افزار محلول‌پاشی کلاته آمن روى برخی خصوصیات کیفی و
فیزیولوژیکی میوه هلول (Prunus persica CV. Alberta)

سیدمحمد حسینی ملا، آیت الله رضایی، محمدعلی عسکری سرچشمه و آریکن خادمی

گروه علوم باغبانی، دانشکده علوم کشاورزی، دانشگاه شهید بهشتی، تهران. گروه مهندسی علوم باغبانی و فضای سبز، پردیس کشاورزی و متعاون‌طیبی، دانشگاه تهران، کرج

(تاریخ دریافت: 27/8/1397، تاریخ پذیرش نهایی: 24/1397)

چکیده:
کمیابی آمن در کلاته‌های آب‌کریز و قابلیت در بیشتر کلاته‌های ایران شایع است. مهم‌ترین عامل ایجاد زردی برگ کمیابی آمن در pH بالای خاک است. در بین دوختگان میوه، هلول خاصیت زیادی به کمیابی آمن نشان می‌دهد. کودهای کلاته آمن با قابلیت زیادی که در ایجاد آمن محلول و قابل جذب برای گیاه دارند، به رفع کمیابی آمن کمک می‌نمایند. به این منظور آزمایش در قالب طرح یک‌پای یک‌کلمه کامل تصادفی با سه تکرار طراحی و اثر محلول‌پاشی برگی با کلاته آمن در سه غلظت 50، 100 و 200 میلی‌گرم بر لیتر مورد بررسی قرار گرفت. در این آزمایش شاخص‌های مقدار جامد محلول، اسید قابل تبادل، شاخ صاخب طعم، سفتی‌بافت میوه، فعالیت آنتی‌اکسیدانی، مقدار ویتامین C، نشت الکترونی شلولی، تولید آنیل و همچنین رنگ‌های برگ و رنگ بررسی کرد. در اثر افزایش مربوط به tense، گل‌رسی کمیابی آمن میزان کارهای برگ و فعالیت آنتی‌اکسیدانی رنگ الکترونی یافت. به‌طوری که پیش‌تر اثر بر این الکترونی مربوط به تیم 100 میلی‌گرم بر لیتر بود. غلظت‌های مختلف آمن اثر ممنی داری بر میزان کارتوپتی رنگ و ویتامین C و سفتی‌بافت میوه نداشت. همچنین با افزایش غلظت آمن کاهش تولید آنیل و نشت الکتربولی شلولی مشاهده گردید. نتایج مانند این بیشتر پیش‌تر مرتبی‌بینی اثر مربوط به تیم 100 میلی‌گرم بر لیتر بود. با توجه به نتایج بدست‌آمده کاربرد محلول پاشی کلاته آمن ام‌می‌تراکن رشد و رنگ بهبود گفت میوه هلول موثر بود.

واژگان کلیدی: آنیل، خواص کیفی، کلاته آمن، نشت الکترونی، هلول.

مقدمه:

ارزانی arezaei@shahed.ac.ir
فاطمی و کارکردگی‌های جلد ۵ درمان ۱۴، سال ۱۳۹۴

آهن کم تحرک‌تنین اعصار کم صرف در گیاه است (ابو سعید و حیدری نژاد، ۱۳۸۳). هنگامی که کمبود آن به قوع سیاهی می‌آید، نشان‌های آن ممکن است با شدت بالا در اندام گیاه جوان‌تر ظاهر گردد. آهن در درختان تا حدودی در صورت افزایش میزان آهن و همراه با توکانی آهن (در درختان کشت شده در خاک‌های آهکی) غیر قابل شدن می‌شود.

برای شرایط و قوع کمبود آهن در گیاه، سنتر کارولفیل به طور چشمگیری کاهش می‌یابد (سمر و سماوات، ۱۳۷۶). زردی ناشی از کمبود آهن یکی از گستردگان تریاق‌دار و ساده‌ترین مشکلات غذایی در درختان میوه و بعضی از گیاهان زینی و زراعی در سطح جهان می‌باشد. اصل ترین نتیجه زردی حاصل Horesh, and Levy, 1981) از کمبود آهن، کاهش فتوستین برگ است. (Levy, 1981). بر اساس نشان‌های زردی کمبود آهن در خاک‌های قلبی‌نشان کمبود مطلق این اعصار نیست. این شکل کمبود با حالت توربیک غیر شرایطی شیمیایی شدن خاک آهن و در این حالت کمبود مطلق به حالت غیر توربیک خاک‌های آهکی (رای‌کار، ۱۳۸۳) دریافت می‌شود.

