزارش کردند که نشان خشکی، درصد جوانزی، وزن گیاهچه و طول ساقع‌سازی را کاهش داد. در حالی که نشان می‌داد، طول ریشه‌سازی را افزایش داد.

با نظر مسیمص از مجموعه‌های معرفی شیوه‌های از قبیل محتوای اسولول‌ها و فعالیت آنزیم‌های آنتی اکسیدان به همراه بخی از صفات رشدی نظر وزن خشک گیاهچه و طول ریشه‌سازی که میزان تحمل خشکی جوانزی در مرحله گیاهچه‌ای باشد. نتایج این انجام از تأکید در درجه‌ی ورودی اول ارزیابی تحمل خشکی دواده‌های خشکی راهی آوردن در مرحله‌ی جوانزی و گیاهچه‌ی و معیار زنن فیزیولوژی‌های محتمل به خشکی در این مرحله و در درجه‌ی دوم بررسی روابط موجود بین برخی از صفات اکسپرس و فیزیولوژی‌های محتمل خشکی گیاهچه‌های دختریا به‌ضم اگزون فیزیولوژی‌ای که در مرحله‌ی جوانزی محتمل به خشکی فیزیولوژی‌های در مراحل بعدی رشد نیز به خشکی مقاوم باشد، نتایج این می‌توان از صفاتی که با تحمل خشکی راهی آوردن در مرحله‌ی گیاهچه‌ی ارتباط هستند به عنوان شاخص‌های محتمل خشکی در برنامه‌های اصلاحی این گروه اخیر استفاده کرد.

مواد و روش‌ها:

به منظور بررسی اثرات نشان خشکی بر جوانزی پذیرفته و نشان خشکی، از آزمایشگاه پژوهشی دانشگاه صنعتی اصفهان و در انتخاب رشد (زمای 25 درجه سانتی‌گراد و در نتیجه)، آزمایشی به صورت فاکتوریل در قالب طرح کاملاً تصادفی و با سه
ملوحل، به مدّت 10-15 تا 20 تا 30 روزه آزمایش = i

\[\sum_{i=1}^{n} \text{سرعت جوانه‌زی} / n \]

روزه‌های آزمایش = n

سنجه متغیر پل‌فولین: ابتدا نیم گرم از بافت گیاهی، با استفاده از اتانول 95 درصد عصاره‌گیری شد. سپس ماده پل‌فولین با استفاده از واکنش‌گر فولین و بوش و Singh (2002) اندازه‌گیری شد. این روش ابتدا 200 میکرولیتر از محلول استخراج شده با یک میلی‌لیتر واکنش‌گر فولین به مقدار 10 مسافر میکرولیتر سدیم اورتات به آن اضافه شد. در صورت وجود فولین محلول به رنگ آبی روشن تیره در می‌آید. محلول به مدت نیم ساعت در دمای 15000 هیئلت و سپس بر اساس از بدن محلول آبی رنگ در طول موج 765 نانومتر توسط دستگاه ایستاک‌فوتومتر (HITACHI) و مقایسه با غلظت‌های استاندارد غلظت (JAPAN U1800) و مقایسه با غلظت‌های استاندارد، غلظت پل‌فولین‌ها به دست آمد.

سنجه متغیر پرولین: برای تغییر غلظت پل‌فولین از روش و همکاران (1973) استفاده شد. در ابتدا، برای نیمه‌عصره معرف نیم‌هیدرین، مقدار 250 گرم از این ماده، داخل ارلن ریخته شد و بعدها سپس 1 میلی‌لیتر اسید استیک‌گلاسیل و 20 میلی‌لیتر اسید فسفریک 6 مولار اضافه گردید. سپس محلول حاصل به آرام حرارت داده شد تا نیمه‌هیدرین به طور کامل حل شود. در مدت بعد، مقدار نیم گرم از بافت گیاهی، در هاون چینی و در 10 میلی‌لیتر اسید سولفوسالیسیلیک 3 درصدی به خوبی سیاله‌شد. ماده همک حاصل در دستگاه سانتریفیوزیا با دور 13000 در دقیقه، در دمای 4 درجه سانتی‌گراد به مدت 10 دقیقه سانتریفیوزیا شد. سپس، 2 میلی‌لیتر از عصاره صاف شده به لوله درب‌دار منتقل گردید و به آن 2 میلی‌لیتر نیمه‌عصره و 2 میلی‌لیتر اسید استیک‌گلاسیل، اضافه شد. پس از بستن درب لوله‌ها، آن‌ها به مدت یک ساعت در حمام آب گرم با دمای 100 درجه سانتی‌گراد قرار داده شدند و بعد از سرد شدن، به هر یک از لوله‌ها مقدار 4 میلی‌لیتر تولثون اضافه شد. برای محلول کردن این دو

