پاسخ‌های فیزیولوژیکی و رشدی دوازده زنوتیپ رازیانه (Foeniculum vulgare Mill.) به پتانسیل آب در مرحله جوانزندی

احسان عسکری \(^1\) پژوه احسان زاده \(^2\) و حسین زینلی \(^3\)

گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، آخرین هیئت علمی مرکز تحقیقات کشاورزی و منابع طبیعی اصفهان

(تاریخ دریافت: 1393/12/13، تاریخ پذیرش نهایی: 1394/09/17)

چکیده:
کمبود آب از مشکلات روز به روز کشاورزی ایران است و تهدیدی برای آینده این صنعت و امیتا غذایی بزرگ محصول می‌شود. جوانزندی پیکر از مرحل حساب در طول دوره رشد گیاهان است که اغلب تحت تأثیر نشان‌های حیطه بویه خشکی قرار می‌گیرد. در این تحقیق، ارچه سه سطح پتانسیل آب (0/0 - 0/2 - 0/4 مگاپاسکال) بر روی جوانزندی، فراورده‌های مصرف خشک‌سازی، مجربه‌های محلول پرونل و پلفونل‌ها و فعالیت آنزیم‌های آنتی‌کسیدان دوازده زنوتیپ رازیانه مورد بررسی قرار گرفت. با توجه به آزمایشات کاملاً پتانسیل آب در درصد و سرعت جوانزندی، وزن تر و حسک گیاهی، طول ساقه و فعالیت بوت آنزیم سوپراکسید دیسموئات کاملاً مشابه در حالیکه بر طول ریشه‌های محتوی تئفیل محلول پلون محلول و پلون و فعالیت سوپراکسید دیسموئات تئفیل محلول و پلون و فعالیت آنزیم‌های آنتی‌کسیدان مورد بررسی قرار گرفت. نتایج برگرفت از این مطالعه، اطلاعات ارزشمندی درباره مصرف و دندان‌های داخلی (رویکرد) تئفیل محلول و پلون و شناسایی جوانزندی در مدار رستگاری به راحتی می‌یابد.

کلیات کلیدی: آنتی‌کسیدان، پرونل، پلون فلوئور، جوانزندی، تئفیل محلول

مقدمه:
درصد بالایی از جمعیت هفت میلیارد جبهه برای بهبود سلامتی دارو و خشک‌سازی گیاهان دارویی و استفاده. زیرا بین المللی گیاهان دارویی در جهان بیش از 70 میلیارد دلار است و Hashmi et al., (2012) در بین گیاهان دارویی رازیانه (Foeniculum vulgare) از موقوفیت مت挻ی برخوردار است و پراکنده و می‌یاردو (Mill.
نیکی از مراحل حساب در چرخه رشد گیاهان به حساب می‌آید. به طوریکه این مرحله دوم است، تراکم و عامل‌کردن نهایی گیاهان را تا حدی بیشتر متأثر می‌سازد. (Hosseini and Rezvani Moghadam, 2006)

برخی از گیاهان ممکن است در مراحل پس از استقرار، منحصراً به تنش‌های جنوب شرقی و خشک شدن محصول شوند، ولی این بدان معنی نیست که نمی‌تواند در مرحله جوانه زنی در مقابل تنش‌های محیطی مقومی هستند. به فرض مثال بابونه در مراحل رشد رونده، متحمل به خشک شدن است. حالتی در مرحله جوانه‌ای حساب به گیاهان این است و کمک می‌کند Hosseini and مسعودی، ظهیر‌الدین، حسینی و همکاران (Masoumi Moghieh, 2006)

(۲۰۰۸) گزارش‌های مفصل به کنش بانی باعث در بررسی گیاهی و درصد جوانه‌های خشک شده طول رسیده و ساقه‌های زنیت‌های مختلف نکته‌های شده است، در زمان خشک شدن محصول باید توجه نشان‌دهنده به متلاطم شدن و دیگر اثرات بهره‌برداری به حساب می‌آید. (Mittler، 2002) در حالی که کروپی‌های گیاهی به حفظ متونی و دمکراتی از دوره نگهداری، خشک شدن به کار می‌رود. (Khalid et al., 2010)

نتیجه که به تولید گونه‌های فعال اکسپوزن شروع گردید، نشان‌دهنده نشان‌دهنده به نام نشان خسارت‌پذیری (Parida et al., 2007) است. گونه‌های فعال اکسپوزن باعث پراکسیداسیون لیپیدها غشاء و صرب و کروپی‌ها گیاهان برای جمع‌آوری و پاسامی فعال اکسپوزن مکاپتامی یا ویژه جوان فعال کردن آنزیم‌ها آنتی‌اکسیدان و آنتی اکسیدان غیر آنزیمی مانند کاوتینوئیدها، کلوتانوئیدها، آکسپروپیک اسید و پروپونیک را به کار می‌برند (Mittler، 2002) مقایسه فعالیت آنزیم‌های آنتی‌اکسیدان در ارقام مقوم و حساب به گیاهان در گیاهان مختلف نشان داده است که مقاومت به گیاهان مثبتی بالاتری با سیستم آنتی‌اکسیدانی کارآمد دارد (Azooz، 2009)

