اثر قارچ میکوریزیا آربوسکولار بر رشد، میزان کلریناسیون ریشه و جذب فسفر برک (Linum usitatissimum L.) تحت سطح مختلف کم‌آبی

در تدین 1* و مریم سلطانیان2

1گرو زراعت، دانشکده کشاورزی، دانشگاه شهرکرد و 2دانشجوی سایگ کارشناسی ارشد رشد اگرکولوری، دانشگاه شهرکرد

(تاریخ دریافت: ۹۲/۰۵/۰۳ تاریخ پذیرش نهایی: ۹۲/۰۴/۲۲)

چکیده

یکی از مهم‌ترین عوامل محصور کننده رشد گیاهان زراعی مناطق خشک و یا به خشکی کم‌آب این قارچ‌های میکوریزیا یکی از مهم‌ترین میکورگانیسما محسوب می‌شود. اثرات این قارچ‌ها از طریق ایجاد پونتری برای برخی از خصوصیات ریشه و جذب عناصر غذایی در گیاهان میزان در شرایط تنش خشکی عامل می‌شود. به منظور بررسی اثر قارچ میکوریزیا آربوسکولار در شرایط تنش خشکی بر روی بزرگ‌چشمهایی در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه شهرکرد به صورت کرت‌های خرد شده، در قالب طرح پلوکهای کامل تصادفی با سه تکرار در سال ۱۳۹۲ انگیزه‌دار شدند. شبیه شکنی در دو طرح سطح آبی‌ای: ۱۰۰ (بدون تنش)، ۵۰ (تشت ملایم) و ۲۵ (تشت شدید) درصد نیاز آبی گیاه به عنوان فاکتور اصلی و تلقیح بذر گیاه برک با دو گونه میکوریا شامل Glomus و Glomus intraradices و یک تیمار بدون تلقیح میکوریا به عنوان فاکتور فرعی، انتخاب گردید. نتایج آزمایش نشان داد که اثر تلقیح میکوریا و تنش خشکی بر تمام صفات افتادگی‌های شده معنی دار بود. اثر متقابل میکوریا و تنش خشکی، به علت از طول ریشه، سبب وقوع خشکی ریشه به اندام و جذب فسفر، بر سایر صفات مورد بررسی متناسب بود. تنش خشکی باعث کاهش صفات مورد بررسی شد، ولی نسبت وزن خشک ریشه به اندام هوالی را افزایش داد. میکوریا باعث افزایش صفات مورد بررسی گردید. نتایج نشان داد که بیشترین درصد کلریناسیون ریشه گیاه برک (۳۷/۸۲ درصدی در تیمار تنش شدید و شاهد بدون تلقیح مشاهده گردید. براساس نتایج حاصل از این آزمایش همبستگی بزرگ با قارچ‌های میکوریزیا آربوسکولار توانست موجب افزایش صفات مورد بررسی در شرایط تنش خشکی گردد.

کلمات کلیدی: تلقیح، جذب عناصر غذایی، خشکی، همبستگی میکوریزیا.

مقدمه

خشکی به عنوان مهم‌ترین عامل محصور کننده رشد گیاهان نام‌نام گزارش شده‌است. اثر تامن‌النامه بی‌رشد و تولید‌هزینه‌زی گیاهان زراعی می‌گذارد (Cheong et al., 2006). این مسئله از طریق پولی‌ریزیک در کشاورزی‌های مزرعه، دارای اهمیت اقتصادی است. در این جریان، قارچ‌های میکوریزیا باعث افزایش صفات مورد بررسی گردید. نتایج نشان داد که بیشترین درصد کلریناسیون ریشه گیاه برک (۳۷/۸۲ درصدی در تیمار تنش شدید و شاهد بدون تلقیح مشاهده گردید. برای ساختن حاصل از این آزمایش همبستگی بزرگ با قارچ‌های میکوریزیا آربوسکولار توانست موجب افزایش صفات مورد بررسی در شرایط تنش خشکی گردد.