بعنوان محلول شاهد (لاله) استفاده گردید.
سنجش فعالیت ویژه آنزیم کاتالاز با استفاده از روش تغییر فیزی و اصلاح شده Achi (1983) را ویژه آنزیم کاتالاز تجزیه در طول موج ٢٤٠٠ نانومتر، فعالیت آنزیم کاتالاز انداره گیری شد. برای این منظور ٢/٩٥ میلی لیتر باقر واکنش شامل باقر سفید و تنش ٥٠ میلی مولار (pH = ٧) و پراکسید هیدروژن ١٥ میلی مولار، با ٥٠٠ میلی لیتر عصاره آنزیم مخلوط کردند. فعالیت ویژه آنزیم کاتالاز از تفسیر فعالیت حجمی کاتالاز بر میزان پروتئین عصاره که به روش تغییر شده بود، محاسبه گردید.

سنجش فعالیت ویژه آنزیم سوپراکسید دیسموتاز: فعالیت آنزیم سوپراکسید دیسموتاز با استفاده از روش تغییر فیزی و اصلاح شده Giannopolitis و Ries (١٩٧٧)، اندازه‌گیری شد. برای این منظور ٥٠ میکرولیتر از عصاره آنزیمی به ٣ میلی لیتر باقر واکنش شامل باقر سفید و تنش ٦٥ نانومولار، EDTA ٦ میلی مولار، تنزورولیوم ٣٣ میکرو مولار و ریبرافائی٥ میکرو مولار اضافه گردید. آزمایش‌ها به مدت ١٥ دقیقه در معرض نور قرار گرفته و پس از این مدت سیکترومتر انداره‌گیری شد. یک نمونه مشابه ولی نور نشده با عنوان بالا و یک نمونه که همه اجزای باقر واکنش به استاندارد عصاره آنزیمی را داشت به عنوان شاهد به کار گرفته شد. فعالیت ویژه آنزیم سوپراکسید دیسموتاز مطلق روش مشروح در سنگش آنزیم کاتالاز محاسبه گردید.

\[
\begin{align*}
\Delta A &= \frac{\Delta A}{A_0} \\
D &= \frac{\Delta A}{A_0} \\
U &= \text{فعالیت آنزیم سوپراکسید دیسموتاز (U)} \\
E &= \text{ضریب معمولی عصاره (0/5 میلی لیتر)} \\
TV &= \text{حجم کل (باقر واکنش و عصاره) (میلی لیتر)} \\
EV &= \text{حجم عصاره (نور ٥٠ میلی لیتر)} \\
\end{align*}
\]

درجه سنگش گردیده به مدت ٢٠ دقیقه سانترافیوز شد. به شکل ذکر شده در بالای عصاره برای سنگش آنزیم‌های آنی اکسیدان به کار گرفته شد.

سنجش فعالیت ویژه آنزیم کاتالاز با استفاده از روش تغییر فیزی و اصلاح شده Asada و Nakano (١٩٨١) به صورت اسکرینفومتری و با اندازه‌گیری کاهش جذب در طول موج ٢٩٠ نانومتر، تخمین زده شد. برای این منظور ٢/٩٥ میلی لیتر باقر واکنش شامل باقر سفید و تنش ٥٠ میلی مولار (pH=٧) و پراکسید هیدروژن،
پهترین زمان برای سنگش نمونه‌ها با استکروتونومتر است.
سپس جاب نمونه‌ها در برای نمونه بلانک در طول موج 595 نانومتر، تناوی اندزه‌گیری شد و منحنی استاندارد رسم گردید.

