اثر قارچ میکوریزای آریوسکولار بر رشد، میزان کلسترولیزیون ریشه و جذب فسفر برکه (Linum usitatissimum L.) تحت سطوح مختلف کم‌آب

عیّندی ۱ و مربی سلطانی۲

۱) گروه زراعت، دانشگاه کشاورزی، دانشگاه شهرکرد و ۲) دانشجوی سابق کارشناس ارشد ارگانولوژی، دانشگاه شهرکرد

(تاریخ دریافت: ۲۲/۰۷/۱۳۹۷، تاریخ پذیرش نهایی: ۱۳۹۷/۱۱/۰۲)

چکیده:

یکی از مهم‌ترین عوامل محدود کندن‌ن به رشد گیاهان زراعی مناطق خشک و نیمه خشک، کمبود آب است. قارچ‌های میکوریزایی یکی از مهم‌ترین میکوراگنیسم‌های محیطی محسوب می‌شوند. اثرات این قارچ‌ها از طریق ایجاد تغییرات روی برخی از خصوصیات ریشه و جذب عناصر غذایی در گیاهان به‌ویژه در شرایط نش خشکی آماری می‌باشد. به نظر مراجع بهترین قارچ میکوریزایی آریوسکولار در شرایط نش خشکی بر روی برکه آزمایشی در دو مرجع تحقیقات دانشگاه دانشگاه شهرکرد به صورت کرت‌های خرد شده در قالب طرح پلوکه‌های کامل تصادفی با سه تکرار در سال ۱۳۹۶ انجام شد. نش خشکی در هر صفحه تعداد ۱۰۰ (بدون نش) و ۵۰ (نش ملایم) و ۲۵ Glomus و Glomus intraradices (نش شدید) درصد نیاز آب گیاه به عنوان فاکتور اصلی و تلقیح نشان دهنده خاصیت بود. نتایج آزمایش نشان داد که اثر تلقیح میکوریزا تنش خشکی بر تمام صفات اندازه‌گیری شده معنی‌دار یافته و اثر معادلی میکوریزا و تنش خشکی، به‌طور مطلق در نوع ریشه به ادامه و جذب فسفر، بی‌اساس صفات مورد بررسی معنی‌دار بود. نش خشکی باعث کاهش صفات مورد بررسی شد و لیا نسبت وزن خشک ریشه به ادامه هویات را افزایش داد. میکوریزا باعث افزایش صفات مورد بررسی گردید. نتایج نشان داد که بیشترین درصد تلقیح میکوریزایی ریشه گیاه بزرگ (۳/۸٪) درصد) در تیمار نشیده و تلقیح با گونه G. intraradices و کمترین درصد (۸/۷٪) در تیمار نشیده و تلقیح میکوریزا و عنوان تحقیق مشاهده گردید. بر اساس نتایج حاصل از این آزمایش هم‌رسیتی برکه با قارچ‌های میکوریزا آریوسکولار توانست موجب افزایش صفات مورد بررسی در شرایط نش خشکی گردید.

کلمات کلیدی: تلقیح، جذب عناصر غذایی، خشکی و هم‌رسیتی میکوریزا

مقدمه:

خشکی به عنوان مهم‌ترین عامل محدود کندن‌ن‌ن به رشد گیاهان و تولید گیاهان زراعی می‌باشد (Cheong (۲۰۰۳) استفاده از منابع بیولوژیک در کشاورزی، دارای اثر نمی‌باشد (۲۰۰۳). اثرات این عوامل محدودیت شدیدی در رشد، تولید محصول و کیفیت محصولات ناشی از خشکی می‌باشد. اثربخشی قارچ‌های میکوریزایی در تقویت عملکرد گیاهان در شرایط خشکی و توانایی افزایش شتاب و حمایت از جذب عناصر غذایی مورد صدراعت انسان با استفاده از این منابع ارزشمندی می‌باشد.

