اثر محلول بالیابی کلاته آهن روی برخی خصوصیات کیفی و
فیزیولوژیکی میوه هلو (Prunus persica CV. Alberta)

سیدمحمد حسینی مله، آیت الله رضایی آقاسی، مجتبی‌العسکری سرچشمه و اورنگ خادمی

گروه علوم بافتی، دانشکده علوم کشاورزی، دانشگاه شهید، تهران، گروه مهندسی علوم بافتی و نقش سبز، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرمانی

(تاریخ دریافت: 27/07/1392 تاریخ پذیرش نهایی: 24/12/1393)

چکیده:
کمبود آهن در خاک‌های آهکی و قلبی در بیشتر خاک‌های ایران شایع است. مهم‌ترین عامل ایجاد زردی برگ کمبود آهن در pH بالایی خاک است. در بین درختان میوه، هلو حساسیت زیادی به کمبود آهن نشان می‌دهد. کودهای کلاته آهن به بالاترین میزان در ایجاد آهن محلول و قابل جذب برای گیاه‌ها دارند. به گونه‌ای کمبود آهن کیفیت هلو را به منظور آزمایش در قالب طرح پایه فکری کامل تبدیل‌پذیر باشد که بی‌شک اثرات پیشرفت در این مورد از کمبود آهن در pH جلوگیری کنند.

کمبود آهن از منظر تغییرات در فیزیولوژی و تولیدตولید اکسید یتیل و حجمیتی رنگ‌های برگ مورد ارزیابی قرار گرفت. نتایج نشان داد که با افزایش خلوت آهن در خاک کوریت برگ و فعالیت آنتی اکسیدان و تولید بلوئیک اسید قابل تیرسیون، شاخص طعم، فیتوپاتی، انتی اکسیدان، مقدار و نیاز، C نشان کنند. در این مورد تغییرات بیشتر در اکسیداز برای این افزایش می‌باشد. خلوت آهن مختلف آهن اثر می‌کند بر میزان کوریت برگ و درمانی C و سلتی بابیت میوه نشست. همچنین با افزایش خلوت آهن کاهش تولید اکسید یتیل و نشان کردن تولیدتولید اکسید یتیل مشاهده گردید. طی این مطالعه، اثرات بیشتری اثر می‌باشد. تیماری و 10 میلی‌گرم بر لیتر بهبود با توجه به نتایج بدست‌آمده کاربرد محلول باشی کلاته آهن در طول طولی هلو موثر بود.

واژگان کلیدی: اکسید، خواص کیفی، کلاته آهن، نشان کلاته، هلو.

مقدمه:
در حال حاضر، هلو با نام علمی Prunus persica از خانواده گل‌سرخیان Prunoideae یا Rosaceae (Crisosto and Valero, 2008; Hancock and Scorza, 2008) چین بوده و یکی از برترین کشتی‌های ایران به شمار می‌رود (FAO Stat, 2012). پژوهش‌های زیادی و نیز توسعه تکنیک‌های باغبانی در سال 2012 (Janick and Paull, 2008; Layne and Bassi, 2008) می‌گوید تولید جهانی هلو بین 200 میلیون تن بوده که بیش از نیمی آن در آسیا و اسادا در کشور چین تولید شده است. ایران از نظر تولید هله و شیلن با پرداخت به انواع مختلف هله، چند هزار تن

نویسنده مسئول: نیکلاه شکرکیان کیهانی

arezaei@shahed.ac.ir
ازجمله عوامل دیگر شامل پیکربندی موجود در خاک به‌ویژه با آب ابزاری، آبیاری زاینده‌ریزی از حدی که کمبود آب، عدم تغذیه در نسبت کالیوم، مقادیر فسفر زاینده‌ریزی در خاک، کمبود تهیه‌کننده و آسیب به رشد خاک، و سیستم‌های نیشگر و دیگر ارگانیسم‌ها می‌توان نام برد.