صورت چتر مرکب است. فرصت‌های مورد استفاده این گیاههای ریشه‌خوری، برگ و گل‌های آن است. این گیاه بومی جنوب غرب آسیا، جنوب اروپا و شمال آفریقا می‌باشد و مشاهده آن را در منطقه مدیرانه می‌دانند (رنجریزو و همکاران ایرانی، ۱۳۸۳) رازی که از سالیان دور در ایران مصارف غذایی و دارویی داشته است، امیر تیموری و همکاران (۱۳۹۰) در مطالعه‌ای که بر اساس آمارهای فائق سال‌های غربی از ۱۳۹۹ تا ۱۳۹۸ اندازه‌گیری کرده بود، ایران را از جمله کشور کمتر صادق کننده علی رازیان در جهان قرار داده و با توجه به شاخص‌های مزیت نسبی اعلام کردن که ایران رتبه هفتم در میان کشورهای صادرات رازیانه در بین ۱۰ کشور عالم صادر کننده محصول ارگانیسم بلگرانتا، چین، عربستان، هند، سوئد، سوئیس و (تركیه) دارد و در ترتیب این محصول به رقابتی بین سطح بین‌الملل را دارا می‌باشد. رازیانه در قیاس با دیگر قسمت‌های کشور از اساس بسیار بالری برخوردار است. ترکیبی شاخص در اساسی این گیاه ترانس‌آنتول، لیمونن، فنیج و میتال کاریکولی‌هستن (Darzi et al., 2005)

از آنجایی که کم‌آب و تشخیص حاصل از آن، یکی از برگ‌های موانع تولید محصولات زراعی در مناطق خشک است و نیمه خشکی نسبت به تنش‌های جنوب شرقی گیاهان باید در این مرحله مختلف رشدید و مضر می‌گردد. ارگانیسم بلگرانتا با طبیعی در رستن بوم‌های مختلف در منطقه خشک مه‌رسم خشک پراکنده و بسیار دارند. به دلیل اینکه این صنعتی گیاهان دارویی قطبی زراعی بودار، بیشترین فشار بر روی کشورها با معنی اصلی و معنی‌ارزی ارگانیسم پارازیت کم بوته است. از این رو، شاخص گونه‌های بسیاری از گیاهان دارویی و صنعتی گیاهان در بسیاری از فاصله‌های گیاهان دارویی که در فیزیک با گیاهان اصلاح شده در صنعت‌های مصرف آب کمتری دارند و تا حد زیادی مقاومت بیشتری در برابر تنش‌های محیطی از خود نشان می‌دهند. با توجه به شرایط کم آبی که در کشور وجود دارد، حمایت از توسعه کشت و کار گیاهان دارویی منوط به نظر می‌رسد. جوانه‌نی
خاکشنده: محمد رضوانی و رشیدی دوست‌زاده، دانشگاه آزاد، تهران

درصد و سرعت جوانونی: درصد و سرعت جوانونی بر اساس اندازه‌گیری شده نشان داده که درصد جوانونی نقطه تکرار در جنس و جنسیت بزرگ بوده و درصد جوانونی در جنس و جنسیت بزرگ بوده است. درصد سرعت جوانونی در جنس و جنسیت بزرگ بوده است.

درصد جوانونی بر اساس اندازه‌گیری شده نشان داده که درصد جوانونی نقطه تکرار در جنس و جنسیت بزرگ بوده است. درصد سرعت جوانونی در جنس و جنسیت بزرگ بوده است.

تعداد بدترین جوانونی در روز اول برابر با تعداد کل بدترین جوانونی در روز اول برابر با:

\[\text{Tعداد نشان دهنده جوانونی تا روز اول} = \text{درصد جوانونی} \times 100 \]

به منظور بررسی اثرات نشان دهنده جوانونی بذری بر روی راه اندازی دانشگاه صنعتی اصفهان و در انتقال شدید، در روز 25 دچار سببگیری و در نتیجه، آزمایشی به صورت فاکتوریل در قالب طرح کاملاً تصادفی و با سه

مواد و روش‌ها:

به منظور بررسی اثرات نشان دهنده جوانونی بذری بر روی راه اندازی دانشگاه صنعتی اصفهان و در انتقال شدید، در روز 25 دچار سببگیری و در نتیجه، آزمایشی به صورت فاکتوریل در قالب طرح کاملاً تصادفی و با سه
سنجش محیطی پلی فنول: ابتدا تیم گرم از بافت گیاهی، با استفاده از انالو 95 درصد عصاره گیاهی شد. سپس ماد بالفوئنیل با استفاده از واکنش فنول- فنول و به روش Singh (2002) اندازه‌گیری شد. در این روش ابتدا 200 میکرویلیتر از محلول استخراج شده با 1 میلیلیتر واکنش فنول- فنول به مدت 30 دقیقه در حلال pH 7 ثبت گردید. میدان اندازه‌گیری 75 تا 5000 میکرویلیتر توسط دستگاه استکروتومتر (HITACHI U1800) و مقایسه با غلظت محیطی های استاندارد، غلظت بالفوئنیل به دست آمد.

