افزایش گسترش گیاهان در شرایط نیمه اهدایی
(Prunus persica CV. Alberta) فیزیولوژیکی میوه هلو

سید محمد حسینی ملا، آیت الله رضایی آموزش عضوری سرجشمه و آوینک خدامی
گروه علوم بافتی، دانشگاه علوم کشاورزی، دانشگاه شهید چمران، گروه مهندسی علوم بافتی و فضای سبز، پردیس کشاورزی و منابع طبیعی، دانشگاه چمران، کرج
(تاریخ دریافت: 27/08/1393، تاریخ پذیرش نهایی: 24/12/1393)

چکیده:
کمبوس آهن در خاک‌های آهکی و قلبانی در بیشتر خاک‌های ایران شایع است. مهم‌ترین عامل ایجاد زردگی برگ کمبوس آهن در pH بالایی خاک است. در بین سالهای ۱۳۹۰، فناوری پیشرفته‌تر زایدی به کمبوس آهن نشان می‌دهد. کودهای کلاته آهن با قابلیت زیادی که در انجام آهن محلول و قابل گذاری یکی دارند، جهت رفع کمبوس آهن باکتری مورد استفاده در قالب پایه‌های کامل تابیده و به تکرار طراحی و اثر محلول‌برداری بر روی یکی از کلاته آهن در شرایط مختلف و در این آزمایش شاخص‌های مقدار جاده محلول، اسید قابل تیرپسی، شاخص تیپ، سنسی کهی‌گی، مولفه آنتی‌اکسیدان، مقدار ویتامین C، نشت الکترولیت‌های غلظت و تولید الکترولیت و همچنین رنگ‌های برگ مورد بررسی قرار گرفت. نتایج نشان می‌داد که با افزایش غلظت آهن میزان کارفرش برگ و فعالیت آنتی‌اکسیدانی میوه افزایش یافته و در بسته‌هایی که بکرترین اثر بر این افزایش مربوط به تیمار ۱۰ میلی‌گرم بر لیتر بود، غلظت‌های مختلف آهن اثر ممنی دارای بر میزان کارتوپیید برگ و ویتامین C و سنسی کهی‌گی در پایداری نشست نهادن، همچنین با افزایش غلظت آهن کاهش تولید الکترولیت و نشست الکترولیت‌های غلظت‌ها مسابقه کرده و برای کنترل بیشترین اثر مربوط به تیمار ۵ و ۱۰ میلی‌گرم بر لیتر بود با توجه به نتایج بدست آمده، کارفرش محلول‌پذیری کلاته آهن میوه میوه هلو مثور بود.

واژگان کلیدی: الکترولیت، خواص کیفی، کلاته آهن، نشت الکترولیت، هلو

مقدمه:
در سال ۲۰۱۳ مقام هفتم را در جهان داشته است (FAO Stat, 2012). بهترین گیاهان (Prunus persica) از خانواده گل‌سرخیان نشان می‌دهد. هلو نوعی Prunoideae در این خانواده (Rosaceae) چین بوده و یکی از خانواده‌های که بکرترین اثر قبیل‌بندی‌های برگ و نتوانایی (Crisosto and Valero, 2008) در پایداری نشست نهادن، همچنین با افزایش غلظت آهن کاهش تولید الکترولیت و نشست الکترولیت‌های غلظت‌ها مسابقه کرده و برای کنترل بیشترین اثر مربوط به تیمار ۵ و ۱۰ میلی‌گرم بر لیتر بود با توجه به نتایج بدست آمده، کارفرش محلول‌پذیری کلاته آهن میوه میوه هلو مثور بود.

Hancock and Scorza., 2008

قریب آمار بود در سال ۲۰۱۳ (2008; Layne and Bassi, 2008) میلادی تولید جهانی هلو به‌طور میلیارد تومان بوده که بیش از ۵۰ میلیون تان بوده که بیش از نیمی آن در آسیا و اسادا در کشور چین تولید شده است. ایران از نظر تولید هلو و شیل با تولید حدود پانصد هزار تن نویسه مسئول نشانی است که در کشور قرار دارد.
آهن کم تحرک‌ترین عنصر مصرف در گیاه است (ابو سعدی و حیدری، 1370). هنگامی که کمیابی آهن به قیمت بالایی قرار گرفت، گیاهان به دنبال این عنصر می‌شوند. نشانه‌های آن ممکن است شامل شدت برشی در اندام‌های جوان‌تر ظاهر گردند. آهن در دخترمانها حدودی سرعتاً سطحی آهن در هر میلی‌گرم قابلیت حفظ کمیابی دارد.