نویسنده مسئول، نشانی پست الکترونیکی: tadayyon.sku@gmail.com
MATERIALS AND METHODS

Azospirillum in a controlled nutrient medium was isolated from soil samples by employing the morphological traits of the bacteria. The strain was identified as A. chroococcum based on its characteristics such as rod shape, Gram-negative staining, motility, and the ability to fix nitrogen. The bacteria were grown on a nutrient agar plate at 28°C for 24 hours to ensure the growth of the bacteria. The bacterial biomass was harvested by centrifugation and washed twice with sterile distilled water. The biomass was then stored at -80°C in stock cultures.

RESULTS

The results showed that the A. chroococcum strain was able to degrade 90% of the nitrogen in the nutrient medium within 24 hours at 28°C. The bacteria were also able to fix atmospheric nitrogen and produce ammonia, which was detected using a spectrophotometer. The bacteria showed a significant increase in growth rate and biomass production in the presence of the nitrogen source compared to the control cultures without nitrogen.

DISCUSSION

The results of this study suggest that A. chroococcum has the potential to be used as a biofertilizer in agricultural applications. The ability of the bacteria to degrade nitrogen and fix atmospheric nitrogen makes it an ideal candidate for improving the soil fertility and crop productivity. Further studies are needed to evaluate the effectiveness of the bacteria in the field conditions and to optimize the growth conditions for maximum nitrogen fixation.

CONCLUSION

The study concludes that A. chroococcum is a promising bacterial strain for nitrogen fixation and soil fertility improvement. Further research is needed to explore the potential applications of the bacteria in sustainable agriculture.
جدول 1- برخی خصوصیات فیزیکی و شیمیایی خاک مورد آزمایش در عمق صورتا و 30 سانتی‌متر مورد مطالعه قابل اطمینان است

<table>
<thead>
<tr>
<th>Cu</th>
<th>Fe</th>
<th>Mn</th>
<th>Zn</th>
<th>N</th>
<th>Kava.</th>
<th>Pava.</th>
<th>O.C</th>
<th>EC</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg.kg⁻¹</td>
<td>mg.kg⁻¹</td>
<td>mg.kg⁻¹</td>
<td>mg.kg⁻¹</td>
<td>%</td>
<td>mg.kg⁻¹</td>
<td>mg.kg⁻¹</td>
<td>%</td>
<td>dS.m⁻¹</td>
<td>-</td>
</tr>
<tr>
<td>0.91</td>
<td>0.88</td>
<td>0.91</td>
<td>0.77</td>
<td>0.64</td>
<td>0.30</td>
<td>0.30</td>
<td>0.65</td>
<td>0.55</td>
<td>0.45</td>
</tr>
</tbody>
</table>

دریگر کود اوره در مرحله سیاه که صورتا و کیه سوم دیگر در مرحله قبل از کاهش همراه با آب آبیاری به قارچ اضافه شد. ابتدا هر کرو آزمایشی 300 متر بود. به منظور جلوگیری از فشار بین کرت‌های یک متر و بین بلکه‌ها دو متر در نظر گرفته شد. کشت به صورت یک‌سوی در زمین‌های به فصول رهی روز دیده انجام شد. عمق کاشت به طور متوسط 3 سانتی‌متر در نظر گرفته شد.

بدر بزرگ ایرانی از شرکت پاکان به‌عنوان تهیه شد.

جهت تحقیق خاک از مایه تحقیق قارچ (G. intraradices)

**استفاده گردید. مایه تحقیق مورد نظر از شرکت زمستان تازه‌ترین تهیه شد که شامل مخلوطی از اسپورس (50% اسپورس زده‌کردن در هر گرم خاک) و 95% فله و قطعات جدا شده ریشه‌های آلوده به علت تحقیق کننده (حاوال شیوه‌های گیاهی میکروبی شده و ریشه‌های قارچ میکروپلاستیک بهت‌گیاه، در تیمارهای میکروبی‌ای، پس از ایجاد ریشه‌ها به ازای هر متر مربع، حداقل 100 گرم قارچ میکروبی زمین استفاده می‌کرد. این روش لایه‌های خاک به عمق 5 سانتی‌متر روی آن ریخته و سپس به‌دست در عمق خاک می‌بایست کشت شد.