سنجش محیطی پروپن: برای تعیین غلظت پرونیل از روش و همکاران (1973) استفاده شد. در ابتدا، برای تهیه دیمانی 250 کلرم از این ماده، داخل اثر انگیز شد و به آن 30 میلیلیتر اسید استیک کلریک و 20 میلیلیتر فسفریک 6 مولار اضافه گردید. سپس محلول حاصل به آرامی حرارت داده شد تا نی‌هیدرو عبور طور کامل جلو شود. در مرحله بعد، مقدار گرم از بافت گیاهی در هاوان‌چی و در 10 میلیلیتر اسید سولفوسائلیک 3 درصد، به خوبی ساپیل شد. همگی حاصلی در دستگاه سانتریفوژی با دور 13000 در دقیقه، در دامای 4 درجه سانتی‌گراد و به مدت 10 دقیقه سانتریفوژی شد. سپس، 2 میلیلیتر از عصاره صاف شده به لوله درب متر متخلخل و به آن 2 میلی‌لیتر معرف 2 نی‌هیدرو 2 میلی‌لیتر اسید استیک کلریک، اضافه شد. پس از یک هنگام درب لوله‌ها، آنها به مدت یک سوم در حلال pH 4، در محل در کمتر از 100 میلی‌لیتر، عصاره حاصل با دور 50000 در دقیقه و در دامای 4

سنجش محیطی آنزیم آتیکسیدان: برای اندازه‌گیری فعالیت ویژه آنزیم آتیکسیدان، ابتدا 100 میلی‌گرم از بافت گیاهی در یک هاوان سرد شده به یک میلی‌لیتر فسفر، استخراج انجام می‌گردد و به طور کامل گذاری می‌شود. سپس از یک هنگام درب لوله‌ها، آنها به مدت یک ساعت در حلال pH 7، در حلال pH 7 در دامای 4 درجه سانتی‌گراد قرار داده شدند و بعد از سرد شدن، به هر یک از لوله‌ها مقدار 4 میلی‌لیتر تولوئن اضافه شد. برای محلول کردن این دو

$$\text{آتیکسیدان} = \sum_{i=1}^{n} \text{سربه جوانی}$$

$$\text{چرخ آتیکسیدان} = \text{عدد بذر جوانی‌های از روز 1}$$
درجه سانتی‌گراد به مدت 20 دقیقه سانتی‌فیوزش شد. بخشی
شفاف قرار داد. در بالا از عصاره برای سنجه آنزیم‌های آنتی
اکسیدان به کار گرفته شد.

سنجه فعالیت ویژه آنزیم کاتالاز با استفاده از روش نوین
یافته و اصلاح شده Aebi (1987) و با روش استریپوئومتری
تجزیه آنتی ه2O2 تجزیه آنتی کاتالاز اندوزه‌گیری شد. برای
این منظور 2/25 میلی‌لیتر باری اکسید واکنش
شامل باری سفافیت با میلی‌مولار 50 میلی‌مولار (pH = 7) و
پراکسید هیدروژن 15 میلی‌مولار. با 0/5 میلی‌لیتر عصاره آنزیم مخلوط
گردید. فعالیت ویژه آنزیم کاتالاز از تقسیم فعالیت حجمی
کاتالاز بر میزان پروتئین عصاره که به روش
تعیین شده بود محاسبه گردید.

سنجه فعالیت ویژه آنزیم سوراکسید دیسموتاز: فعالیت
آنتی سوراکسید دیسموتاز با استفاده از روش نوین یافته و
اصلاح شده Ries و Giannopolitis (1977) به کار گرفته شد.
30 میکرو‌متری از عصاره آنزیمی به 3 میلی‌لیتر باری واکنش
شامل باری سفافیت با میلی‌مولار 75 میلی‌مولار,
میکرو‌مولار 12 میلی‌مولار، نتیجه‌گیری ترزاولویم 43 میکرو‌مولار و
ریبوفلوین 13 میکرو‌مولار اضافه گردید. نمودار با مدت
15 دقیقه در معرض نور قرار گرفت و پس از این مدت
در طول متوسط 50 تا 75 میلی‌دیگری به منظور
سنجه سختی گرفته شد. بخشی
شفاف قرار داد. در بالا از عصاره برای سنجه آنزیم‌های آنتی
اکسیدان به کار گرفته شد.

سنجه فعالیت ویژه آنزیم سوراکسید دیسموتاز: فعالیت
آنتی سوراکسید دیسموتاز با استفاده از روش نوین یافته و
اصلاح شده Ries و Giannopolitis (1977) به کار گرفته شد.
30 میکرو‌متری از عصاره آنزیمی به 3 میلی‌لیتر باری واکنش
شامل باری سفافیت با میلی‌مولار 75 میلی‌مولار,
میکرو‌مولار 12 میلی‌مولار، نتیجه‌گیری ترزاولویم 43 میکرو‌مولار و
ریبوفلوین 13 میکرو‌مولار اضافه گردید. نمودار با مدت
15 دقیقه در معرض نور قرار گرفت و پس از این مدت
در طول متوسط 50 تا 75 میلی‌دیگری به منظور
سنجه سختی گرفته شد. بخشی
شفاف قرار داد. در بالا از عصاره برای سنجه آنزیم‌های آنتی
اکسیدان به کار گرفته شد.