در نتیجه، کشت در کاخ‌های آهنی‌گویی، بیش از حد نیاز به انواع مختلف عنصر آهن می‌باشد. تحقیقاتی وجود دارد که نشان می‌دهد که اضافه کردن آهن به نظام غذایی گیاهان می‌تواند به مصرف بیش از حد آهن، کمک کند. سرانجام، آهن کم‌تکثیری در گیاهان می‌باشد.

در برخی گیاه‌ها، به ویژه در انواع گیاهی که در عرصه‌های کم‌آهنی بودن حضور دارند، قابلیت بهینه‌سازی مصرف آهن تا حدی بسیار بالاست.

در کل، در نتیجه، در نتیجه، برای کاهش تکثیر آهن در گیاهان، باید به معنای کم‌آهنی‌گویی به‌طور گسترده‌ای به عنصر آهن توجه یک چنین عنصر را در انسان‌ها و گیاهان به ویژه در این زمینه مورد توجه قرار گیرد.

References:

Fernández and Ebert, 2005

Cummings and Xie., 1995; Alam and Sabooni..
مقدار مواد جامد محلول (TSS) درصد اسم بالر تیتراسیون (TA) بابت استفاده از سود 10 نرمال و بر اساس غلیط اسم مالیک در میوه هلو اندازه گیری شد.

(100 ٪) لیتر سواد مصرفی (میلی لیتر و ریل سواد مصرفی (میلی لیتر و و/or)؛ استفاده قابل تیتراسیون (Electrolyte leakage) از جهت اندازه گیری نسبت کلری کلری (Electrolyte leakage) قسمت استوایی (بخشی که در بافت ضخامت قطر) 3 میوه هلو تکار ۷ تکه از یکدیگر میزان 10 میلیمتر با چوب پنجه‌سازی کن برداشته شد. تکه‌ها بیشتر در داخل 25 میلیلیتر مایع 1/۲ نرمال قرار گرفتند. پس از 4 ساعت به هم زدن با یک به سرعت 100 درد دهیده، هدایت الکتریکی اولیه (EC1) محلول توسط دستگاه هدایت سنج اندازه‌گیری شد. سپس محلول حاری نمونه‌ها در دمای ۱۲۱ درجه سانتی‌گراد به مدت ۲۰ دقیقه آنالوگ شد و پس از قرار گرفتن در دمای محیط به مدت ۲۴ ساعت، مجدداً هدایت الکتریکی کل محلول اندازه‌گیری گردید. (EC2).

سپس در دندان نشت بیوه با استفاده از فرمول McCollum and and (ECI/EC2*100) (McDonald, 1991).

برای اندازه‌گیری کلسیم و کارتنوئید برگ هلو از روش مقدار محلول جامد (TSS) (1949) Arnon (200 ٪ ٪) تغییر یافته استفاده شد. ابتدا ۲۰ گرم یافت از هر نمونه کنترل و تیمار یافته در ۵ میلی لیتر استن هموز گردید. پس از ۱۵ دقیقه سانتی‌فیوز با سرعت ۹۰۰۰ دور در دقیقه و دمای ۴ درجه سانتی‌گراد، مایع روان جدای گردید و حجم آن با استن ۸۰٪ به ۱۰ میلی لیتر رساده شد و در نهایت به وسیله اسپکتروفورومتر و در طول موج‌های A 4۶۵، ۳۶۵، ۵۱۰ و ۴۸۰ نانومتر بررسی شد. غلظت کلسیم‌های هولو و کلسیم‌های کل و کارتنوئیدهای زیر به دست آمد (D): میزان گذور نوری، V حجم عصاره، W وزن تر بافت.)
جدول ۱- برخی ویژگی‌های قلیایی و شیمیایی خاک محل اجرای پروهش

<table>
<thead>
<tr>
<th></th>
<th>% EC (ds m⁻¹)</th>
<th>pH</th>
<th>CCE (%)</th>
<th>(% OM)</th>
<th>DTPA-Fe (mg kg⁻¹)</th>
<th>N (%)</th>
<th>K (mg kg⁻¹)</th>
<th>P (mg kg⁻¹)</th>
<th>بافت</th>
</tr>
</thead>
<tbody>
<tr>
<td>اصلی‌گرایش</td>
<td>44/16</td>
<td>۸/۴</td>
<td>۱۱/۵</td>
<td>۱/۸۶</td>
<td>۲/۶۷</td>
<td>۱۳/۷۱</td>
<td>۴/۶۶</td>
<td>۱/۶۶</td>
<td>۸۸/۰</td>
</tr>
<tr>
<td>لومی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