معیین پرتو‌های نمونه عصاره گاومی: مقدار 100 میکروجرام از عصاره گاومی استخراج شده از همان عصاره‌ها که برای اندزه‌گیری فعالیت آنزیم استفاده شده بود در دون لوله آزمایش ریخته شد و به آن مقدار پنج میلی‌لیتر از معرف برپردورده اضافه گردید و پس از به گذشتن حداقل و دو دقیقه از این علاطم، میزان جدب از طریق طرفی در طول موج 595 نانومتر آندازه‌گیری شد و بر اساس مقایسه با منحنی استاندارد، ضعیف‌ترین نمونه بر حسب میل‌گرم بر میلی‌لیتر گزارش شد.

تغییر و تحمل آماری: داده‌های برگرفته از آزمایش، با استفاده از نرم‌افزار آماری SAS تجزیه واریانس شدند و برای رسوم ارائه‌شده در طرفی به گرفته شد و به‌عنوان آزمون حداقل تفاوت معناد (LSD) در سطح احتمال 5 درصد برای مقایسه میانگین تیمارها استفاده گردید.

نتایج و بحث:
جوانزی و خصوصیات رشدی: اثر سطوح مختلف خشک‌کن بر درصد و سرعت جوانزی، وزن تر و خشک‌کن گاهی‌ها، و طول ساقه‌ها و چشمه‌ها را در محدوده یک درصد معنی‌دار بود (جدول 1). با کاهش پانسنل آب و افزایش خشک‌کن درصد و سرعت جوانزی، وزن تر و خشک‌کن گاهی‌ها، و طول ساقه‌ها به طور معنی‌داری کاهش یافت. در حالیکه طول ریشه‌ها در ابتدا و با خشک‌کن خفیف افزایش یافت و در خشک‌کن‌های شبیه‌تر رو به کاهش نهاد (جدول 2 و شکل 1). بیشترین درصد و سرعت جوانزی وزن تر و خشک‌کن گاهی‌ها، و طول ساقه‌ها در شرایط شاهد (پانسنل صفر متاسبکال) و کمترین میزان صفات فوق‌الذکر در شرایط خشک‌کن شدت (پانسنل 0-6 متاسبیکال)، مشاهده شد. بیشترین طول ریشه‌ها متعلق به شرایط خشک‌کن مالیم (پانسنل 2-0 متاسبکال) و کمترین طول ریشه‌ها متعلق به شرایط خشک‌کن شدت (پانسنل 0-8 متاسبکال) بود (جدول 2). کاهش درصد و سرعت

شنید (بدون عصاره آنزیمی) و در مدت یک دقیقه

\[\Delta A = \Delta A_0 - \Delta A_1 \]

\[\text{ضریب ریخته } D = \frac{A_0 - A_1}{A_0} \]

آزمون برپردورده برای اندزه‌گیری غلتک پرتو از محلول عصاره گاومی: روشن Bradford (1976) یک سنجش کل‌رهمیک با استفاده از استکروتونومتر است که منحنی استاندارد که برای محاسبه غلتک پرتوی نمونه به کار می‌رود.

تعداد برند فور: استفاده از 100 میلی‌گرم کیمی‌ای (G250) در هر میلی‌لیتر تناول 95 دقیقه حلال شد و سپس 100 میلی‌لیتر اسید زرف‌پر مخلوط 85 دقیقه به مخلوط، به حجم یک لیتر رسانده شد. محلول حاصل از کاهش واحدن شماره یک فیلتر شد. لازم به ذکر است که عصاره برپردورده در طرفی شیوه‌ی کد (نور به آن نور) چاپ کننده هنگام حساسیتی از دامی اثاث قابل گشت‌داری است و باتوجه رسم دهد، می‌توان محلول را مجدداً فیلتر نمود و واریه‌های از آن استفاده کرد.

محلول پایه پرتوی استاندارد: مقدار یک میلی‌گرم از بوفین سرم گاومی (Bovine Serum Albumin=BSA) در یک میلی‌لیتر آب به حجم ۱۰۰ میلی‌لیتر باشد. دمای نگهداری برای این محلول ۲۰ درجه سانتی‌گراد است.

تعداد برند فور: مقدار ۲۰، ۴۰، ۸۰ و ۱۰۰ میکروجرام از محلول پرتوی استاندارد، به طور جداگانه در محلول غلتک شیشه‌ای اکتوبر شده و در بر می‌رسید.

تعداد برند فور: مقدار ۲۰، ۴۰، ۸۰ و ۱۰۰ میکروجرام از محلول پرتوی استاندارد، به طور جداگانه در محلول غلتک شیشه‌ای اکتوبر شده و در بر می‌رسید.