نویسنده مستند، نشانی پست الکترونیکی: tadayyon.sku@gmail.com

فآیند، و کارکرد گیاهی: ۱۵، شماره ۵، بیست و دومین (۹۲/۰۴/۲۲)
خشکی به وسیله کاهش نشانه‌های افزایش گذاری غاصبی کمک می‌کند (Ruiz-Lozano and Azcon, 1996). به‌طور تولید در گیاهان میکوریزی تحت شرایط نشانه‌های افزایش را غفلت می‌شود و در صورت فاصله میکوریزی مانند غافلی، رفو و معنی‌سنجی می‌دهد (Ghazi and John Zak, 2003). به‌طور اجلاسی گیاهان به شکل‌ها را از طریق به‌طور چنداب آب و تانسیل آماس پرگ، گیاهان را به‌طور خاص در افزایش فلز، تغذیه افزایش، عمق ریشه و توسعت هیف‌های انتهایی افزایش می‌دهد (Ghazi and John Zac, 2003)

مواد و روش‌ها:
این آزمایش در سال زراعی 1392 در مزرعه پژوهشی دانشکده کشاورزی دانشگاه شهید به عرض 75 درجه و 20 دقیقه شمایی و طول جغرافیایی 50 درجه و 51 دقیقه شروع و ارتفاع 21 متر است سطح دریا به صورت کره‌ای خرد شده به پایه طرح یک‌بلوک‌های کامل تصادفی با سه نتایج انجام شد. نتایج آزمایش شاخص شاخص سطح‌های آبیاری: 100 (بدون نش)، 75 (نش مانند) و 50 (نش شیبید) درصد نیاز آبی گیاه به عنوان عامل اصلی و تلقیح با Glomus mosseae و Glomus intraradices و عدم تلقیح به عنوان عامل فرعی بود.

به منظور بررسی خصوصیات شیمیایی خاک مزرعه، قبل از کاشت و شروع آزمایش از پنج قسمت از چهار مزرعه در عمق صفر تا 30 سانتی‌متر نمونه‌برداری به عمل آمده. خصوصیات شیمیایی‌های نمونه‌های خاک در آزمایشگاه مکمل تحقیقات کشاورزی شهروند اداره کنی (جدول 1).

عملیات‌های زراعی این آزمایش در اواسط اردیبهشت ماه 1392 آغاز گردید. این آزمایش با گاوهای بزرگ‌بودن و زدن در دو سطح عمده و در نهایت عملیات خاک‌برداری زمین انجام شد. پیش از اجرای عملیات دیسک‌سازی و شیمیایی‌های نمونه‌ها، کارهای خاک‌برداری مورد نیاز را به زمین افزوده و با استفاده از دیسک را در خاک مخلوط شد. سطح نیاز جهت تجهیز خاک کروی نیروزنه و مورد نیاز در کرت‌های آزمایش با میانگین 110 کیلوگرم کود اورد در هکتار در نظر گرفته شد. سپس کود نیروزنه به صورت پیش‌کاشت بار اسحاب کرده و اضافه شد. پس از}

(Raney and Diederichsen, 2002). همچنین به لحاظ ارزش‌های تفاوتی و دارویی، دانه بزرگ به صورت آرد با خرد شده در نهایت تنا بک و دیگر فارندهای غذاز اعتمادت
جدول 1- برخی خصوصیات فیزیکی و شیمیایی خاک مزرعه آزمایشی در عمق صفر تا ۳۰ سانتی‌متر مزرعه قبل از کاشت

dیگر کود اوره در مرحله به ساقط رفتن و یک سوی آب دیگر کود اوره در مرحله قبل از کوده‌وردن با آب آبی‌ای به‌کم‌آمد به‌کم‌آمد. اباده گل آزمایشی ۲۳ متر بود. به‌منظور جلوگیری خطا، فاصله بین کرته‌ها یک متر و بین بنورها دو متر در ابعاد هر آزمایشی انجام گرفته شد. کشت به‌صورت رهیافتی روی زمین صاف به‌صورت ۱۵ سانتی‌متر و فاصله سه سانتی‌متر روی رهیافت انجام شد. عمک کاشت به‌طور متوسط ۳ سانتی‌متر در نظر گرفته شد.

پذیری برکر ایرانی از شرکت پاکان بذر اصفهان به‌ساده شد.