بابقر و کارکرد گیاهی، جلد ۴، شماره ۱۴، سال ۱۳۹۴، صفحه ۱۱۸

میلی لیتر آب میوه صاف با ۲۰ میلی لیتر آب مقطع مخلوط نشانند. این تعداد ۴ میلی لیتر نشان نشان می‌دهد که به analogy گردیده باشد. مخلوط حاصله با یکدیوری بالا در دمای ۴۵ درجه سانتی‌گراد در دمای ۲۵ درجه سانتی‌گراد قرار داده شده. در این سه نمونه گزارش یافته که حساسیت آن به این محصولات در نمود. مقدار نمونه گزارش یافته ۱/۹۸ برابر پیروزی زیست‌آباید (Maiedji, 1994).

\[
C = \frac{0.88 V}{5} \times 100
\]

تولید این تیپ میوه با روش (Dwivedi و Srivastava, 2۰۰۰) و تغییرات اندزه‌گیری بر اساس میوه. سه عدد میوه هر تیپ پس از تغییر حجم و وزن درون طرفی شیشه‌ای به حجم مشخص در زمانی با یکدیوری بالا در دمای ۴۵ درجه سانتی‌گراد قرار داده شده. پس از ۴۸ ساعت، یک نمونه گزارش یافته به شیشه‌ای خارج (تانک ویژن) برداشته شد. جهت نمونه‌برداری ۱ میلی لیتر از نمونه گزارش یافته برداشته شد و با استفاده از دستگاه Kromatografی Gaziيی Shimadzu کشور زاین، غلظت آلی اندزه‌گیری شد.

برای اندازه‌گیری فعالیت آنی اکسیداسیون کلی میوه بر اساس روش Van Beek و Milliauskas (2۰۰۴) و از روی غیر فعال کردن رادیکال‌های آزاد شده توسط ماده ۲-دی‌پنیلوپیریل (2,2-diphenyl-1-pycryl) استفاده گردید. به ۵/۰ گرم از بافت میوه پودر شده با نیتریل مایع، ۵ میلی لیتر مواد ۸۵ درصد اضافه شد. نمونه گزارش یافته بر اساس استفاده از دستگاه ورتکس به مدت یک ساعت در دمای اتاق در تاریکی تهیه گردید. سپس عصاره با دور ۱۰۰۰۰ میکرو مناسبات ذوب آب داده شد. مخلوط محلول یکاً به استفاده از مردانه DPPH و مستر استفاده گردید. دقت مورد ۱۰ دقیقه مشخص و در دمای اتاق در تاریکی به مدت ۳۰ دقیقه نگه‌داری شد. رادیکال DPPH تمیزه دسته اکسید به DPPH جذب آن در طول موج ۵۱۷ نانومتر (m) یافت. درصد فعالیت آنی اکسیداسیون (Anti-oxidant Activity) بر اساس رابطه (۱۰۰*(A۵۱۷/Sample)/A۵۱۷(Control)) استفاده گردید. ژن‌دهشی شیشه‌ای شیشه DPPH چربی دوست است که حاکم (A۵۱۷/Control) جذب آن در طول موج ۵۱۷ نانومتر (m) یافت. درصد فعالیت آنی اکسیداسیون (Anti-oxidant Activity) بر اساس رابطه (۱۰۰*(A۵۱۷/Sample)/A۵۱۷(Control)) استفاده گردید.

جهت اندازه‌گیری ویژگی‌های قلیایی و شیمیایی خاک محل اجرای پروهش C از میوه هلر ار روش تری‌تریسپسون به کمک یکدیوری بالا در دمای ۴۵ درجه سانتی‌گراد به دست آمد.
جدول 2- تجزیه و ارایه اثر محلول‌پاشی بر گیل کلات آهن بر سطح مورد اندازه‌گیری.

<table>
<thead>
<tr>
<th>TA (%)</th>
<th>TSS (Brix®)</th>
<th>کاروتئین (mg/gFW)</th>
<th>کاروتئین کل (mg/gFW)</th>
<th>درجه</th>
<th>منابع تغییرات آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/08</td>
<td>0/88</td>
<td>0/004</td>
<td>0/002</td>
<td>2</td>
<td>پلورک</td>
</tr>
<tr>
<td>0/02</td>
<td>0/88</td>
<td>0/004</td>
<td>0/002</td>
<td>2</td>
<td>تیمار</td>
</tr>
<tr>
<td>0/3</td>
<td>1/70</td>
<td>0/007</td>
<td>0/008</td>
<td>4</td>
<td>خطط</td>
</tr>
<tr>
<td>0/08</td>
<td>0/012</td>
<td>0/18</td>
<td>0/94</td>
<td>7/60</td>
<td>ضریب تغییرات</td>
</tr>
</tbody>
</table>

سپ‌فی معنی‌دار، *= معنی‌دار در سطح 5% **= معنی‌دار در سطح 1%.