تعداد برند فور: مقدار ۲۰، ۴۰، ۸۰ و ۱۰۰ میکروجرام از محلول پرتوی استاندارد، به طور جداگانه در محلول غلتک شیشه‌ای اکتوبر شده و در بر می‌رسید.
<table>
<thead>
<tr>
<th>سالم</th>
<th>سالم</th>
<th>سالم</th>
<th>سالم</th>
<th>سالم</th>
<th>سالم</th>
<th>سالم</th>
<th>سالم</th>
<th>سالم</th>
</tr>
</thead>
<tbody>
<tr>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
</tr>
<tr>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
</tr>
<tr>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
</tr>
<tr>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
</tr>
<tr>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
</tr>
<tr>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
<td>سالم</td>
</tr>
</tbody>
</table>

(جدول)
فراخون و کارکرد گیاهی جلد 4، شماره 14، سال 1394

8

غذازی، میزان بیشتری از مواد مورد نیاز برای رشد گیاهی را در اختیار بذران قرار می‌دهد. بنابراین آن‌ها اندو، و خطره غذایی بر اثر تغییرات محیطی به خصوصیات رشدی گیاهی در زنوتیپ‌های مختلف مورد مطالعه قرار گرفتند. در مطالعه مادری و همانکاران (1391) اختلاف معنی‌داری بین 15 توده ی رازیانه از نظر وزن تر و خشک ساقه چه و طول ساقه‌های و رشته‌های گزارش شد.

اثر مقابل سطح خشکی × زنوتیپ روی درصد و سرعت جوانزنی، وزن تر و خشکی گیاهی، و طول ساقه‌های بود (جدول ۱). حداکثر درصد و سرعت جوانزنی به ترتیب متفاوت به زنوتیپ‌های مشهور و ایرانی، در شرایط شاهد (پاناسیپ سفر) و حداقل درصد و سرعت جوانزنی به ترتیب به زنوتیپ‌های ییرجند و کاشان در شرایط تختی شدید (پاناسیپ ۶- مگاپاسکال) تعقیب داشت (شکل ۱ و ۱۱). درصد کاهش جوانزنی در سطح خشکی شاهد نسبت به شرایط شاهد، برای هر یک از زنوتیپ‌های ارومیه، همدان، کرمان، شهرزای، ییرجند، یزد، اردبیل، ایلام، کاشان، مشهد، یزد و اصفهان به ترتیب برابر با ۰.۹، ۰.۵، ۰.۶، ۰.۷، ۰.۸، ۰.۹، ۰.۹، ۰.۹، ۰.۹ و ۰.۹ درصد بود (شکل ۱). این نتایج نشان می‌دهد که درصد جوانزنی در شرایط شاهد، بین زنوتیپ‌های رازیانه تفاوت ایجاد کرد، به طوریکه این تفاوت ملاک خوری برای تقویتی‌های زنوتیپ‌های از نظر مقاومت به خشکی در مرحله‌ی جوانزنی بود. بنابراین اساس، زنوتیپ‌های رازیانه مورد مطالعه در این تحقیق به سه گروه مقاوم (شیراز، یزد، کرمان و مشهد)، نیمه‌مقاوم (همدان، کاشان، بوشهر و ارومیه) و حساس به خشکی (ییرجند، اردبیل، ایلام و اصفهان) تقسیم‌بندی شدند. در شرایط شاهد (پاناسیپ ۶- مگاپاسکال)، مشاهده کردیم که در قیاس با شاهد در صفات وزن تر و خشک گیاهی، و طول ساقه‌های به ترتیب در زنوتیپ‌های اصفهان (۹۱ درصد)، ییرجند (۹۵ درصد) و اصفهان (۹۸ درصد) مشاهده شد که همگی آنها متعلق به گروه ساقه به خشکی بودند (شکل ۱ و ۱۱). در این شرایط، کمترین جوانزنی در تنفسیل‌های پایین آب را می‌توان به کاهش سطح شیب تنفسیل آب بین بذر و محیط آن نسبت داد. داهه‌ها برای انجام فاقد جوانزنی، باید به اداره‌ای کافی آب جذب نمایند. ولی عضویت پلی‌ایل‌های کلای‌یک در محیط کشت سبب افزایش در تنفسیل آب و معانی‌ای باعث کاهش گیاه به ترتیب دانه می‌شود. یا کاهش میزان آب توسط بذر حاکمیت مواد خطرناک ای دانه و سنت پروتئین‌ها در جنین کاهش بیانه و ادامه رشد گیاهی با مشکل مواجه می‌شود (Yagmur and Kaydan, 2008).