سنجه فعالیت ویژه آنزیم کاتالاز با استفاده از روش نوین یافته و
اصلاح شده Aebi (1987) و با روش استریپوئومتری
تجزیه آنتی ه2O2 تجزیه آنتی کاتالاز اندوزه‌گیری شد. برای
این منظور 2/25 میلی‌لیتر باری اکسید واکنش
شامل باری سفافیت با میلی‌مولار 50 میلی‌مولار (pH = 7) و
پراکسید هیدروژن 15 میلی‌مولار. با 0/5 میلی‌لیتر عصاره آنزیم مخلوط
گردید. فعالیت ویژه آنزیم کاتالاز از تقسیم فعالیت حجمی
کاتالاز بر میزان پروتئین عصاره که به روش
تعیین شده بود محاسبه گردید.

سنجه فعالیت ویژه آنزیم سوراکسید دیسموتاز: فعالیت
آنتی سوراکسید دیسموتاز با استفاده از روش نوین یافته و
اصلاح شده Ries و Giannopolitis (1977) به کار گرفته شد.
30 میکرو‌متری از عصاره آنزیمی به 3 میلی‌لیتر باری واکنش
شامل باری سفافیت با میلی‌مولار 75 میلی‌مولار,
میکرو‌مولار 12 میلی‌مولار، نتیجه‌گیری ترزاولویم 43 میکرو‌مولار و
ریبوفلوین 13 میکرو‌مولار اضافه گردید. نمودار با مدت
15 دقیقه در معرض نور قرار گرفت و پس از این مدت
در طول متوسط 50 تا 75 میلی‌دیگری به منظور
سنجه سختی گرفته شد. بخشی
شفاف قرار داد. در بالا از عصاره برای سنجه آنزیم‌های آنتی
اکسیدان به کار گرفته شد.

سنجه فعالیت ویژه آنزیم کاتالاز با استفاده از روش نوین یافته و
اصلاح شده Aebi (1987) و با روش استریپوئومتری
تجزیه آنتی ه2O2 تجزیه آنتی کاتالاز اندوزه‌گیری شد. برای
این منظور 2/25 میلی‌لیتر باری اکسید واکنش
شامل باری سفافیت با میلی‌مولار 50 میلی‌مولار (pH = 7) و
پراکسید هیدروژن 15 میلی‌مولار. با 0/5 میلی‌لیتر عصاره آنزیم مخلوط
گردید. فعالیت ویژه آنزیم کاتالاز از تقسیم فعالیت حجمی
کاتالاز بر میزان پروتئین عصاره که به روش
تعیین شده بود محاسبه گردید.

سنجه فعالیت ویژه آنزیم سوراکسید دیسموتاز: فعالیت
آنتی سوراکسید دیسموتاز با استفاده از روش نوین یافته و
اصلاح شده Ries و Giannopolitis (1977) به کار گرفته شد.
30 میکرو‌متری از عصاره آنزیمی به 3 میلی‌لیتر باری واکنش
شامل باری سفافیت با میلی‌مولار 75 میلی‌مولار,
میکرو‌مولار 12 میلی‌مولار، نتیجه‌گیری ترزاولویم 43 میکرو‌مولار و
ریبوفلوین 13 میکرو‌مولار اضافه گردید. نمودار با مدت
15 دقیقه در معرض نور قرار گرفت و پس از این مدت
در طول متوسط 50 تا 75 میلی‌دیگری به منظور
سنجه سختی گرفته شد. بخشی
شفاف قرار داد. در بالا از عصاره برای سنجه آنزیم‌های آنتی
اکسیدان به کار گرفته شد.
شاهد (بدرس عصاره آنزيمى) و بدرس سفیرمز،
\[\Delta A = \text{اختلاف جذب در طول موج 560 نانومتر در نمونه} \]
\[D = \text{ضروب قمت} \]

آزمون بر فرد پرتیون دانگه‌گری غلظت پرتیون در محلول

\textbf{عصاره گیاهی:} روش Bradford (1976) یک سنجش
کلردوت‌نیکی با استفاده از اسیدترومتوم است که معادن ساعت
یک منحنی استاندارد که برای محاسبه غلظت پرتیون نمونه به
کار می‌روید.

\textbf{نمه عرف برد فوردن:} ابتدا 100 میلی‌گرم کوماسی بلو
(G250) در 5 میلی‌لیتر تاناه 95 درصد حلال شد و سپس
100 میلی‌لیتر اسید سلفوریک 85 درصد به آن اضافه گردید.
بعد با اضافه کردن آب دوبار تقطیر به محلول، به حجم یک
لیتر رسیدند. محلول نیاز به استفاده از کاغذ و اتمین
شماره یک فیلتر شد. لازم به ذکر است که عصاره بر فرد در
ظرف شیشه‌ای کدر (نور به آن نرسد) تا چندین هفته در دمای
انتاق قابل نگهداری است و جانشین رضو دهد، می‌توان
محلول را مجدداً فیلتر نمود و درباره آن استفاده کرد.