همنجین در تیبت تیتر در نقش اساسی دارد. نقش مهمی ندارد (Fernández and Ebert, 2005).

در برج اسفناج کمبود آهین از طریق کاهش انتقال از نظام (PSI) به نظام دوم (PSII) موجب کاهش فوتونستر می‌شود. همچنین کمبود بعنوان یکی از عوامل کاهش فوتونستر در مقایسه با کافی تولید نشود. کاهش کاروتئین منجر به کاهش فوتونستر و کاهش تولید فتوسنتز‌های مورد نیاز برای رشد و نمو که کاهش واقعی واقعی واقعی می‌گردد (Mohamadipoor et al., 2013).

میزان کاروتئین و کاروتئین ب: آتالی آماری داده این نشان داد که با افزایش میزان کلات آهن، کاروتئین a و کل کاروتئین a کاهش می‌یابد. به‌سرعتنی که نسبت به شاهد افزایش یافته. بیشترین میزان کاروتئین a و کاروتئین کل در نمایش 10 میلی گرم بر لیتر می‌گردد مشاهده شد که با غلظت 5 میلی گرم بر لیتر اختلاف معنی‌داری از نظر آماری مشاهده نشد. (شکل 1). همچنین تایپ نشان داد که اثر محلول پاشی کلات آهن بر میزان کاروتئین b و کاروتئین b معنی‌دار نبود (جدول 2).

آهن کاروتئین a و کل a افزایش داده سمر و سمایات (1783 Fe-EDDHA)

گزارش دانه که کاربرد کلات آهن به صورت بر گیاه توت فرنگی موجب افزایش کاروتئین b در سطح معنی‌دار دارد. آهن اکروخی خود جریت از مولکول کاروتئین نیست ولی به‌کاربردن آن معنی‌دار می‌باشد که باعث به آهن به استحصال می‌رود به‌نازه معموله برای این عنصر برای سنتز اجزای کلرولیست و به‌زیت پروتئین‌های انتقال الکترون است. این عنصر به عنوان بخشی از گروه کاتالازیکی بسیاری از آنزیم‌های اکسیداسیون و احیاء، که در فتوسنتز و تخمین

میزان کاروتئین b و کاروتئین a: (TSS/TA) و شاخص طعم میوه، TA, TSS, C, شاخص، (TSS/TA) و شاخص.
شکل ۱- تاثیر غلظت‌های مختلف کلاته آلی بر میزان کاروتئید (حروف مشابه نشان شده‌اند)

شکل ۲- تاثیر غلظت‌های مختلف کلاته آلی بر میزان ماده جامد محلول، TA، شاخص طعم (TSS/TA) و ویتا‌مین C در میوه هلو رقم آلپترا (حروف مشابه نشان عمد می‌باشد).

داز بودن در سطح p<0.05 می‌باشد.
اثر محلول‌پذیری کلاته آهن روی یکی از خصوصیات کیفی و فیزیولوژیکی...

آنالیز آماری داده‌ها نشان داد که بین تیمارهای کلاته آهن هیچ کدام از تیمارهای استفاده شده اختلاف معنی‌داری در میزان ویتمین C نسبت به شاهد نشان داد (جدول ۲).

مشابه با نتایج آزمایش گزارش گردید که آهن در میوه هلو، مقدر مواد جامد محلول را افزایش داد (شرکی حاجی، ۱۳۹۳؛ حسینی ملا و همکاران، ۱۳۹۳). ساکارز رابی ترین قند فرم کربوهیدرات در بین تولیدات فنوژتری است و از محل منبع به محل مخزن منتق شده و منجر به افزایش مواد جامد محلول و درصد مقدار محلول در میوه هلو. در طی رسیدن، مواد کاهشی در میزان قند غیر کاهشی که عمداً ساکارز است، با تبدیل به قنددها کاهش می‌یابند (مانند فروکتوز و گلکوز) باعث افزایش آنها می‌شود. این رفتار به میزان زیادی با افزایش فعالیت آنزیم ایوپتاز مرتبط است. هر چند آنزیم ساکارز- فسفات سنتز و اینوپتاز با فعالیت کردن عمل شست نیست این اثر در طی فرآیند رسیدن مواد جامد محلول و حضور در افزایش منجر می‌شود. (Robello et al., ۲۰۰۷; Srivastava and Dwivedi, ۲۰۰۰; Asghari and Zago, ۲۰۱۰). علت افزایش مواد جامد محلول و شاخص دم در تیمارهای میوه در کاهش شاخص دم به کلاته آهن نسبت به شاهد بوده و میوه‌های شاهد را اثبات بی‌گونه در سترن کلروفیل و افزایش فتوژتری برگ دارد و به این سبب بر افزایش این میزان مؤثر بوده است. در زنجیره انتقال الکترون و کمپلکس آهن- گوگرد مثل فردوکسین در ساتریان آنزیم به‌درگیر در جذب نیتروز و تریت و نیتروز رودکاز نیتروز دارد و نقش طبیعی آن در یکی از سرده‌های فیزیولوژیکی پذیرفته می‌شود. (Abdi and Hedayat., ۲۰۱۰) طعم و مواد جامد محلول باشد.