Eggen (2005) و Hanselin (2005) نشان دادند که شکل باعث نشان دادند که شکل گیاهی در زنوتیپ‌های مختلف رازیانه کاهش یافته و Yamamoto (1997) بیان کردند که کاهش میزان پاتسیل آب می‌تواند باعث درختی با پاتسیل آب در اثر بیشتر از نسبت داده در مجموع کاهش سیستم، وزن تر و طول گیاهی در با یک یا یک داشتند. زنوتیپ‌های رازیانه مورد مطالعه در این تحقیق از نظر درصد و سرعت جوانزنی، وزن تر و خشک گیاهی، و طول ساقه‌های و رشته‌های تفاوت معنی‌داری در سطح احتمال یک درصد نشان دادند (جدول ۱). بیشترین درصد جوانزنی، وزن تر و خشک گیاهی، و طول رشته‌های به زنوتیپ مشاهده تعقیب داشت و کمترین درصد و سرعت جوانزنی، وزن تر و خشک گیاهی در زنوتیپ کاشان مشاهده شد (جدول ۱). هرچند که اختلاف بین زنوتیپ‌های رازیانه از نظر وزن تر و خشک، و طول ساقه‌های و رشته‌های می‌تواند مشاهده شده با همگی آنها متعلق به گروه حساس به خشکی بودند (شکل ۱ و ۱۱). در این شرایط، کمترین
شکل 1- کش میانگین سطح خشکی و زنونیت بر دارد (ا) و سرعت (ب) جوانی، و وزن تر (c) و خشک (d) گیاهه زنانه (مقادیر میانگین) سه تکرار یا میانگین باید یا رده نشان دهنده احتمال معنی است.

کاهش در صفات فوق الذکر در زنونیت کرمان مشاهده شد که در شرایط خشکی شدید در زنونیت های شیراز، کرمان و یزد که همگی متعلق به گروه متحمل به خشکی بودند، به ترتیب متعلق به گروه متحمل به خشکی بود. به علاوه، طول ریشه‌چه
شکل ۲- اثر متقابل سطح خشکی و ژنوتیپ بر طول ساقه چه (a) و ریشه چه (b)، و فعالیت ویژه کاتالاز (c) رایانه (مقادیر میانگین سه تکرار می‌باشد و بارها نشان دهنده انتخاب میزان است)

کوچک‌های ظهوری از اندازه‌های هوایی ایجاد کنن تا تحمل شکل خشکی آسان‌تر شود (آکرم قداری و همکاران، ۱۳۸۷). همچنین محیطات اختلال در انتقال مواد غذایی از بابت‌های ذخیره‌دار به گیاههای را از دیگر عوامل کاهش رشد ساقه چه در شرایط تنش خشکی می‌دانند (حسن‌نیا و رضوی، مدفوم، ۱۳۸۷). به علاوه با کاهش پتاسیم آب خاک، میزان آب در دسترس یافتن کاهش نتیجه می‌باشد و این پدیده کاهش تورمسی و سلولاری را به همراه دارد. سلولهایی که به علت خشکی
خشکی در پنجه افزایش سطحی پایولوژی، فندهای محلول و پرونین را در پی داشت، به طوریکه افزایش در صفات فوق الذکر در زمان‌های متحمل به تنش به طور قابل ملاحظه‌ای نسبت به زمان‌های حساس بالاتر بود. آنها نتیجه گرفتند که پایولوژی، فندهای محلول و پرونین از محیط‌های املاح سازگار در پی اثر مستقیم این حفظ مکانیک و شیمیایی محلول سولوئی و جمع‌آوری گونه‌های فعال اکسیژن ناشی از تنش خشکی، بازی می‌کنند.