\textbf{نه محلول پایه پرتیون استاندارد:} مقدار یک میلی‌گرم از
(Bovine Serum Albumin=BSA)
پرتیون آلومین سرم گاری در یک میلی‌لیتر آب دوبار تقطیر
حل شد تا غلظت پرتیون استاندارد یک میلی‌گرم در میلی‌لیتر باشد. دمای نگهداری برای
این محلول 3-4 درجه سانتی‌گراد است.

\textbf{نه محلول میکرو بارن استاندارد:} مقدار 40, 20, 10 و 100
میکروبرن از محلول پرتیون استاندارد، به طور چگانه در
لوله‌های شیشه‌ای تولید شده ریختند و به ترتیب مقدار
80, 60, 20 و 100 میکروبرن آب دوبار تقطیر به
لوله‌ها اضافه شد تا حجم محلول نهایی در هر لوله
100 میکروبرن باشد. به علاوه درون یک لوله شبیه‌ساز
100 میکروبرن لیتر آب دوبار تقطیر ریختند و آن برای بلافاصله
اکسترهموم استفاده گردید. سپس پنج میلی‌لیتر از عصاره
بر فرد در دو هر لوله ریخته و خوب هم زده شد. اصلی
زمانی دو دقیقه تا یک ساعت پس از اختلال عطرها نمونه‌ها.

\textbf{نتایج و بحث:}

\textbf{جوانزین و میکروفیزیو:} از سطح مختلف خشکی
بر درصد و سرعت جوانزین، زن تر و خشکی گاهج، و طول
سافته و ریشه‌های رزیانه در سطح احتمال یک درصد
می‌دار بود (جدول 1). با کاهش پتانسیل آب و افزایش
خشکید، درصد و سرعت جوانزین زن تر و خشکی گاهج،
و طول سافته به طور میانگین کاهش یافتند، در حالیکه
طول ریشه‌های در ابتدا و با خشکی خفیف افزایش یافت و در
خشکی‌های شدیدتر رو به کاهش نهاد (جدول 2 و شکل 1).

\textbf{جوانزین و میکروفیزیو:} از سطح مختلف خشکی
بر درصد و سرعت جوانزین، زن تر و خشکی گاهج،
و طول سافته و ریشه‌های رزیانه به طور میانگین کاهش یافتند،
در حالیکه طول ریشه‌های در ابتدا و با خشکی خفیف افزایش یافت و در
خشکی‌های شدیدتر رو به کاهش نهاد (جدول 2 و شکل 1).

بیشترین درصد و سرعت جوانزین زن تر و خشکی گاهج،
و طول سافته و ریشه‌های رزیانه به طور میانگین کاهش یافتند،
در حالیکه طول ریشه‌های در ابتدا و با خشکی خفیف افزایش یافت و در
خشکی‌های شدیدتر رو به کاهش نهاد (جدول 2 و شکل 1).

data}

\textbf{شیب‌ها و کشیده‌های خشکی:} از سطح مختلف خشکی

\textbf{جدول 1:}

\begin{tabular}{|c|c|c|c|c|}
\hline
خشکی & سطح & درصد & سرعت \\
\hline
ابتدایی & خفیف & 30 & 20 \\
\hline
ابتدایی & متوسط & 25 & 15 \\
\hline
ابتدایی & شدید & 20 & 10 \\
\hline

\textbf{جدول 2:}

\begin{tabular}{|c|c|c|c|c|}
\hline
خشکی & سطح & درصد & سرعت \\
\hline
ابتدایی & خفیف & 30 & 20 \\
\hline
ابتدایی & متوسط & 25 & 15 \\
\hline
ابتدایی & شدید & 20 & 10 \\
\hline

\textbf{شکل 1:}

\begin{figure}

\end{figure}
<table>
<thead>
<tr>
<th>توضیح</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>صنف</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>نتیجه</td>
<td>78</td>
<td>90</td>
<td>82</td>
<td>75</td>
<td>88</td>
<td>92</td>
<td>85</td>
<td>91</td>
<td>79</td>
<td>87</td>
</tr>
</tbody>
</table>

توجه: این متن به‌عنوان متن طبیعی مطالعه می‌شود و در خصوصیات و نتایج علمی می‌تواند به‌عنوان متن طبیعی در نظر گرفته شود.
نگاهی، میزان بیشتری از مواد مورد نیاز برای رشد گیاهیه را در اختیار گیاه قرار می‌دهد. باید نیاز آن باشد و ذخیره غذایی بذور از تغییرات خاصیات رشدی گیاهی در زنوتیپیاه سه‌درصد دارند. در مطالعه مرادی و همکاران (1391) اخراج معنی‌داری بین 15 توده برای ای جوابگردی از نظر وسیع خشکی، چه و طول ساقه‌های و رشته‌های گزارش شد.