برای تعیین میزان کل ریزپیوندی قارچ سیاه که ریشه‌گیاه میکروپلاستیک از کشت (Mosse 1980) از روش بررسی کشت ارسال مشابه شده در سطح پر از دیش‌های که دارای شیشه برخوردار هستند. پخش و تولید و ال‌بی‌کیولر مشابه شده و تعداد نقاط‌های آن‌ها با خطوط عمویی و افق تعیین شد. از این ایج برخورداری آزاده که با پخش کلیه‌ای شده ریشه نقاط با داشتن نیز به طور جداگانه شمارش شدند و به صورت کسری از کل نقاطی به دست آمدند. جنگل‌های اکس در 100 ضرب شده، میزان کل ریزپیوندی ریشه به صورت درصد به دست می‌آید (رابطه 4).

تمایل میکروب‌های ریشه 28% به شیشه میزان کل ریزپیوندی ریشه به صورت 100 ضرب شده و شیشه

تمایل میکروب‌های ریشه 28% به شیشه میزان کل ریزپیوندی ریشه به صورت 100 ضرب شده و شیشه
شاده به طور چرخه مشاهده گردید. در تیمار تنن رطوبتی ملایم و متوسط نیز بالایا عکسکر ماده خشک گیاه مرطوب به و کمترین آن در تیمار شاده بدون G. intraradices قرار بود (جدول ۳).

بر اساس نتایج Subramanian و همکاران (۲۰۰۶)، قرار G. intraradices باعث افزایش معنی‌داری در وزن خشک اندام موضوعی از بینماند. در تحقیق بهترین وضعیت در سطح ناحیه گیاه‌های خشک و گیاه‌های مارگریت در هر نوبت تحقیق دانسته و در رابطه با خصوصیات عمومی و اقتصادی خشک مربوط و قرار داده از در رابطه ۵ و ۶ طول رشته و طول رشته کلوینیه شده به دست می‌آید (Tennant, ۱۹۷۵).

قلی می‌توان دلیل افزایش توانایی بکرگی، میزان مصرف دی‌کسپترین، و همچنین اثر مقاولی این دو در سطح متوسط یک درصد معنی‌دار گردد (جدول ۲). این بروز خشک رشد در نشانه‌های مختلف خشکی به نوبه قرار همزمان شده دارد. مقاپسه میانگین اثرات مقاولین نشان داد که بیشترین وزن خشک رشد در اثر G. intraradices مقابل بین تیمار بدون تنن خشک و تلقیح با G. intraradices شاده در این تیمار و گونه قرار می‌گردید. در این تیمار به گونه قرار G. intraradices با هم اختلاف معنی‌داری نداشتند. همچنین کمترین وزن خشک رشد مرطوب به اثر مقاول بین تیمار تنن خشکی شادید و شاد به دو قرار دیده شد (جدول ۳).

نتایج این آزمایش با نتایج Quilambo (۲۰۰۰) در بادام زمینی، ساژی و ساژی (۱۳۸۳) در ذرات، مطالعات دارد. قرار های میکروبریا با تولید هرمون‌های گیاهی و افزایش فعالیت آنزیمی می‌تواند رشد گیاه و رشد رشد رشد رشد رشد به ثبت نیز محاسبه با افزایش خشکی ساخته نمی‌کند. در نتیجه فردیatan جناب عاصری گذاری را با در به و شانس گیاه را در اجتناب از خشکی افزایش دهنده (عظمی و همکاران، ۱۳۹۵) تاعیین قرار دارد.

نتایج و بررسی

وزن خشک اندام هواپی: نتایج جدول آتشی آرایی و اندازه‌گیری از آن است که اثرات اصلی تنن خشکی و میکروبریا و همچنین اثر مقاولی این دو عامل بر وزن خشک اندام هواپی گیاه ژردک در سطح متوسط یک درصد معنی‌دار گردد (جدول ۲). این بروز خشکی متغیر تخصیص خشکی یک بود که بکرگی نوع قرار میکروبریا دارد. مقاپسه میانگین اثرات مقابل نشان داد که بیشترین نزدیک ماده خشک اندام هواپی در اثر مقاول بین G. intraradices تیمار بدون تنن خشکی و تلقیح با قرار G. intraradices کمترین نزدیک آن در اثر مقاول بین تنن شادید خشکی و
جدول ۲- نتایج تجربه واریانس (میانگین‌ریزی) صفات بررسی می‌شود که در تیمار‌های مختلف تشخیص و مکوریا.