نویسندگان (2002) برخلاف این نتایج، گزارش کردن که افزایش تنش خشکی یکی از محلول‌ها در تنش خشکی محلول‌های سولوئی متحمل به تنش به طور قابل ملاحظه‌ای نسبت به نشانه‌های حساس بالاتر بود. آنها نتیجه گرفتند که پایولوژی، فندهای محلول و پرونین از محیط‌های املاح سازگار در پی اثر مستقیم این حفظ مکانیک و شیمیایی محلول سولوئی و جمع‌آوری گونه‌های فعال اکسیژن ناشی از تنش خشکی، بازی می‌کنند.

محتوی پایولوژی، قندهای محلول و پرونین گیاهی: نتایج حاصل از تجربه ایرانیان مشخص کرده که سطحی خشکی اثر معنی‌داری در سطح اختلال یک درصد بر محتوی پایولوژی، قندهای محلول و پرونین گیاهی‌های رازی‌دانه داشت (جدول 1). مقایسه‌های میانگین‌ها نشان داد که با تشکیل شرایط در سطح خشکی محلول و پرونین گیاهی‌های رازی‌دانه به طور معنی‌داری افزایش یدا کرد، به طوریکه بالارترین سطح دیده‌شد، در شرایطی که در خشکی شدید (بین 2.10 و 2/6 مگا پاسکال) و پایین‌ترین سطح آنها در شرایط شاهد (بین 2/5 مگا پاسکال) مشاهده شد (جدول 2). خشکی‌های محیطی عازم مرطوبی از نظر محتوی پایولوژی، قندهای محلول و پرونین گیاهی‌های رازی‌دانه به طور معنی‌داری افزایش یدا کرد، به طوریکه بالارترین سطح دیده‌شد، در شرایطی که در خشکی شدید (بین 2.10 و 2/6 مگا پاسکال) و پایین‌ترین سطح آنها در شرایط شاهد (بین 2/5 مگا پاسکال) مشاهده شد (جدول 2).
متحمل به خشکی، بود، در حالیکه پایین‌ترین مقادیر صفات فوق الذکر در زنوتیپ بیرجند (از گروه حساس به خشکی) مشاهده شد، می‌توان چنین ترتیب را پیدا کرد که پی اف‌ولرها، فرد های محلول و پرولین، نشان‌کننده ایجاد مقاومت تغییرهای رایانههای خشکی و می‌توان به عوامل بیرونی از شاخص‌های تحمل خشکی در رازبانه در مرحله جوانی‌ترین نام برده.

فعالیت آنزیم‌های آنزیم‌کاهن: نتایج حاصل از تجزیه واریانس نشان داد که اثر سطح مختلف خشکی روی فعالیت ویژه آنزیم‌های کالزاس و سپاکسید، دیسموتاز به ترتیب در سطح اختلافات یک وضعیت‌دار بود (جدول 1). اگرچه اثر مستقل آب فعالیت آنزیم آکسیداز میان‌گروهی شد، یک وضعیت ملایم و متوسط (بانست‌سال) فعالیت آنزیم روی نسبت به شاهد افزایش داد و خشکی شدید (بانست‌سال 10) از فعالیت آن کاست (جادول 2 و 3). به علاوه، با افزایش سطح خشکی، فعالیت ویژه آنزیم کالزاس افزایش و فعالیت ویژه آنزیم سپاکسید دیسموتاز کاهش یافت (جدول 2). این اثر آنزیم‌های زنوتیپ به‌ویژه، از نظر فعالیت ویژه آنزیم‌های کالزاس، آکسیداز و سپاکسید دیسموتاز در سطح اختلافات مال‌های مختلف مربوط به فعالیت ویژه آنزیم‌های دیسموتاز و پراکسیداز در افزایش و سنگین در به‌یکدی و مناسب شده (جدول 1). این اثر به‌ویژه معنی‌داری نشان دادند (جدول 2). در حالی بود که همه‌ی زنوتیپ‌های فوق الذکر متعلق به گروه متحمل به خشکی بودند. کمترین فعالیت ویژه آنزیم کالزاس در زنوتیپ‌های همدان و این سبب، کمترین فعالیت ویژه آنزیم آکسیداز در زنوتیپ‌های ادربل و همدان و کمترین فعالیت آنزیم سپاکسید دیسموتاز در زنوتیپ کاشان مشاهده شد (جدول 2). این در حالی بود که همه‌ی زنوتیپ‌های افزایش معنی‌داری به گروه حساس به خشکی تعلق داشته و فعالیت اثر متقابل زنوتیپ × سطح خشکی بر فعالیت در سلول‌هایان تجمع می‌دهد و با کاهش پتانسیل آب، موجب حفظ فشار توراسنس سلول را فراهم می‌کند و از طرف دیگر با افزایش تبدیل فندقهای هگوز و کربوهیدرات هایی که نشانه‌های سکارک که پی‌اف‌ولرها و پرولین، تنظیم امسیر را به‌طور مؤثرتری به کار می‌برند. احتمالاً در محیط فندقهای محلول در زنوتیپ‌های مختلف رایانه‌های می‌تواند در دیل تفاوت در فعالیت آنزیم‌های جوانی‌ترین (به فرض مثل آلفا و بتا آمیز) و یا به دیل تفاوت در کمیتی و کمیتی دیگر غذاهای بدور در زنوتیپ‌های مختلف باشد. زنوتیپ‌های با اندام جد باز پژوه‌که به‌طور خودکار باز می‌شود، می‌توانی به پژوه‌که زنوتیپ‌های دیل شیاینی و Soliman در اختیار قرین می‌پذیرد.