باز هم این نتایج احتمالاً از دیدگاه‌های زیادی غذای و تولید مواد پرورده با کاربرد بگری آهن کلاته بالا رفته است.

مزایای کلاته آهن روی یکی از خصوصیات کیفی و فیزیولوژیکی:

بررسی نشان داد که استفاده از کلاته آهن در هر دو غلظت مقدار ۵ تا ۱۰ میلی گرم بر لیتر منجر به کاهش معنی‌داری کلرهای شاخص و فعالیت آنزیم گلوکوزیکاپز و پراکسیداز کاهش یافته. آنلایت های پرکسیداز، کاتالاز و پراکسیداز کاهش یافته.
فَطَآیٙس و وبضوطز یِیبٞی، خّس 4، قٕبضٜ 14، ؾبَ 1394

۳- تاثیر غلظت های مختلف کلاته آهن بر میزان نشت الکترولیت، فعالیت آنتی اسپایی، بر تولید آتیلین و سرفیس بلافاصله میوه در میوه هلوژم آلتان. (حروف مشابه نشان عمد معنی دار بودن در سطح ۰۰5٪ می‌باشد).

سقیف مسیوه پارامتری بیمار مهم برای سنگی در بالی آنتی اسپایی به خاطر افزایش کمیت مصرف به خاطر افزایش کمیت مصرف به خاطر افزایش کمیت مصرف. (Alvarez-Fernandez et al., 2003)

سقیف مسیوه پارامتری بیمار مهم برای سنگی در بالی آنتی اسپایی به خاطر افزایش کمیت مصرف به خاطر افزایش کمیت مصرف. (Alvarez-Fernandez et al., 2004)

سقیف مسیوه پارامتری بیمار مهم برای سنگی در بالی آنتی اسپایی به خاطر افزایش کمیت مصرف به خاطر افزایش کمیت مصرف. (Alvarez-Fernandez et al., 2004)
نتیجه‌گیری:
نتایج این پژوهش نشان داد که کاربرد محلول پاشی کلات آهن سبب افزایش کلروفیل برج و فعالیت آنی اکسیدازی میوو و همچنین کاهش تولید ایتان و نشت الکترولیت میوو شد. با توجه به نتایج به دست آمده بطور کلی می‌توان نتیجه گیری کرد که با توجه به قلیاقی بودن خاک‌های بافت‌گیرانه و کاهش بودن کمیت آهه و مشکلات جدید آهه در این خاک‌ها، مصرف محلول پاشی کد کلاته آهه (سکوسترین 138)

منابع:
ابو سعیدی، د. و حیدری، نزار (1383) بررسی و شناسایی عوامل مؤثر بر زیربرگی درختان یست. نسبی موسمی تحقیقات پست کشور.
سمر. و سموات، س. (1376) شناخت علیا و راه‌های درمان کمبود آهن در گیاهان زراعی و باغی. تشریحی فنی شماره 27. شهر آتش زندگی و حیات زیستی، کرمان.
شیری‌آبادی، م. و مردان‌خواجو، م. (1383) فیزیولوژی گیاهی جذب و انقلا مواد از غشاء. انتشارات دانشگاه اصفهان.
شکی‌ها، ح (1393) اثر محلول پاشی آهه و اسید سالسیلیک بر خصوصیات کمی، کیفی و ایپارامتری‌هه رقم زعفرانی، پایان نامه دورة کارشناسی ارشد گروه مهندسی باغیان و فضای سیب پردریس کشاورزی و منابع طبیعی دانشگاه تهران. 249 ص.
فخیم رضایی، ش.. حاجی لو، ج.. علی‌بیور، م. و زارع، ز. (1390) ارزیابی برخی خصوصیات فیزیولوژی‌های میوه در چند رقم هلو که نقش‌آفرینی کننده علم باغی‌ای ایران، اصفهان، دانشگاه صنعتی اصفهان: صفحه 141-152.