در زمینه این اعصار، تحقیقات متعددی انجام گرفته است. بررسی‌های مختلفی از این اعصار نشان داده‌اند که افزایش میزان آهن، باعث افزایش حداکثر صربستی، از طرف دیگر کمبود آهن در خاک تأثیری کمی دارد (Almaliotis, ۲۰۰۰). به طور کلی، این اعصار را می‌توان به اندازه‌ای که گزارش شده، با پیشرفت در درختان و جنگل‌ها، به‌ویژه در کنار کمیابی برگ‌هایی که در زمینه رشد و اکسپرسیون اعضا و تغییرات دیگر در درختان همچون بارکاردها، و فشار بازی در حالت توربیک می‌دانیم. (Mengel, 2001) نشان می‌دهد که بهترین روش برای کاهش این اعصار، ارتباط بین میزان آهن و حالت نوری خاک‌های آهکی است (Erdal et al., 2004). همچنین مؤثرترین حالت نوری خاک‌های آهکی می‌تواند بر روی پیچ و چرخان کوره‌های زینی و قلبی‌نشان شود. (Müller, ۱۳۷۸).

در دسته کوچک‌تر، می‌توان به این اعصار در درختان و جنگل‌ها به‌ویژه در کمیابی برگ‌هایی که در زمینه رشد و اکسپرسیون اعضا و تغییرات دیگر در درختان همچون بارکاردها، و فشار بازی در حالت توربیک می‌دانیم. (Müller, ۱۳۷۸)
مقدار مواد جامد محلول (TSS) به روش رفکترومتری و درصد اسید قابل تتراسیون (TA) با استفاده از سود ۱/۱۰ نترمال و بر اساس غلیظت اسید مالیک در میوه هلو اندامه‌گیری شد.

*۱/۱۰ میلی لیتر سود مصرفی (٪)/ اسیدیتی قابل تتراسیون میلی لیتر (٪) مالیک و سود مصرفی ۱۰۰

شاخص طعم میوه (TSS/TA) به صورت کسری از مقدار مواد جامد محلول به اسید قابل تتراسیون بین شده است.

جمه‌ت اندامی‌گیری نشت کلرولتی (Electrolyte leakage) قسمت استوایی (بخشی که در بیشترین ضخامت قطع) ۲ میوه هر نکاره ۶ تکه از یک باتری مدل به قطع ۱۰ میلی‌متر با چوب پنبه سوزاره، برداشته شد. تکه‌ها یک‌تا در داخل ۱۵ میلی‌لیتر آبی (پ) نتیجه نکاره ۴/۱۰ نترمال قرار گرفتند. پس از ۴ ساعت به هم زدن با شیکر با سرعت ۱۰۰ دو دیفیقه، هیدتاکشن کلرولتی اولیه (EC1) محلول نتیجه دستگاه هیدتی سنج (Metroham ۶۴۴ اندازه‌گیری شد. سپس محلول حاوی نمونه‌ها در دمای ۱۲۱ درجه سانتی‌گراد به ۲۰ دیفیقه انوکلیو شد و پس از قرار گرفتن در دمای محیط به مدت ۲۴ ساعت، مجدداً هیدتاکشن کل محلول اندامه‌گیری گردید. سپس درصد نشت بیرون با استفاده از فرمول McCollum and (EC1/EC2*۱۰۰) محاسبه شد.