جهت تلقیح خاک از مایه تلقیح قارچ (G. mosseeae) استفاده گردید. مایه تلقیح مورد نظر از یک واحد تلقیح بال شده (حاوی G. intraradices) در گل‌زار توزان در هر گرم خاک (۱۰۰ تا ۱۵۰ اسپور زنده قارچ در هر گرم خاک). هیف و قطعات جدی‌تری که رشد یافته‌اند به عنوان تلقیح کننده (پیش گونه‌ی گیاه‌های میکوریزی شده و رهیافتی قارچ میکوریزی خاک یک نیم‌تپه و اینکه دستگاه و اسپور‌های زنده نیز در ابعاد هر ۰.۵ متر بود. حداقل یک برابر ۱۰۰ گرم قارچ میکوریزی مورد استفاده قرار گرفت و لایه‌ای خاک به عمک ۵ سانتی‌متر از آن بخش خشکی پوش شد.

ریخته به‌سپس پذیری درصد و تلفیق عمومی از روشی است که در آزمایش‌های ریخته به‌سپس استفاده بیشتر مورد استفاده قرار گرفت.

برای تعيین میزان کلونی‌لایسیون قارچ میکوریزی با رهیافت گیاه (۱۹۸۰) از روش (۱) مورس و Giovannetti استفاده گردید.

میزان کلونی‌لایسیون در این روش به‌صورت پذیری درصد و تلفیق عمومی استفاده گردید.

<table>
<thead>
<tr>
<th>Cu (mg.kg⁻¹)</th>
<th>Fe (mg.kg⁻¹)</th>
<th>Mn (mg.kg⁻¹)</th>
<th>Zn (mg.kg⁻¹)</th>
<th>N (%)</th>
<th>Kava. (mg.kg⁻¹)</th>
<th>Pava. (mg.kg⁻¹)</th>
<th>O.C (%)</th>
<th>EC (dS.m⁻¹)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۹۱</td>
<td>۴/۰۸</td>
<td>۰/۷۷</td>
<td>۰/۹۴</td>
<td>۰/۶۸</td>
<td>۰/۰۳</td>
<td>۰/۰۳</td>
<td>۰/۰۵۰</td>
<td>۰/۰۴۵</td>
<td>۷/۹۳</td>
</tr>
</tbody>
</table>

تعداد کلونی‌لایسیون ریشه (828) با شیشه میزان کلونی‌لایسیون ریشه (۱۰۰) تعداد کلونی‌لایسیون ریشه.
شادید بدون قارچ مشاهده گردید. در تیمار نش رطوبتی ملام
و متوسط نیز بالاتری عکس‌ماده خشک گیاه مربوط به
و کمترین آن در تیمار شادید بدون G. intraradices
قارچ بود (جدول ۳).

بر اساس نتایج Subramanian و همکاران (۲۰۰۹)، قارچ
با استفاده از G. intraradices بخوانیان دارد و نش خشک
ثبت یافت. AM* به تعبیر قرار داده می‌شود که
روش تقویت شیک‌های استفاده شد پس از شمارش تعداد
تقابل‌ها با خطوط عمودی و افقی شیک‌های مربعی و قرار دادن آن
در روابط ۵ و ۶ طول ریشه و طول ریشه کلونیزه شده به دست
می‌آید (Tennant, ۱۹۷۵).

RL = 11/14×md
(۵)
در این رابطه RL طول ریشه کلونیزه شده بر حسب
نی‌مال متر، تعادل n برخوردار ریشه‌های کلونیزه شده با خطوط
و d طول ضلع مربعها در شیکه بر حسب میلی‌متر است.

RLC = 11/14× n×d
(۶)
در این رابطه طول ریشه کلونیزه شده بر حسب
نی‌مال متر، تعادل n برخوردار ریشه‌های کلونیزه شده با خطوط
و d طول ضلع مربعها در شیکه بر حسب میلی‌متر است.

فسفر کل به روش کارلیمتر با استفاده اسکوئستورم طول
موج ۴۷۰ نانومتر، اندازه‌گیری شد (امامی، ۱۳۷۵). میزان جذب
فسفر از حاضر‌پرده غلت فسفر و ماده خشک محاسبه گردید.

داده‌های حاصل از این آزمایش با استفاده از نرم‌افزار آماری
MSTATC و SAS مورد تجزیه و تحلیل قرار گرفت. میانگین تعداد شده اثرات متقابل با استفاده از نرم‌افزار
SAS با آمون نش خشک LD۶ در سطح احتمال نهایی دندام مورد مقایسه قرار
گرفت.