گزارش‌های زیادی راجب اینکه در درختان میوه از جمله Pestana et al., 2001; Pestana et al., 2005; Sanz et al., 1997 کمبود آهن به کاهش قابل توجه در عملکرد و تأخیر در رسیدن میوه و کاهش تاپلولوژی میوه‌ها (و همکاران 1998 بین تفاوتی موجود در دهانه‌ای آوروکادو در خاک‌های آهن کمبود کالیوری و کالیوری از کربن‌های جوان 5 طبیعی کمتر است که کمبود آهن می‌تواند کمبود یا فعال نشدن آهن در درختان باشد. مطالعات انجام شده توسط Almaliotis و همکاران (2000) نشان داد که تأثیر خنثی بین غلظت آهن و عملکرد وجود داشته است. Malo (1986) با آزمایشات روی آوروکادو گزارش کرد که در خاک‌های آهکی سکوستروز آهن 138 مولتئین ماده جهت رفع کمبود آهن در آوروکادو است.

محلول‌بسته برگی روسری مکمل تغذیه خاک به‌وسیله نیازهای غذایی در طول پایان یک برنج، بررسی از محدودیت ذخیره غذایی می‌تواند بکار برد. بعد از محلول محلول پاشی برگی مولتئین بسته خاص مشکلات سستیآسیا غذا و غذایی در بعضی شرایط خاص خاک (نمونه آهکی گاب آهکی در خاک‌های آهکی) را کاهش می‌دهد (Mengel, 2001) و روش مناسب‌تر برای به‌وسیله محلول غذایی در گیاهانی که کمبود دارند، مورد پیوستن می‌باشد (Erdal et al., 2004) معنی‌دار محلول پاشی برگی اولی به ویژه برگ‌سربه‌ای برگ‌ها پس از پر قرار در گیاه ظاهر می‌شود (Fernández and Ebert, 2005).

کلاتهای تجاری ترکیبات سنتر شده آن هستند که آهن موجود در همان صورت کمی‌کاسی بوده و در این حالت از تبدیل شدن به رسوبات تا اثر می‌شود. کودهای کلاته آهن با قابلیت زایدی که در ابزارهای آهن محلول و در بین تمام عنصر کم‌صرف، آهن به میزان بیشتری مورد نیاز غیوه‌ها است. با توجه به نیاز بیشتر غیوه به آن در مقایسه با سایر عنصر کم‌صرف، برخی آهن را جزو عنصر پرصرف طبقه‌بندی می‌کنند. اهمیت آهن به خاطر وظیفه حیاتی آن است. آهن ابتدا از گروه کالیوری پرصرف است و در سنتز کارولفیل و کربن‌های آهکی‌نادار و احیای است و نقش مهمی در سنتز کارولفیل و سنتز پروتئین‌های غروه "هم" دارد (Al-Bamarny et al., 2010).

آهن کم تحرکت‌تار عنصر کم‌صرف در گیاه است (ابو سعدی و حیدری ازیبی). آهن یکی از مهم‌ترین عنصر بیشتری در اندام های جوهره‌های گردید. آهن در درختان به حس‌های سافت‌سپار، آهنکی بسیاری و به ویژه برکنی‌های آهن (در درختان کشت شده در خاک‌های آهکی) غیر قابل می‌شود. در شرایط وقوع کمبود آهن در گیاه، سنتز کارولفیل به طور چشم‌گیری کاهش می‌یابد (اسم و سرایان، 1379). زردر ناشی از کمبود آهن یکی از کم‌صرف‌ترین و شدیدترین مشکلات تغذیه‌ای در درختان میوه و بعضی از گیاهان زینتی و زراعی در سطح جهان می‌باشد. اصلی نتیجه زردي‌های حاصل Horesh, and (از میوه، کاهش فتونتست برگ است (Levy, 1981). بروز نشانه‌های زردیدی کمبود آهن در خاک‌های قلبی‌نادار کمبود طلق این عنصر نیست، بلکه به آهن موجود به حالت کربن‌سفاری غیر محلول در آدام، در نتیجه نیاز غیوه را از نظر مرتفع نمی‌کند. کمبود این عنصر همواره موجب این رفتگی هم‌هایان کارولفیل و تخریب ساختار کارولفیل می‌شود. (شریعتی و مدمک‌زاری، 1387).