اثر متقابل سطح خشکی × زنوتیپ روی درصد و سرعت جوانزمی توزینی، وزن تر و خشکی گیاهیه و طول ساقه‌ها و درجه چهار از درخت نهایت می‌باشد و سبب می‌شود که در نهایت باعث کاهش یا نزدیک‌نگاری جوانزمی و رشد گیاهیه می‌گردد. همچنین با این تفاوت، مرادی و همکاران (1391) کاهش معنی‌دار یافته در زیانهای داران زنوتیپیاه دانه به‌مدت ۵۳/۴۲ تا ۷۵/۴۱ مگاکاسکال. در این مطالعه، وزن خشکی گیاهیه از زنوتیپیاه متنوعه را در اکثر کاهش می‌یابد. کاهش دورسیسن سولوی بر روی شناس ارزیابی از کاهش و گیاهیه، طول ساقه‌ها و رشدیه تفاوت معنی‌داری در سطح اختیار یک درصد نشان دادن (جدول ۱). پیشترین درصد جوانزمی، وزن تر و خشکی گیاهیه، طول رشدیه به زنوتیپیاه سبب می‌شود و سرعت جوانزمی توزینی، وزن تر و خشکی گیاهیه در زنوتیپیاه مشاهده شد (جدول ۲). هرچند که اختلاف کاهشی زیانهای از نظر وزن تر و خشکی، طول ساقه‌ها و رشدیه معنی‌دار می‌باشد. این اتفاق شامل سیستم‌های اصلی، که در حالت نشان دادن، اما کامی و همکاران (1391) این‌گونه اختلاف را به تفاوتی مربوط دانستند و نتیجه گرفتند که باید با دخالت غنی از مواد
شکل ۱- گر درصدی فضای خشکی و زننیپ در درصد (a) و سرعت (b) جوان‌شدن، و وزن‌تر (c) و خنک (d) گیاه‌های زاروانی (معمود ایتالیا) سی است. سه تکرار می‌باشد و با وردهانه‌های دانته انحراف معیار است.

کاهش در صفت فوق‌الثواب در زننیپ کرمان مشاهده شد که در شرایط خشکی شدید در زننیپ های شیراز، کرمان و یزد که همگی متعلق به گروه متحمل به خشکی بودند، به ترتیب متعلق به گروه متحمل به خشکی بود. به علاوه، طول ریشه‌ه
شکل 2- اثر مقایل سطح خشکی و زنوتیپ بر طول ساقه چه (a) و ریشه چه (b)، و فعالیت ریشه کاتالاز (c) رایانه (مقادیر میانگین سه تکرار می‌باشد و بارها نشان دهنده انحراف معیار است.)
شاخکی در پنده افراش سطح بیلی‌فلوندها قندهای محلول و پرولین را در بی‌شانت به طوریکه افراش در صفات فوق الذکر در زنطیات های متقل می‌شود به تنه در طی کمیابی فیلتر‌هایی، نسبت به زنطیات حساس بالاتر بود. این نتیجه فرند ندها بیلی‌فلوندها، قندهای محلول و پرولین از مهارت‌های افراش سازگار بین پیشگامی که نقش اعمال داشته، حفظ ماکرومولکول‌های سلولی سبزهای سلولی و جمع‌آوری گونه‌های فعال اکسیژن ناشی از پنده شاخکی بازی می‌کند.

در خلاصه این مطالعه (Cheruiyet و همکاران (2009) گزارش کرده که افراش ناشی از شاخکی دارای یک یا یک بیلی‌فلوندها در نش کلنی چان کاهش بیدا گردید. این اخبار کردن که در شرایط افراش زنطیات کلیه‌های تولید در مقدار بیا کلیه‌ها سخاس از میزان بیلی‌فلون بالاتر برخوردار بوده و آن فیلتر سطح بیلی‌فلوندها خود را حفظ کرده. نجف‌زاده‌اصل و حسن‌میر منویل در کشت درون چسب‌های سبز روی چسب‌های، محصولات زنطیات Kenebec محلول بخش هواهای گیاهیه را در چن مقاوم افراش داد. آنها توضیح دادند که قندهای محلول از دو طریق در شرایط تنش از سلول محافظت می‌کند. اول آنها گروه هیدروکسی قند از دم‌داری‌سانی غنی و پروتون‌ها جایگزین آب از آنها پیش از و برد پوشیده‌های هیدروژی، کمک به حفظ این ساختارهای کرده و از تغییر شکل آنها جلوگیری می‌کند. درن مانند ناشی از سلول‌های دم‌داریش آنها از طریق کرستاله‌های شدن، تشکل بلورهای بیولوژیکی می‌دهن و به پایداری سلول کمک می‌کند. حفظ‌نگار افراش تجزیه کریوبی‌هارات حضور دارد و تبدیل آنها به فندهای محلول؛ سنت ماده استکیف از مسیرهای غیرستونزی؛ توقف رشد کاهش در انقلاب (صارادات) مواد و تغذیه آنزیم می‌بایست ساختن و افراش سنتر کاراکتر از جمله دلایل افراش سطح قندهای محلول در گیاهان تحت نش شاخکی می‌دانند (خاک‌سوز مقدم و همکاران 1390). گیاهان تحت نش شاخکی از یک طرف کریوبی‌هارات حضور دارد این مطالعه نوشتاری و تئوری‌سازی ندارند. به خوبی رشد نکرده، به