(McDonald, ۱۹۹۱)

برای اندازه‌گیری کلروفیل و کاروتئنید برگ هلو از روش (۱۹۴۹) Arnon (پی‌درپی) استفاده شد. ابتدا ۰/۸ گرم یافته، این مقدار در هر نمونه کنترل و تیمار یافته در ۵ میلی‌لیتر استخ هموز گردید. پس از ۱۵ دقیقه سانترفیوز با سرعت ۹۰۰۰ دور در دقیقه و دمای ۴ درجه سانتی‌گراد، مایع روی چرخ گردید و حجم آن با استخ ۸۰٪ به ۱۰ میلی‌لیتر رسانده شد. در نهایت به مسیله اسپیکتروفوتومتر در طول موج‌های ۴۲۵، ۴۳۰ و ۴۴۰ نانومتر در کلاژه کلروفیل‌ها و ۵، ۶ و کاروتئنید در گرم هلو از فرمول‌های زیر به استفادهٔ آمدن (D) پایه شد:

امد (D) =

۱۰ میوه از هر نکاره آب‌گیری شدند و برای اندازه‌گیری مقدار مواد جامد محلول و درصد اسیدیتی قابل تتراسیون استفاده شد.

مواد و روش‌ها:

نمونه‌برداری و تیمار کالر آهن: این پژوهش در قالب طرح یا بلوک‌های کامل تصادفی در سه گروه در سال ۱۳۹۲ روی گیاه هلو رقم آب‌تر نسبت به گزارندهای آبی و عوضاً شرایط نرمال کج انجام شد. تعداد ۹ اصل درخت پاتونه آب‌تر نسبت به نرمال کج تهیه گردید و از نوع سکوسترین (E) به صورت تصادفی انتخاب شدند. شرایط عمومی درختان انتخاب شده، مشابه با سایر درختان باغ و عملیات آبیاری (به صورت قطراتی) مابه‌ها با آفت و بیماری‌ها برای همه درختان تیمار مبدل یکسان و یک‌نمونه انجام پذیرفت. تیمار‌کلرات آهن از نوع سکوسترین (۱۸۳ مولار) در سه غلظت صفر (به عنوان کنترل)، ۵ و ۱۰ میلی‌گرم در لیتر، در نور مارشل در ۴۰ روز بعد از مرحله تُمکنی گل و ۴۰ روز بعد از محلول پاشی اول اعمال شد. محلول‌پاشی در صحیح و در شرایطی که هما و رطوبت زیاد بود، اعمال گردید و سپس در مرحله ردیابی بلوگ تجاری کیفیت مورد ارزیابی تیمار گرفت. برای بروز و ضعیف خلاک، نمونه‌هایی از نقاط مختلف بالغ درخت شدند در آزمایش‌های آنالیز شد که نتایج آن در جدول ۱ قابل مشاهده است.

اندازه‌گیری صفات: برای اندازه‌گیری وزن لازم به میوه به ترتیب تصادفی از هر درخت انتخاب و وزن آنها با استفاده از ترازوی دیجیتال اندازه‌گیری شد.

۱۰ میوه از هر نکاره آب‌گیری شدند و برای اندازه‌گیری مقدار مواد جامد محلول و درصد استیتیتی قابل تتراسیون استفاده شد.
جدول 1 - برخی ویژگی‌های فیزیکی و شیمیایی خاک محل اجرای یوزهش

<table>
<thead>
<tr>
<th>EC (ds.m⁻¹)</th>
<th>pH</th>
<th>CCE (%)</th>
<th>(%) OM</th>
<th>DTPA-Fe (mg.kg⁻¹)</th>
<th>N (%)</th>
<th>K (mg.kg⁻¹)</th>
<th>P (mg.kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.16</td>
<td>7.3</td>
<td>11.5</td>
<td>1/86</td>
<td>351/01</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
</tbody>
</table>

لومی

میلی‌لیتر آب میوه صاف 200 میلی‌لیتر آب مکرون مخلوط شده و 2 میلی‌لیتر نشاسته یک درصد به آن اضافه گردید.

محصول حاصله با پیداکردن پتاسیم (16 گرم یک درصد پتاسیم به علاوه 0.16 گرم کربنات یک درصد آب متخلخل) تیتر شد و یون‌سیم C به حسب میلی‌گرم 200 میلی‌لیتر و با استفاده از

\[C = \frac{0.88V}{5} \times 100 \]

در حدود (2000) Dwivedi و Srivastava تولید اینال میوه با روش

با کمک تغییر اندوزه‌های شد. سه عدد میوه هر تیمار پس از تغییر حجم و وزن درون ظرف شیشه‌های به حجم مشخص از شرایط آزمایشگاهی در دمای 20 درجه سانتی‌گراد قرار داده شدند. پس از 88 ساعت، یک نمونه گاز بالای ظرف پلاستیکی (ومزکت مورد برداشت شد. جهت تکثیر نمونه 1 میلی‌لیتر از نمونه گاز توسط سرگن هیپلیت، از ویکت در باوجود شد و با استفاده از Shimadzu دستگاه کروم‌تگولوگ فازی کشور زاین، فناریت اینال اندوزه‌گی شد.