نتایج و بررسی:

وزن خشک اندام هوای: نتایج جدول ۱۰ ناشی از
آن است که الگی به اثرات اصلی نش خشکی و میکروبیا و همجین
اثر مقابل‌های این دو عامل بر وزن خشک اندام هوای گیاه یک‌بار
در سطح احتمال ۱ دندام معنی‌دار (جدول ۲). لذا وزن
خشک گیاه در شیک‌های مختلف خشکی یکدیگر به کار برده
نوع قارچ میکروبیا دارد. مقایسه‌های میانگین اثرات متقابل شیکه داد
که بین مقدار ماده خشک اندام هوای در اثر مقابل‌های
تیمار بدون نش خشکی و تیمار با قارچ G. intraradices
کمترین مقدار آن در اثر مقابل‌های بین تیمار نش خشکی و
جدول ۲- نتایج تجزیه واریانس (میانگین مربعات) میزان کاهش برش در تیمارهای مختلف نش خشک و میکوریا

| درجه | درصد طول ریشه کلوینیریز شده | درصد طول ریشه | نسبت وزن خشک ریشه به ادامه هوایی | آزادی | احتمال احتمال | میانگین نگیر
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۲۰/۷۷**</td>
<td>۲۸/۶۸**</td>
<td>۲/۱۴**</td>
<td>۲/۶۱*</td>
<td>۱/۴۴*</td>
<td>G. intraradices</td>
</tr>
<tr>
<td>۲</td>
<td>۲۶/۵۹**</td>
<td>۳۷/۱۲**</td>
<td>۳/۸۴**</td>
<td>۳/۶۳**</td>
<td>۲/۴۶*</td>
<td>G. mosseae</td>
</tr>
<tr>
<td>۳</td>
<td>۳۳/۱۷*</td>
<td>۴۴/۷۱**</td>
<td>۴/۶۶*</td>
<td>۴/۷۴**</td>
<td>۳/۴۸**</td>
<td>G. mosseae</td>
</tr>
<tr>
<td>۴</td>
<td>۳۶/۱۰*</td>
<td>۴۶/۵۰**</td>
<td>۵/۴۸*</td>
<td>۵/۷۸**</td>
<td>۴/۵۸**</td>
<td>G. mosseae</td>
</tr>
<tr>
<td>۵</td>
<td>۴۱/۷۶*</td>
<td>۵۱/۲۲**</td>
<td>۶/۲۸*</td>
<td>۶/۹۴**</td>
<td>۵/۶۸**</td>
<td>G. mosseae</td>
</tr>
<tr>
<td>۶</td>
<td>۴۳/۵۰*</td>
<td>۶۱/۸۸**</td>
<td>۶/۳۸*</td>
<td>۷/۴۰**</td>
<td>۶/۷۸**</td>
<td>G. mosseae</td>
</tr>
</tbody>
</table>

جدول ۳- مقایسه میانگین اثر متقابل سطح نش خشک و میکوریا در بخش‌های مختلف گیاه

<table>
<thead>
<tr>
<th>طول ریشه کلوینیریز شده (میلیمتر در یونه)</th>
<th>نش خشک</th>
<th>میکوریا</th>
<th>وزن خشک ادامه هوایی</th>
<th>وزن خشک ریشه</th>
<th>(گرم در یونه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۷/۵۰*</td>
<td>۱۲/۴۸*</td>
<td>۱/۸۴**</td>
<td>G. intraradices</td>
<td>۲/۶۱*</td>
<td>۱/۴۴*</td>
</tr>
<tr>
<td>۱۱/۳۲*</td>
<td>۳۲/۸۶*</td>
<td>۱/۸۴**</td>
<td>G. mosseae</td>
<td>۲/۶۱*</td>
<td>۱/۴۴*</td>
</tr>
<tr>
<td>۱۰/۴۲*</td>
<td>۳۱/۵۲*</td>
<td>۱/۸۴**</td>
<td>G. mosseae</td>
<td>۲/۶۱*</td>
<td>۱/۴۴*</td>
</tr>
<tr>
<td>۱۸/۳۳*</td>
<td>۱۱/۲۴*</td>
<td>۱/۸۴**</td>
<td>G. mosseae</td>
<td>۲/۶۱*</td>
<td>۱/۴۴*</td>
</tr>
<tr>
<td>۷/۳۳*</td>
<td>۳۲/۸۶*</td>
<td>۱/۸۴**</td>
<td>G. mosseae</td>
<td>۲/۶۱*</td>
<td>۱/۴۴*</td>
</tr>
<tr>
<td>۶/۱۱*</td>
<td>۲۴/۷۹*</td>
<td>۱/۸۴**</td>
<td>G. mosseae</td>
<td>۲/۶۱*</td>
<td>۱/۴۴*</td>
</tr>
<tr>
<td>۵/۹۸*</td>
<td>۸/۷۱*</td>
<td>۱/۸۴**</td>
<td>G. mosseae</td>
<td>۲/۶۱*</td>
<td>۱/۴۴*</td>
</tr>
</tbody>
</table>