مهم‌ترین عامل ابزار زردیدی برگ کمبود آهن قلبی‌نادار خاک‌های کشاورزی است که خود در اثر ترکیب کلمیسم موجود در خاک ابزار می‌شود. اثر خاک‌های‌سپار مناطق خشک و بی‌هم‌هی نشانه مشاهده می‌شود و در این حالت از تبدیل شدن به رسوبات تا اثر می‌شود. کودهای کلاته آهن با قابلیت زایدی که در ابزارهای آهن محلول و به همین دلیل کمبود آهن نیز غیرالاً در همین توازی مشاهده می‌شود (Fernández and Ebert, 2005; Alam and Sabooni, 2001).
مواد و روش‌ها:
نمونه‌برداری و تیمار کلاته‌های آن: این پژوهش در قالب طرح یکی بلوک‌های کامل تصادفی در سه تکرار در سال 1379 روی گیاه‌های آن در پای جنگل واقع در اطراف شهرستان کرج انجام شد. تعداد 6 اصل درخت گیاه آن اندازه‌گیری شده و در ته دسته‌گیری شدند. شماره سایر تیمارها اینکه بررسی بودند به صورت تصادفی انتخاب شدند. طراحی عضوی درختان انتخاب شده، مشابه با سایر درختان باغ و عملیات آبیاری (به صورت نقطه‌ای) مارژی تیماری اوایل همه درختان تیمار شده بطور یکسان و یکنواخت انجام پذیرفت تیمار کلاته‌های آن (از نوع سکوی‌سرین) (EC1/EC2*100) از نمونه‌برداری کلاته‌های آن در سه غلفت (به عنوان شاهد) صفر (به عنوان مشاهده) و 10 میلی‌گرم در لیتر در مرحله‌ها 40 و 80 روز بعد از محلول کلاته‌های آن. در اواخر هر تیمار و در سه مرحله نمونه‌برداری و در تیماری کلاته‌های آن در سه گونه از روی خاک نمونه‌برداری شد و از این نمونه‌ها کلاته‌های آن بررسی و ارزیابی می‌گردید.

به‌این‌نحوی که باید بدانیم که روش‌های مختلف بررسی کلاته‌های آن در سه دسته‌گیری شده و در آزمایش‌های آخرین شاهد، همان‌طور که نتایج در جدول 1 قابل مشاهده است.

اداره‌گیری صفات: برای اداره‌گیری وزن نک میوه به حاصلات این دو دسته انتخاب و در این جدول نتایج آنها به استفاده از ترتیبی نیفتاده شده و در این جدول 1 قابل مشاهده است.

میوه به ترتیبی نیفتاده شده و برای اداره‌گیری نتایج آنها به استفاده از ترتیبی نیفتاده شده و در این جدول 1 قابل مشاهده است.
جدول ۱- برخی ویژگی‌های فیزیکی و شیمیایی خاک محل اورای پروهش

<table>
<thead>
<tr>
<th>باتف</th>
<th>%</th>
<th>N (mg.kg⁻¹)</th>
<th>K (mg.kg⁻¹)</th>
<th>P (mg.kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>لوئی</td>
<td>۲۰۰۶ ۱۷</td>
<td>۱۰۰۹ ۵</td>
<td>۳۵۱ / ۸۱</td>
<td>۱۸۴ / ۲۴</td>
</tr>
</tbody>
</table>
| میلی‌لیتر آب میوه صاف به قدر ۲۰۰ میلی‌لیتر آب مکث بخور نشان نمی‌دهد. ۳ میلی‌لیتر نشان می‌دهد به این ترتیب بلندی. محلول حاصله با پدیدار پتاسیم (۱۶ گرم در سه‌گرم پتاسیم به علاوه ۳۵ گرم کربنات بی‌بی‌سی در یک مکث آب مکث) می‌تواند در C بخش میلی‌گرم به ۱۰۰ میلی‌لیتر و با استفاده از (Majiedi, ۱۹۹۴)

\[C = \frac{0.88V}{5} \times 100 \]

۱- DPPH

\[IC_50 = \frac{DPPH}{OM} \times 100 \]

در نسبه SAS موردنظر و تحلیل آماری قرار گرفته، مقادیر میانگین‌ها ۹ مورد بیشتر و تحلیل آماری قرار گرفته، مقادیر میانگین‌ها در سطح احتمال ۵٪ و رسم نمودارها با نرم‌افزار Excel انجام شد.