SAS نسخه (9)، مورد تجزیه و تحلیل آماری قرار گرفت. مقایسه میانگین‌ها در سطح احتمال 5% و رسم نمودارها با نرمافزار Excel انجام شد.

نتایج و بحث:

نتایج تجزیه و تحلیل آماری محدود پاشی آهن بر صفات مورد اندوزگی کمتر از جدول 2 آورده شد است. همان‌طور که مشاهده می‌شود اثر آهن بر شاخص‌های مقدار کارولیف 9 و کارولیف کل بزرگ، موارد جامد محلول، شاخص طعم فعالیت آنتی اکسیدانی، نشت الکترولیت غلیان سلول، و تولید اینال معنی‌دار بود و بر بقیه صفات اثر معنی‌داری نداشت.

a نتایج تجزیه و تحلیل EC (D₉₀) 3/7 (D₉₀) = 167 (D₉₀) × (D₉₀) = 1000 نمود

b نتایج تجزیه و تحلیل pH (D₉₀) 3/7 (D₉₀) = 279 (D₉₀) × (D₉₀) = 1000 نمود

c نتایج تجزیه و تحلیل CCE (D₉₀) 3/7 (D₉₀) = 279 (D₉₀) × (D₉₀) = 1000 نمود

d نتایج تجزیه و تحلیل DTPA-Fe (D₉₀) 3/7 (D₉₀) = 279 (D₉₀) × (D₉₀) = 1000 نمود

e نتایج تجزیه و تحلیل N (D₉₀) 3/7 (D₉₀) = 279 (D₉₀) × (D₉₀) = 1000 نمود

f نتایج تجزیه و تحلیل K (D₉₀) 3/7 (D₉₀) = 279 (D₉₀) × (D₉₀) = 1000 نمود

g نتایج تجزیه و تحلیل P (D₉₀) 3/7 (D₉₀) = 279 (D₉₀) × (D₉₀) = 1000 نمود

b نتایج تجزیه و تحلیل pH (D₉₀) 3/7 (D₉₀) = 279 (D₉₀) × (D₉₀) = 1000 نمود

c نتایج تجزیه و تحلیل CCE (D₉₀) 3/7 (D₉₀) = 279 (D₉₀) × (D₉₀) = 1000 نمود

d نتایج تجزیه و تحلیل DTPA-Fe (D₉₀) 3/7 (D₉₀) = 279 (D₉₀) × (D₉₀) = 1000 نمود

e نتایج تجزیه و تحلیل N (D₉₀) 3/7 (D₉₀) = 279 (D₉₀) × (D₉₀) = 1000 نمود

f نتایج تجزیه و تحلیل K (D₉₀) 3/7 (D₉₀) = 279 (D₉₀) × (D₉₀) = 1000 نمود

g نتایج تجزیه و تحلیل P (D₉₀) 3/7 (D₉₀) = 279 (D₉₀) × (D₉₀) = 1000 نمود
جدول 2- تحليل تربة وزيادة المحلاجات بنيك كلات آميا بر من صفوف موزع إنتاج غذائي.

<table>
<thead>
<tr>
<th>TA (%)</th>
<th>TSS/Brix*</th>
<th>كارتوتف (mg/gFW)</th>
<th>كارتوتف كل (mg/gFW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/89**</td>
<td>20/89**</td>
<td>0/0009 4 **</td>
<td>0/0004 **</td>
</tr>
<tr>
<td>0/02**</td>
<td>0/02**</td>
<td>0/0005 4 **</td>
<td>0/0006 **</td>
</tr>
<tr>
<td>0/02**</td>
<td>0/02**</td>
<td>0/0006 4 **</td>
<td>0/0005 **</td>
</tr>
<tr>
<td>0/10**</td>
<td>0/10**</td>
<td>0/0007 6 **</td>
<td>0/0008 **</td>
</tr>
<tr>
<td>0/20 16</td>
<td>0/20 16</td>
<td>0/0008 2 **</td>
<td>0/0009 2 **</td>
</tr>
<tr>
<td>0/20 16</td>
<td>0/20 16</td>
<td>0/0009 3 **</td>
<td>0/0010 3 **</td>
</tr>
<tr>
<td>0/20 16</td>
<td>0/20 16</td>
<td>0/0010 4 **</td>
<td>0/0010 4 **</td>
</tr>
</tbody>
</table>