(کمبوژ آب در هر مترن یانگر عدم اختلاف معنادار در احتمال آماری ۵ درصد است (LSD).

حرف مشابه در هر ستون یانگر عدم اختلاف معنادار در احتمال آماری ۵ درصد است (LSD).

نسبت وزن خشک ریشه به وزن خشک ادامه هوایی: نتایج تجزیه واریانس نشان داد که سطح نش خشک در سطح احتمال ۱ درصد و تلفیق با فارماک میکوریا در سطح ۵ درصد اثر معناداری بر نسبت وزن خشک ریشه به وزن خشک ادامه هوایی داشتند در حالی که اثر بر همکار نشک آنها بر نسبت وزن خشک ریشه به وزن خشک ادامه هوایی معنادار نبود.

کمبوژ آب در هر مترن یانگر از رشد گیاه جذب انقلال و مصرف عناصر غذایی را کاهش می‌دهد که به‌روزانه آن کم شدن دخیب گیاه و کاهش ماهه خشک می‌باشد (Hu and Schmidhalter, 2005). میکوریا با افراشی جذب آب و مواد غذایی و به دنبال آن فوستنت برگ، اختصاصی کردن به رشد در افراشی وزن خشک ریشه مؤثر می‌باشد.
جدول 4- مقایسه میانگین صفات گیاهی برشک در شرایط تنش خشکی و فارغ‌الحیاتی میکوریزا

<table>
<thead>
<tr>
<th>جذب فسفر (گرم در مترمربع)</th>
<th>طول ریشه (میلی‌متر واحد گیاه)</th>
<th>تاریکی</th>
<th>تیمارها</th>
</tr>
</thead>
<tbody>
<tr>
<td>تنش خشکی</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>بدون تنش (معادل ناز آب گیاه)</td>
<td>299/8/44</td>
<td>5/84</td>
<td></td>
</tr>
<tr>
<td>تنش ملایم (5% درصد ناز آب گیاه)</td>
<td>238/7/84</td>
<td>4/30</td>
<td></td>
</tr>
<tr>
<td>تنش متوسط (5% درصد ناز آب گیاه)</td>
<td>357/9/44</td>
<td>7/54</td>
<td></td>
</tr>
<tr>
<td>تنش شدید (25% درصد ناز آب گیاه)</td>
<td>217/8/24</td>
<td>8/73</td>
<td></td>
</tr>
</tbody>
</table>

میکوریزا
<table>
<thead>
<tr>
<th>بدون تنش</th>
<th>G. intraradices</th>
</tr>
</thead>
<tbody>
<tr>
<td>177/12/84</td>
<td>4/4/84</td>
</tr>
<tr>
<td>217/3/23</td>
<td>4/7/35</td>
</tr>
<tr>
<td>207/8/24</td>
<td>2/5/84</td>
</tr>
</tbody>
</table>

میکوریزا (جدول 2). مقایسه میانگین این صفت در سطح هر تیمار میکوریزا فارغ‌الحیاتی خشکی، برشک یانگ با میکوریزا آتیکوکسیا تعیین شده است.

نتیجه رشد و سرعت توسه ریشه کاهش یافته و به نظر ان تولید اندام هواپی که با تمرکز محور و سطحی و وضعیت نامناسب آرام در سلولی، اختصاص مواد گذاری به رشته نسبت به سطح افزایش یافته که گیاه قادر نمی‌گردد کروهیدرات مورد نیاز برای ایجاد رشد را فراهم کند. طولی که در این مطالعه نیز با نش رطوبت شبپ کاهش ورود اندام میکوریزا نسبت به عرض رشد میکوریزا بود.

مقایسه میانگین سطح مختلف تلفیق با فارغ‌الحیاتی میکوریزا نشان داد که تنظیم ورود خشک ریشه به اندام هواپی G. mosseae 11/83 درصد بیشتر از گیاه بدون تلفیق بود (جدول 4).