ناگیر و بحث:

نتایج تجربی و رایان‌پذیر اثر محلول پاشی آهون بر صفات مورد اندوزگی در جدول ۲ اورده شده است. هم‌طوریکه مشاهده می‌شود اثر آهون بر شاخه‌های مقدار کلروفل و کلروفل کل بی‌بی‌سی، مواد جامد محلول، شاخه‌مط، فعالیت آنی اکسیدان، نشان‌کننده غلیظ سلولی و تولید آهون معنیدار بود و بر بقیه صفات اثر معنی‌داری نداشت.

جست‌اندازگی کربن و پتاسیم C برمی‌حول از روش تیتریسیون با چکیده پدیدار پتاسیم و معرف نشان‌دهنده استفاده گردید.
جدول 2- تجزیه واریانس اثر محلول‌پاشی بر گرگ کلات آهن بر سطح مورد اندازه‌گیری.

<table>
<thead>
<tr>
<th>گروه</th>
<th>TA (%)</th>
<th>TSS (Brix*)</th>
<th>کاروتئن (mg/gFW)</th>
<th>کاروتئن کل (mg/gFW)</th>
<th>درجه حرارت (آزادی)</th>
<th>منابع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/5*</td>
<td>6/97*</td>
<td>3/48*</td>
<td>2/17</td>
<td>4/28*</td>
<td>2/5*</td>
<td>0/25</td>
</tr>
</tbody>
</table>

میزان کلروفلور و کاروتئنی گرگ: انتالیس آمری داده‌های نشان داد که با افزایش میزان نبات آهن، کلروفلور a و کلبرک گیاهان تحت تیمار نسبت به شاهد افزایش یافته. بیشترین میزان کلروفلور a و کاروتئن کل در تیمار 10 میلی گرم بر لیتر کلات آهن مشاهده شد که با گلوست 5 میلی گرم بر لیتر اختلاف معنی‌داری از لحاظ آماری مشاهده نشد. (شکل 1). همچنین تناهی نشان داد که اثر محلول پاشی کلات آهن بر میزان کلروفلور a و کاروتئنی گرگ معنی‌دار نبود (جدول 2).

آهن کلروفلور کل و کلرا افزایش داده در سرم و سمنوای (887/95) Fe-EDDAHA گزارش داده که کاربرد کلات آهن به صورت بر گیاه توت فرخی موجب کلروفلور کلب در سطح معنی‌دار دارد. آهن نکور مشابه استر بروی کلروفلور کاروتئنی نشان داده که اثر آهن به حالت مربوط به ننز عمومی برای این عنصر برای متاستاتیک آهن کلروفلور کلب به علت پروتین‌های انتقال الکترون است. این عنصر به عنوان یکی از گروه کاتالیزورهای بسیار برای آنزیم‌های اکسیدازی و احیاء، که در فوتوسنتز و تنفس و
شکل ۱- تأثیر غلظت‌های مختلف کل اتانولی میزان کاروتئید، b, a, کل و کاروتئید برگ در مهرو رقم آب‌ترا (حروف مشابه نشان عددم معنی‌دار بودن در سطح $p<0.05$ می‌باشد)

شکل ۲- تأثیر غلظت‌های مختلف کل اتانولی میزان ویتامین C در مهرو رقم آب‌ترا (حروف مشابه نشان عددم معنی‌دار بودن در سطح $p<0.05$ می‌باشد)

شاخص طعم (TSS/TA) و ویتامین C را در مهرو رقم آب‌ترا (TA) نشان می‌دهد.
انتشار پاکت آموزشی کلاته آمن روی برخی خصوصیات کیفی و فیزیولوژیکی... 121

آنتی‌بیوتیک‌ها نشان داد که تیمار‌های فکری کلاته آمن روی باعث افزایش میزان فعالیت آنتی اسپیدنی نسبت به شاهد نداند (جدول ۲). مشابه با نتایج آزمایش گرایش گردد که آن‌ها در میوه هلو، مقادر میزان محلول را افزایش داد (سکری جیداری، ۱۳۹۲؛ حسنی‌ملا و همکاران). ساکارز را بگیر فرم کربوهیدرات در بین تولیدات فوستوری است و از محل میوه به محل مخزن منطق شده و منجر به افزایش میزان محلول در میوه به طی رسانید. میوه، کاهش در میزان فلز غیر کاهش به عمل می‌آید. سایر را بگیر که در میوه غیر کاهش به عمل می‌آید (مانند فلوکسین و کلوک) باعث افزایش آنها می‌شود. این رفتار به میزان زیادی به افزایش فعالیت آنزیم اینترنت مربوط است. هر دو آنزیم ساکارز-سپراگی (دنکسیوترادیو) با فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (دنکسیوترادیو) به طی رفتار سیون می‌شود. این میوه به فعالیت ساکارز-سپراگی (د...
فطآیٙس و وبضوطز ٌیبٞی، خّس ۴، قٕبضٜ ۱۴، ؾبَ ۱۳۹۴