ميان كارتوتف و كارتوتف:

** فوري معنی دار، * = معنی دار در سطح 5% ; ** = معنی دار در سطح 1%.

>Fernández and Ebert, 2005.

>میزان کارتوتف و کارتوتف:

آنالیز آماری داده‌ها نشان داد که با افزایش میزان کلاته آمی، کارتوتف a و کل بزرگ‌گیاهان تحت تیمار نسبت به شاهد افزایش یافت. بیشترین میزان کارتوتف a و کارتوتف کل در تیمار 10 میلی‌گرم بر لیتر کلاته مشاهده شد که با غلظت 5 میلی‌گرم بر لیتر اختلاف معنی‌داری از لحاظ آماری مشاهده نشد (شکل 1) . همچنین نتایج نشان داد که آن میزان پاشا کلاته آمی بر میزان کارتوتف b و کارتوتف بی روش معنی‌دار نبود (جدول 2).

آنالیز کارتوتف a و کل را افزایش داد سرم و سموم (17) کرد.

Fe-EDDHA گزارش داده که کاربرد کلاته آمی به صورت بی‌گیاهان تربه نتیجه موجب افزایش کارتوتف بزرگ و کارتوتف کل در سطح معنی‌دار داد. آنالیز آماری نشان داد که کاربرد این عصار برای افزایش برخی اجزای کارتوتف و نیز بر روی بیماری‌های زوال کارتوتف باعث کاهش عصار به آن می‌شود که کاربرد آن معنی‌دار نیست. این نتایج عصار به عنوان یکی از گروه کاتالیزور بی‌سیاری از آنزیم‌های اکسیداسیون و احیاء، که در فتوستز و تنفس و

میزان کارتوتف و کارتوتف:

(C TA , TSS/TA . TSS , TSS/TA , شاخص طعم میوه, و تیتانیم C)
شکل 1- تاثیر غلظت‌های مختلف کلال آهن بر میزان کاروتئید (حروف مشابه نشان عدوم معنی‌دار بودن در سطح p<0.05 می‌باشد).

شکل 2- تاثیر غلظت‌های مختلف کلال آهن بر میزان مواد جامد محلول، TA، شاخص مقدار C و ویتامین C (TSS/TA) (حروف مشابه نشان عدوم معنی‌دار بودن در سطح p<0.05 می‌باشد).
اثر محلول‌های نکات آنی روزی بر خصوصیات کیفی و فیزیولوژیکی...
فطآیٙس ٚ وبضوطز ٌیبٞی، خّس4، قٕبضٜ 14، ؾبَ1394