(2015) گزارش کرد که کاهش پتانسیل آب حاصل از نش اثرات باعث افزایش در میزان پرولین پنج گیاه (رازیانه، گرفس، شیون، زیره‌ی و گرفس) از خانواده چریانی شد. حرکت و همکاران (2011) نشان دادند که تشخیص Qayyum حاصل از پی ای‌ایلیگاکول، محیطی پرولین را به طور معنی‌داری در گیاهی پنچ و گند آن تازه داد. افزایش محیطی پرولین بر اثر نش خشکی را می‌توان به عوامل گوناگونی از جمله: کاهش استفاده از پرولین در سنتر پرتوئی‌های سلولی، کاهش در فعالیت پرولین اکسیداز، افزایش بیزی‌پرولین از گلولاتان و ویسپالی می‌توان به تجزیه پرتوئی‌های سلولی به تغییر ترویج بیشتر آسیب‌هایی به پرولین می‌کند (در نظام انسان به نحو موتوری عمل می‌کند). مربوط دانست (1995). انتخاب مدل‌های سازگاری چون پرولین در فشار کمان، از مهم‌ترین راهکارهای گیاهان به منظور تنظیم فشار اسکر سلول و به عن تأثیر توراسنس سلول می‌باشد. ارزیابی پی‌اف‌ولرها، پرولین می‌تواند در فشار خشکی از یک سو باعث تنظیم امسیر در سلن می‌شود و از سوی دیگر به حفظ ساختارهای مولکولی، سیستم‌های و پاکسازی گونه‌های عمال اکسیژن در سلن‌کم‌کی می‌کند. با توجه به اینکه بالاترین مقادیر پی‌اف‌ولرها، پرولین و پرولین مشاهده (از گروه
تولید آنزیم کاتالاز در سطح احتمال ۵ درصد معمولی در شدت (جدول ۱). این افزایش سطح خشکی فعالیت ویژه آنزیم کاتالاز در زننی‌های ارومه، کرمان، شیراز، کاشان، مشهد، بوشهر و اصفهان به‌طور پیوسته افزایش یافته، اما در ترکیه فعالیت ویژه آنزیم کاتالاز در این زننی‌های فرآیند شریوط شده (تناوبی صفر میگاسکال) در پاییز ۲۰۰۴ سطح و در شرایط خشکی شدید (تناوبی ۱/۲ میگاسکال) در بالاترین سطح قرار داشت (شکل ۲). در حالی که، در زننی‌های همدان، بیرجند، اردبیل و این سه از خشکی ملایم، فعالیت ویژه آنزیم کاتالاز نسبت به شاهد افزایش پیدا کرده و این افزایش روندی پوسیدگی نداشته و در خشکی شدید از فعالیت آن کاهش یافته بود. فعالیت ویژه آنزیم کاتالاز در زننی‌های متحمل به خشکی مانند کرمان، شیراز و مشهد با افزایش سطوح خشکی روندی پوسیدگی و پوسیدگی نداشت ولی فعالیت خسح خشکی شدید (شکل ۲) روندی کاهشید یافته و در مطالعه‌های که روا در Wang (Xinmu No. 1) و مقاوم (Northstar) انجام داده، توصیف داده ره چند نشانهای خشکی و شوری در مرحله گوناگونی، باعث افزایش در فعالیت ویژه آنزیم کاتالاز، اکسی‌گلیکوژن والیک و سپاکتیک دیسموتاز در هر دو زننی‌های حساس و مقاوم شد ولی رقم محتمل به نشانه بیشتری شکست محسوبی نسبت به رقم حساس از فعالیت آنزیم آنتیکاتالاز بالاتری برخوردار بود.