جدول ۳- مقایسه میانگین اثر متاب‌سنجی سطح تشخیص و مکوریا در برخی صفات گیاه بروک.

 jóvenes. نسبت وزن خشک ریشه به وزن خشک اندازه‌ها: نتایج تجزیه واریانس نشان داد که مطابق تشخیص در سطح احتمال 1 درصد و تلفیق با فرآیند مکوریا در سطح 5 درصد اثر معناداری بر نسبت وزن خشک ریشه به وزن خشک اندازه‌ها داشته است ولی که اثر بر همکنش آنها بر نسبت وزن خشک ریشه به وزن خشک اندازه‌ها معنادار نیست کمبوود آب در مرحله از رشد گیاه، جذب، انتقال وصرف عناصر غذایی را کاهش می‌دهد که باید آن را مدیریت کنیم. خنثیت گیاه و کاهش می‌باشد (Hu and Schmidhalter, 2005).

Acknowledgment. میکوریا با افزایش جذب آب و مواد غذایی به دنبال آن فویستن برگ، اختصاص کربن به ریشه در افزایش وزن خشک ریشه مؤثر می‌باشد.
جدول 4- مقایسه میانگین صفات گیاهی بزرگ در شرایط تنش خشکی و قارچ‌های میکوریزا

<table>
<thead>
<tr>
<th>عامل</th>
<th>تیمارها</th>
<th>نسبت وزن خشک ریشه به آنادم (میلی‌گرم/ واحد گیاه)</th>
<th>طول ریشه (گرم در مترمربع)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>بدون نشدن (معدل نیاز آب گیاه)</td>
<td>0/43b</td>
<td>275/93</td>
</tr>
<tr>
<td></td>
<td>تنش ملایم (25 درصد نیاز آب گیاه)</td>
<td>0/46b</td>
<td>374/63</td>
</tr>
<tr>
<td></td>
<td>تنش متوسط (50 درصد نیاز آب گیاه)</td>
<td>0/50b</td>
<td>374/63</td>
</tr>
<tr>
<td></td>
<td>تنش شدید (25 درصد نیاز آب گیاه)</td>
<td>0/57b</td>
<td>374/63</td>
</tr>
</tbody>
</table>

میکوریزا
بدون نشدن
G. intraradices
G. mosseae

پیشنهاد می‌شود که در انتخاب آبی‌های مزیت‌دار، استفاده از روش‌های انجام‌دادن شرایط نشکنی و تیمار درست در برابر نشکنی انجام داده شود. (جدول 2) می‌تواند نشایش نشکنی در این شرایط شاید به بهترین سیستم‌های گیاه‌پروری کمک کند. (Gregory, 2006)

در این مطالعه، نتایج نشان داد که آبی‌های مزیت‌دار G. mosseae با در نهایت به بهترین نتایج در برابر نشکنی بودند.

در محیط‌های گسترش و افزایش گیاهان، نشکنی، افزایش گیاهان، و افزایش گیاهان به طور کلی به طور مناسب می‌تواند برای کاهش نشکنی تأثیر بگذارد. (Gregory, 2006)

در این مطالعه، نتایج نشان داد که آبی‌های مزیت‌دار G. mosseae با در نهایت به بهترین نتایج در برابر نشکنی بودند.
طول ریشه: نتایج تجزیه ارتباطی نشان داد که طول ریشه خشکی و تلقیح با قارچ میکوریزا اثر معنی‌داری بر طول ریشه در سطح 1 درصد آماری داشتند. در حالی که اثر بر همکنار آنها بر وزن ترانس هواپیمایی و در نتیجه (جدول 2) مقایسه میانگین طول ریشه در سطح مختلف خشکی، کاهش 27.4، 14 و 5/4 درصدی طول ریشه به ترتیب در تیمارهای نش شدید، متوسط و مثبت طول نسبت به شرایط بدون نش خشکی را نشان داد (جدول 4).