های محتمل هم هستند که بطور مشابه تحت تأثیر کمیت آهن قرار می‌گیرند. بنابراین، افزایش محتمل آهن موجب افزایش فعالیت آزمی‌ها آترکسیداتی می‌شود (Kong et al., 2014). میزان تولید آتان و سطح پایت میوه آتان آماری داده‌ها نشان داد که استفاده از کلاته آهن در هر دو غلظت 5 و 10 میلی‌گرم بر لیتر منجر به کاهش معنی‌دار میزان تولید آتان در مقایسه با شاهد شد. پیش‌ترین میزان کاهش در تولید اتان در تیمار 5 میلی‌گرم بر لیتر کلاته آهن بود و اختلاف معنی‌داری بین دو غلظت آهن از نظر مقدار تولید اتان مشاهده نشد (شکل 3.3). سطح معنی‌داری کلاته آهن سطح پایت میوه معنی‌دار نبود (جدول 2). میزان تولید آتان نا حذف زیادی با رسیدن میوه افراشی یافته و در نهایت به اوج بحرانی خود میرسد. در این پژوهش تمام میوه‌های نرم شده با کلاته آهن خور می‌آورند نسبتاً بایستی یا اینکه تبیین تأثیر بر کلاته آهن نرم میوه هم‌اکنون است. در این پژوهش کلاته آهن روزی 0.5، 1 و 2 میلی‌گرم بر لیتر پیش‌ترین تأثیر را بر کاهش تولید آتان میوه هم‌اکنون بیان نمی‌کند. از آنجایی که کمبود آهن یک تنش غير محسوس می‌باشد (Fernandez et al., 2008) و با آسیب در بافت سلول شود، بر میزان تولید آتان اثر گزار می‌باشد. بنابراین در این بالین کمک‌یافته کاهش در نسبت تیمار شاهد موجب آن می‌شود که کلروفیل در مقدار کافی تولید نشود. در نتیجه موارد سنتی‌تر کمتری حاصل شده و با تامین نشان شرایط مطلوب برای سایر بیماری (به نقل از شکری جعفری، 1393؛ Lin et al., 1984: سطح میوه پارامتری بسیار مهم برای سنجش سبب برخی از محصولات نظیر موهه‌های هسته‌دار است که می‌تواند متاثر از کمیت آهن باشد. کمبود آهن سبب کاهش سطح میوه-های شاهد هر رقم ""Carson"" شده است. در حالی که کمبود آهن در میوه‌های الین رقم ""Baby Gold"" در وضع تغییر در ظاهر و سطح میوه‌ها نمی‌شود (Alvarez-Fernandez et al., 2003) و در میوه‌های کمبود آهن، هیچ گونه تأثیر بر میوه سفید دریافت نشده (Alvarez-Fernandez et al., 2004). در این پژوهش کلاته آهن C هر رقم آلترا اثر معنی‌دار نداشت.
نتیجه‌گیری:

نتایج این پژوهش نشان داد که کاربرد محلول پاشی کلاته کلر (کلسیم کلسیم‌اه) با مهیاج‌های کلسیم تولید انلین و نشت الکترولیت محلول (کلسیم‌هی) با توجه به نتایج به دست آمده نیروی کلی می‌توان توجه گیری کرد که با توجه به قابلیت بودن خاک‌های باعثات منطقه کره و شامل بودن کمپونه آه و مشکلات جدید آهن در این کشور، محلول پاشی کلسیم کلاته کلر (سکوسترین ۱۳۸) مصرف گردید.

منابع:

ابو سعیدی، د. و حیدری نژاد، ع. (۱۳۸۳) بررسی و شناسایی عوامل موثر بر قیمتگذاری محصولات درختان پسته. نشریه موسمه تحقیقات سپت کشور.
حسینی‌ملایی، س. م. رضایی، آ. عسکری سرچشمه، م. و خادمی، ا. (۱۳۸۳) اثر آهن بر خاصیت‌های نیتریژن و کلسیم محلول پاشی کلسیم کلره‌هی (Prunus persica CV. Alberta). سومین کنفرانس ملی فیزیولوژی گیاهی، اصفهان، دانشگاه صنعتی اصفهان: صفحه ۱۰۱.
۱۳۸۳ سمر، س. و سمرا، س. (۱۳۸۳) یکی از علل راه‌های درمان کمبود آهن در گیاهان زراعی و غذایی شریکی فنی. شماره ۲۷، نشر آموزش وپزشکی ایران، چاپ چهارم.
شریکی، م. و مهدی، چ. (۱۳۸۳) فیزیولوژی گیاهی جدب و انقلاب موارد از خلال غله. انتشارات دانشگاه اصفهان.

شکری حیدری، ح. (۱۳۸۳) اثر محلول پاشی آهن و اسید سلسیلیک بر خصوصیات کیفی و ایمنی‌های محلول رقم زعفران. یکی از ایمنی‌های محلول رقم زعفرانی سرد ایمنی‌های محلول رقم زعفرانی سرد این تحقیق پردازش کشاورزی و منابع طبیعی دانشگاه تهران ۱۴۱۳.

فخمی رضا، ش. حاجی لو، ج. و علی‌بیور، م. و زارع، ز. بررسی اثرات کلسیم کلره‌هی بر شبکه فلزی و ویتامین C و طبیعت‌پذیری و فیتولوژی در فیزیولوژی...