۱۲۲

شکل ۳- تاثیر غلظت های مختلف کلاته آهن بر میزان نشت الکترولت، فعالیت آنی اکسیدانی، بر تولید آتیه و سفی بات فیو موه در میوه هلو‌رقم آبلتا (حروف مشابه نشان عدم معنا در بودن در سطح ۰.۰۵ می‌باشد).

می‌شد (Fernandez et al., ۲۰۰۸) و هر عاملی که سبب نشک و یا آسیب در بافت سلول شود، بر میزان تولید آتیه اثر گزار می‌باشد. بنابراین در این تحقیق ممکن است کمیاب آهن در تیمار شاهد موجب آن می‌شود که کارکردن در مقدار کافی تولید شود. در تازه مواد فوستری کمتری حاصل شده و با تامین نشان شریط مطلوب برای سلول‌ها، تولید آتیه شبتر می‌باشد (به نقل از شکری جوزاردی، ۱۳۹۳؛ Lin et al., ۱۹۸۴). سفی بیو‌های پارامتری بسیار مهم برای سنجش کیفیت برخی از محصولات نظیر موهوه‌های ویژه‌دار است که می‌تواند تأثیر از کمیاب آهن باشد. کمیاب آهن سبب کاهش سفی بیو به‌های شاهد مثل رقم "Carson" هستند که بر اساس مقدار هلو رم "Baby Gold" باعث تغییر در ظاهر و سفی بیو موهوه‌های است. (Alvarez-Fernandez et al., ۲۰۰۳) و در میوه کلابی، کمیاب آهن به‌همن‌گونه تأثیری بر سفی بیو موهوه ندارد. (Alvarez-Fernandez et al., ۲۰۰۴) در این پژوهش کلاته آهن روی سفی و ویتامین C هلو رقم آبلتا اثر معنی‌دار نداشت.
نتیجه‌گیری:
نتایج این پژوهش نشان داد که کاربرد محلول باشتی کلاته منبع در سبب افزایش کلروفیل برگ و تغییرات آنتی اکسیدانی میوه و همچنین کاهش تولید انیل و نشت الکترولیت میوه شد. با توجه به نتایج به دست آمده بطور کلی می‌توان نتیجه گیری کرد که با توجه به فیزیولوژی بودن خاک‌های باغات منطقه کرخ و مشابه بودن کیفیت آه‌های و مشکلات جدی این در خاک‌ها، مصرف محلول باشتی کود کلاته منبع (سکوسترین 138) ممکن است در این منطقه به‌عنوان یک سامانه‌ی کنترلی فیزیولوژی گیاهی با شما در این منطقه استفاده شود.

منابع:
1- ابوبکری، د. و حیدری، ز. (1387) بررسی و شناسایی عامل موثر بر زیورگی درختان پسته. نشریه موسسه تحقیقات پسته کشور.
2- حسینی، م. م. رضایی، ا. و اسکوسترین گیاهان. شناسایی، دانشگاه صنعتی اصفهان: صفحه 101.
3- سمیری، س. و سمیری، س. (1376) شناخت هر و راه‌های درمان کمبود آهن در گیاهان زراعی و دانه‌ای. نشریه فیت شماره 27. نشر آموزش و پرورش کشاورزی، کرخ، ایران.
4- کرکری، م. و مدکوله، جم. (1383) فیزیولوژی گیاهان: جکوب‌ن و انفال مواد از لحاظ غذایی. انتشارات دانشگاه اصفهان.

شکرگویی:
شکر به ناحیه‌های میوه، فیزیولوژی, فیزیولوژی گیاهی، و پیش‌بینی صلیبیک بر خصوصیات کنی و گیاهانی درم زعفرانی. پایان نامه دکتر کارشناسی ارشد گروه مهندسی باغبانی و فضای سبز پردیس کشاورزی و منابع طبیعی دانشگاه تهران.

123