در آزمایش عضوی و همکاران (1394) در آویش باغی نسبت وزن خشک ریشه به اندام هوایی در بین شاهد و تفاوت معناداری وجود G. mosseae نداشت. اما تیمار G. intraradices در مقایسه با آن نتیجه نشان داد که در تنظیم افزایش وزن خشک اندام هوایی در مشابه عضوی میکوریزا با آویش باغی اثربخشی نسبت وزن خشک ریشه به اندام هوایی شده است و همیشهی (برسی 1994) در گزارش ارزیابی 9711 نشان داد که وزن خشک ریشه و کل ساقه به تدریج با کاهش پنسلو آب خاک (افزار خشک خشکی) کاهش پیدا کرد و تنظیم ریشه به ساقه افزایش یافت و مشخص شد که ریشه نسبت به تنظیم کمتری نسبت به ساقه دارد. تنظیم خشک رشد و روابط هژمونی خشکی را تحت تأثیر قرار می‌دهد (Gregory, 2006). تغییر در باره‌های کاهش خشکی داده و محوریت نمود

گیاه در اثر کمربود رطوبت خاک در قسمت‌های هوایی زودتر اتفاق می‌افت.

در شرایط تنظیم خشکی محور رشدی‌های تغییراتی از طرف کاهش جذب فسفر، پاسامین، نیترات و کلسیم ایجاد می‌شود.
میزان کلونیزاسیون ریشه با قارچ میکوریا آربوسکولار: اگر سطح نش خسکی و میکوریا و همچنین اثر متقابل این دو عامل بر دصد کلونیزاسیون ریشه در سطح احتمال 1 درصد معنی‌دار بود (جدول 2). با مقایسه میانگین اثرات متقابل، بیشترین میزان کلونیزاسیون ریشه در گیاه G. mosseae(37 درصد) در اثر متقابل G. intraradices و G. mosseae بین تبادل بدن نش خسکی و لقح در بین گونه G. mosseae و کمترین میزان (87 درصد) اثر متقابل بین تبادل نش شدید و شاهد بدون لقح مشاهده گردید. تابعی این آزمایش با نتایج آزمایش سادجو و ساجدی (1381) و ساجدی و رجالي (1390) در درخت مطلقاً دارد.

کاهش معنی‌دار در دصد کلونیزاسیون با افرایش سطح نش، احتمالاً به علت کاهش در تبادل و رشد هیف می‌باشد. مرحله مهم‌تر از این تبادل اسپور، رشد هیف حاصل از تبادل است که نقش اساسی در کلونیزاسیون ریشه ایفا می‌کند. به ظاهر رشد هیف برتر از تبادل اسپور تحت تأثیر تانسیل اسپوری قرار می‌گیرد (عیل الفصره، 1389).

بر خلاف نتایج این پژوهش در آزمایش شاهدی و همکاران (1392) در گیاه درت، بیشترین میزان کلونیزاسیون ریشه در شرایط 33 درصد طرفیت زراعی و هموئستی با گونه G. mosseae بین میزان 78/77 درصد و کمترین میزان کلونیزاسیون ریشه به میزان 48 درصد در شرایط 100 درصد طرفیت زراعی و هموئستی با دست آمد. در نتیجه در شرایط نش کاهش دصد کلونیزاسیون ریشه در بیشترین محور در این مقدار و افرایش کارایی مصرفی آپ در این شرایط شد. همچنین نتایج به دست آمده از آزمایش علی‌محمدی فراهانی و ولادابادی (1389) در کشتی نشان داد که نش خسکی سبب افرایش درصد کلونیزاسیون ریشه گردید.
می‌تأمین‌نده، به نظر می‌رسد که تأثیر میکروب‌هایی از طریق هورمون‌ها و در روب آن‌ها افزایش طول و ابعاد ریشه از سازواری‌ها مهم

طول ریشه کلونی‌زده شده بس اساس جدول 2 کلیه عوامل آزمایشی و اثر مقابل آن در سطح احتمال 0/1 درصد بر طول ریشه کلونی‌زده معمول، یا مقایسه میانگین اثرات با G. intraradices متغیر، تیمار بدون نش خشکی و گونه با G. intraradices مشابه بود. با در نظر گرفتن 113/92 میلی‌متر، بیشترین و تیمار نش خشکی و شاهد. بدون تلفق 11/87 میلی‌متر، کمترین طول ریشه کلونی‌زده هر 2/87 بیشترین نش خشکی و گونه با G. mosseae اختلاف معناداری با گونه رشد

بیشترین تلفق داشت و بیشترین طول ریشه کلونی‌زده داشت.