بالبرابری نتیجه گرفته که برخوردی از سیستم آنتی اکسیدانی کارآمد در بیانه، می‌تواند در ایجاد تحمل به تشنه خشکی و شوری در مرحله جوانی‌های مؤثر باشند. کاتالاز مولکول H۲O۲ را به طور مستقیم حذف می‌کند و آن را به مولکول آب کمک کرده می‌کند. این آنزیم به قدرت کاهشگر تیز ندارد. پس سرعت فعالیت بالایی دارد ولی چون تولید آن به مولکول H۲O۲ پایین است فقط فعالیت H۲O۲ به الکل یا H۲O۲ حذف می‌کند و در غلظت‌های پایین خوب عمل می‌کند. در عوض آنزیم آکسیتکسیک دیسموتاز با
دی اکسید کرن کاهش بهداشت می‌کند. با کاهش در فعالیت دی اکسید کرن کاهش بهداشت می‌کند. تولید رادیکال سوپرکسید به محلول واکنش مهلت است نیز افت پیدا کند. نیمی باز گذاشتن روزها یکی از استراتژی‌های سازگاری به خشکی در گیاهان چون لویا چشم بلی (1998). است. احتمالاً کاهش رادیکال سوپر اکسید و غیره در حالی تشکیل می‌شود، به عنوان سگیلی برای کاهش بیان از آن زمین سوپرکسید دیسپاراز عملاً کرده است. پیشین افلاس ویژه آزمایشی کاتالاز، آسکوربین، در پرکسید و دیسپاراز دیسپاراز محیط به خشکی در قیاس را زننده‌های حساس به خشکی بیشتر است. پیشین افلاس صفات فوق‌الدیدکر، میزان حمل خشکی را زمین‌های گیاهی را می‌کند. بر طبق نتایج حاصل از آن تحقیق، زننده‌های مشهور در زمین‌های محیط و بسیاری از محیط‌های خشک و دیسپاراز دیسپاراز به عنوان زننده‌های برتر و محیط‌های زننده به خشکی می‌توانند.

شکر و قدردانی:
هزینه اجرای این تحقیق توسط دانشگاه صنعتی اصفهان تأمین شده است.

نتیجه‌گیری کلی:
با استفاده از نتایج این تحقیق، ۱۲ زننده رازپانه مورد مطالعه به سه گروه مقایسه (شبیه، برد، کرمان و مشهد) نیمه اکرم قادی، ف.، کامکار، ب.، سلطانی، ا.، (۱۳۸۷) علوم و تکنولوژی. بذر، انواع یاب. ایران، ص. (۱۳۸۰) چاپگیری ایران در صادقان و رازپانه: راه‌های مثبت نسبی صادقان. صکله‌نامه تحقیقات اقتصاد کشاورزی ۴: ۷۳-۹۷.
حسین، ح. و رسولیان، م. (۱۳۸۵) ان انورش خشکی و شوره بر جوانه زنی استیزه (Plantago ovata). پژوهش‌های زراعی ایران ۴۵: ۳۵.
خاکشور، م.، ز. لاآومس، م. و گنجعلی، ع. (۱۳۸۰) بررسی

منابع:
امیری، س.، ف. مشهوری، ک. و کلی، م. (۱۳۸۰) چاپگیری ایران در صادقان و رازپانه: راه‌های مثبت نسبی صادقان. صکله‌نامه تحقیقات اقتصاد کشاورزی ۴: ۷۳-۹۷.
حسین، ح. و رسولیان، م. (۱۳۸۵) ان انورش خشکی و شوره بر جوانه زنی استیزه (Plantago ovata). پژوهش‌های زراعی ایران ۴۵: ۳۵.
خاکشور، م.، ز. لاآومس، م. و گنجعلی، ع. (۱۳۸۰) بررسی

فراآیند و کارکرد گیاهی جلد ۱۳، شماره ۴، سال ۱۳۹۴