کاهش رشد ریشه (مجموع طول ریشه و وزن ماده خشک ریشه) تحت تأثیر نش خشکی می‌تواند به دلیل کاهش هبایت هیدرولیکی (ریشه) و با افراز ممقاومت (Ladjal et al., 2005) متفاوت باشد. (Whitmore and Whalley, 2009) مکانیکی خاک باشد.

باید رشد ریشه کاهش می‌یابد (دارویی آریوست یا همکنار) که افراز کرد که با افراز نش خشکی مجموع طول ریشه سرخوگ کاهش معنی‌دار بدا نمود و بخشی از کاهش طول ریشه سرخوگ تحت تأثیر نش خشکی در این مطالعه را به دلیل افراز ممقاومت مکانیکی خاک دانستند. در حالی که در آزمایش علی‌آباد فراخانی و ولادادی (1389) در گیاه دارویی گیاهانی خشکی به افراز طول ریشه هر گردید.

مقایسه میانگین مختلف تلقیح با قارچ میکوریزا G. intraradices با افراز G. mosseae می‌تواند با تلقیح طول ریشه نسبت به تیمار شاهد بدون تلقیح شد. گیاه تلقیح 78 G. intraradices نسبت به گیاه بدون تلقیح افراز داد. تیمار تلقیح با قارچ G. mosseae و تیمار تلقیح با قارچ G. intraradices از نظر آماری اختلاف معنی‌داری به هم نداشته (جدول 4).

نتایج آزمایش انصوری و همکنار (1392) در درخت نشان داد که میکوریزا علت افراز معنی‌دار طول ریشه نسبت به G. intraradices و G. mosseae شاهد شد و گونه‌های مختلف قارچ (G. intraradices) از لحاظ آماری اختلاف معنی‌داری می‌نماید.
در آزمایش‌های اندازه‌گیری یافته‌های تالکی‌ها بین تمام گیاهان در جرایح دوره‌های مختلف تغییرات دیده گردید. این بحث به‌طور کلی بیان می‌شود که تغییرات در عملکرد رشد و افزایش سیستم نیت‌های اضافی از طریق تغییرات آزمایش‌های اندازه‌گیری یافته‌ها بیان می‌شود.

در آخرین تحلیل، سیستم نیت‌های اضافی در جرایح دوره‌های مختلف به‌طور کلی بیان می‌شود که تغییرات در عملکرد رشد و افزایش سیستم نیت‌های اضافی از طریق تغییرات آزمایش‌های اندازه‌گیری یافته‌ها بیان می‌شود.

حالی که در پویایی‌های اندازه‌گیری یافته‌های تالکی‌ها بین تمام گیاهان در جرایح دوره‌های مختلف تغییرات دیده گردید. این بحث به‌طور کلی بیان می‌شود که تغییرات در عملکرد رشد و افزایش سیستم نیت‌های اضافی از طریق تغییرات آزمایش‌های اندازه‌گیری یافته‌ها بیان می‌شود.

در آخرین تحلیل، سیستم نیت‌های اضافی در جرایح دوره‌های مختلف به‌طور کلی بیان می‌شود که تغییرات در عملکرد رشد و افزایش سیستم نیت‌های اضافی از طریق تغییرات آزمایش‌های اندازه‌گیری یافته‌ها بیان می‌شود.
نتیجه‌گیری کلی:
نتیجه‌گیری این پژوهش بانگر آن است که کاربرد میکوریزا در شرایط تنظیم خشک در بهبود خصوصیات گیاه یکی تأثیر مثبت داشته است. کاربرد هر دو گونه قاره تأثیر پیشیاری نسبت به عدم کاربرد روی کلیه صفات انداره‌گری شاخص داد. تأثیر کاربرد هر دو گونه قاره Glomus intraradices و Glomus mosseae بر شهرت دردسر از این قاره در مناطق خشک و بیشتر خشک بوده که مطالعات بیشتر در این زمینه می‌تواند امکان استفاده عمیق و گسترده آن را فراهم نماید.
evaluation of technique to measure vesicular arbuscular mycorrhizal infection in roots. New Phytologist 84: 489-500.

Subramanian, K. S., Santhanakrishnan, P. and...
Tennant, D. (1975) Test of a modified line intersect