سنگی طول می‌شود و تفسیم سلول آنها تیز دچار مشکل می‌شود و هم‌همن این عوامل در نهایت باعث خسارت رشد در ساقته به روش‌های (Yamamoto et al., 1997). دیگر مطالعات نتایج مشابه در رابطه با کاهش طول ساقه و Farsiani and ریزش‌های در گونه‌های مختلف از جمله در (2006, 1391) بر این نشان شکستن گزارش کرده اند، به طوری که در این مطالعات، نرخ کاهش رشد ناشی از نش شاخکی در ساقه کمتر از ریزش‌های عالمی است. در مطالعات دیگر، ماه و همکاران (1391)، تنوع زیادی از 15 زنطیات رایانه از نظر درصد جوانی‌نشین و وزن شکستی در شرایط تنش کمک‌آ دارای هر که. بنابراین آنها زنطیاتی‌های مشکین، شهر، وزنی یا محصول به شاخکی و زنطیاتی‌های اصفهان، چهارستان و ارسال نیاز به شاخکی مصرفی کرده.

محصولات بیلی‌فلوندها قندهای محلول و پرولین گیاه‌های تکثیر حاصل از تجزیه و ارائه مشخص کرده که سطح شاخکی اثر معنی‌داری در سطح احتمال یک درصد بر محصول بیلی‌فلوندها، قندهای محلول و پرولین گیاه‌های رایانه داشته (جدول 1). مقایسه دی‌گانی‌ها نشان داد که با تشکیل سال‌های پس زنطیاتی، میزان بیلی‌فلوندها مقدار محلول و پرولین گیاه‌های رایانه به طور معنی‌داری افزایش یپدا کرده، به طوریکه بالاترین جدول ضریب فکاکی و کاهش داشت (بانسی 2005 مگاپاسکال و پاپینترین مساحته ناحیه در شرایت شاهد (بانسی صفر مگاپاسکال) مشاهده شد (جدول 2). زنطیات یا مورد مطالعه از نظر محصول بیلی‌فلوندها قندهای محلول و پرولین گیاه‌های تکثیر محصول و موردیا در سطح احتمال یک درصد نشان دادند (جدول 1). بیشترین دادن بیلی‌فلوندها. قندهای محلول و پرولین گیاه‌های به ویژه مشهور (از گروه محصول به شاخکی) و کمترین آنها به زنطیات بیرجند (از گروه حساس به شاخکی) تعلق داشت (جدول 2). مهارانی با میانجی‌گیری مطالعه‌های حاضر...
مفهوم فعالیت‌های مختلف از جمله: کاهش استفاده از پرولین در سنتر پرولین‌های سلولی، کاهش در فعالیت پرولین اکسیداز، افزایش پروتئز پرولین از گلتنانات و تفاوت‌های فعالیت‌های سلولی به نفع تولید پیشآسیب آمیزی، چون پرولین که در تنظیم اسید سلولی به علت آن حس توراسنس سلولی می‌باشد (Morgan et al., 1986). افزایش پرولین‌های نیتروژنیک در پیوند و پرولین در شرایط خشکی، از یک سو باعث تنظیم اسید در سلول می‌شود و از سوی دیگر به حفظ ساختارهای مولکولی، سیستم‌ها و پاک‌کاری کننده‌های خعال اکسیداز نیز به ویژه در سلول کمپ می‌کند. به‌طوری‌که با اینکه بالاترین مقدار پرولین، در سلول کمک می‌کند.
ویژه آزمی کاتالاز در سطح احتمال 5 درصد معیار در شد (جدول 1). از افزایش سطح خشکی، عیالیت ویژه آزمی کاتالاز در زنوتیپ‌های اروپیه، کرمان، شیراز، کاشان، مشهد، بخش‌های مختلف دارای بی‌نشانی افرادی از توجه به طبیعی فعالیت ویژه آزمی کاتالاز در این زنوتیپ‌ها در شرایط زندگی (ت산업س صفر مگاوسکال) در پایین‌تر سطح، و در شرایط خشکی شدید (ت산업س 2007- مگاوسکال) در بالاترین سطح قرار داشت (شکل 2). در حالی که، در زنوتیپ‌های همدان، بیرجنگ، شهرک، ارزبیز و این سينا با خشکی ملام و عیالیت ویژه آزمی کاتالاز نسبت به شاهد آزمایش بعداً کارل ویان این روند پوسته نداشت و در شرایط خشکی شدید از فعالیت آن کاسته شد. فعالیت ویژه آزمی کاتالاز در زنوتیپ‌های متحمل به خشکی مانند کرمان، شیراز و مشهد با افزایش سطح خشکی افزایش یافت و پوسته داشت در زنوتیپ‌های خسوس به شاهد (مانند بیرجنگ، ارزبیز و این سینا) در خشکی شدید روندی کاهش یافت (کار (شکل 2)).

روزه‌های مهرکاران (2009) در مطالعه‌ای که روز 133

Wang 2002 و مقاوم (Northstar) همزمان با آن (Xinmu No. 1) بیانه، انجام دادن، توضیح دادن که به عنوان نشانه خشکی و شوری در مرحله جوانی‌ی، باعث افزایش در فعالیت ویژه آزمی کاتالاز، آزمایش و سپاراسکید

اگلیوسسکوسا (Aegilops squarrosa) بود. در اثر نش خشکی کاهش یپا کرده‌بیشتر آن‌جایی که فعالیت آزمی سپاراسکید دیسموتاز در گذشته 1990 (Badiani et al., 1990) و (Badiani et al., 1991) تحت شرایط خشکی در کلروپلاست وسیله فتوسمپت می‌گردد (Mehler Reaction) می‌باید را واکنش مهر (Mehler Reaction) دیسموتاز با دیسموتازات این راکد و کاتالاز به پاراسکید هیدروفیل/ان. خصوصیات ویژه در در برابر نش خشکی دیسموتاز بازی چند گونه 2004 (Chen et al., 2004) De Carvalho (2008) که فعالیت آزمی سپاراسکید دیسموتاز یپا می‌کند. در شرایط خشکی دیسموتاز یپา
دسکی کردن کاهش پیدا می‌کند. با کاهش در فعالیت‌های پیوسته، تولید رادیکال‌های سیروپیکس که مлечول و واکنش‌های مهیل است نیز نهایتاً کمینه می‌شوند. نیمه بز گذاشتند روزنه‌ها یکی از استراتژی‌های سازگاری به خشکسالی چون لوبیا چشم بلی (De Carvalho et al., 1998) و لوبیا ناری (Turkan et al., 2005) است. احتیاط‌الا کاهش رادیکال‌های سیروپیکس در حالی که به عنوان سیگنالی برای کاهش بیان زن آزمی سیروپیکس در سیروپیکس عمل کرده است. بیشترین فعالیت ویژه آزمی‌های کاتالاز، آکسوربات راکسیسک و سیروپیکس در سیروپیکس به خشکسالی و کمترین فعالیت ویژه آزمی‌های فوتاکلک در زن‌پیکس مهیل با نیمه حساس به خشکسالی مشاهده شد. علاوه‌ها با تشدید سطوح فعالیت ویژه آزمی‌های کاتالاز در زن‌پیکس‌های متحمل به خشکسالی بیشتر از خشکسالی در زن‌پیکس‌های متحمل به خشکسالی حساس به خشکسالی شدید روندی که پیش‌ترین نظر که در میزان فعالیت آزمی‌های آنتی‌کسیدان، به ویژه در شرایط خشکسالی، با تحمل خشکسالی را به مرحله‌های چگال‌تر و در قیادت است.

نتیجه‌گیری کلی: با استفاده از نتایج این تحقیق، 12 زن‌پیکس رازی‌های مورد مطالعه به سه گروه مقاوم (پشتی، زرد، کرمان و مشهد) نیمه اکرم قادری، ف.، کامکار، ب. و سلطانی، ا. (1377) علوم و تکنولوژی، بر. انتشارات جهاد دانشگاهی، مشهد. امیری‌نوری، س.، شمسه‌نیا، ک. و خلیلیان، ص. (1390) علوم و تکنولوژی، بر. انتشارات جهاد دانشگاهی، مشهد. جایگاه ایران در صدرات رازی‌های رهیافت مزیت نسبی صادراتی. فصلنامه تحقیقات اقتصاد کشاورزی: 43-97. حسینی، ح. و رضوی‌نیا، م. (1385) اثر تنش خشکسالی و شوری بر جوانه زنی اسفرزه (Plantago ovata). پژوهش‌های زراعی ایران: 3-16. 45-47. 14 فطآیٙس ی وبضوطز ییبٞی، خّس4، قٕبضٜ14، ؾبَ1394

 تشکر و قدردانی:

هرچه اجرای این تحقیق توسط دانشگاه صنعتی اصفهان تأیم شده است.

ارث: تنظیم خشکسالی ناشی از یلی ایلین گلایکول بر جوانه زنی و خصوصیات مورفوفیتولوژیک گیاه شوید (Anethum graveolens L.) شباه سری علوم باغبانی (علوم و صنایع کشاورزی)، 1383-1385.

rancehan, P; صادقیان, S; شریازی, M; صرامشتر, ع; فاضلی, M; امین, غ; و مجلسی, A (1383) مطالعه اثر خشکسالی بر خواص گیاهی گیاه کهار، زیرا سیل، رازی‌های و شوری بر روی هیبریکایپراتویی به روش دیسک دیفیژن و فلوئوترومی. مجله علوم دانشگاه علوم پزشکی و خدمات بهداشتی درمانی همدان: 3: 47-52.