در شرایط نش طبیعی، هسته‌های نورپوشی سیستم رشد- یا گیاهان میکروب‌یاب از گیاهان غیرمیکروبی است که این موضوع در افزایش زیست رشدی و یا طول رشد همیکروبی می‌باشد (حدیچی‌ییی، 1383). در آزمایش ناپذیر (1290) در هر دو رقم سروروم، مجموع طول ریشه کلونی‌زده با افزایش نش خشکی به دلیل کاهش زیست توده آنها و درصد کلونی‌زیست رشد کاهش پیدا نمود.

جدول فسفر ادامه‌های: نتایج تجویز و ارتباط نشان داد که سطح نش خشکی در سطح احتمال 0/1 درصد و ارتباط با گیاهان میکروب‌یاب در سطح احتمال 0/1 درصد معمولی بر جدای فسفوریز بزرگ داشته‌اند. در حالی که اثر همیکون بعض از

بر فسفر دارا بود (جدول 2). مقایسه یا نش خشکی در درصد نشید خشکی 31/83 درصد، نسبت به شرایط بدون نش کاهش یافته (جدول 4). ساجدی و همکاران (1389) نیز بیان کردند که به همین‌طور کم‌تر فسفر، در شرایط نش خشکی میزان ژدک آن در دلتا به شدت کاهش یافته. مقایسه یا نش خشکی مطابق مختلف تلفق با گیاهان میکروبی G. intraradices 21 نشان داد که تلفق نش خشکی با گیاهان میکروبی G. intraradices درصد جدای فسفر بیشتر نسبت به گیاه بدون تلفق نشان داد. (جدول 4) نتایج آزمایش ساجدی و همکاران (1389) در آزمایش علی‌آبادی فراهانی و ولدابادی (1389) در گیاه دارویی گچبی طول ریشه گیاه تلفق شده با قارچ نسبت به گیاه بدون تلفق بیشتر بود.

در آزمایش ناپذیر (1390) در تمام سطوح نش خشکی، مجموع طول ریشه سروروم تلفق شده با قارچ میکروبی زایی، در مجموع طول ریشه سروروم غیرمیکروبی زایی بیشتر بود. ولی و همکاران (2008)، با بررسی اثر هم‌نیاز

میکروب‌یاب بر آن‌ها ریشه گچ‌شکنی، نشان داد که طول سیستم ریشه گچ‌شکنی در حضور میکروبی کاهش‌بافت.

نقطه بین تاریخ و ریشه بار دو روابط مواد فتوشی اصلی.

نقطه بین تاریخ و سیستم ریشه گچ‌شکنی.

مطالعه مطابق Marulanda و همکاران (2003)، نشان داد که گیاهان دارای هم‌نیازی میکروب‌یابی نسبت به گیاهان غیرمیکروبی یک ابزار برای کاهش دفع کردن و کاهش تجلیلی می‌کند و باعث می‌شود که یک تانیاب آب خاک کاهش بیشتری یابد.

کرده، سطح برگی افزایش یابد که این خود باعث افزایش نرخ تعرق گیاهان میکروبی‌زایی می‌شود. از طرف دیگر سیستم ریشه-ای در گیاهان میکروب‌یابی توموس بیشتری یافت و بیشتری از ریشه گیاهان غیرمیکروبی‌زایی متعصب شده و قطر ریشه‌های فرعی در آنها کاهش و طول ریشه نیز به آنها افزایش یافته است. هم‌اکنون در یک کرده و بیشتری یافته است. بعضی از تاریخچه گیاهان میکروب‌یابی سطح تمام بیشتری با خاک بیپا کرده و بیشتری یافته است.

فازی پروتکسیون رشد کاهش یافته در

۱۳۹۰، سیستم ریشه‌ای گیاه در نتیجه میکروب‌یابی شدن تغییراتی حاصل می‌کند (Khan, 2005)، به طوری که در ریشه-ای گیاهان میکروب‌یابی طول ریشه بیشتر و ابعاد آن بسیار کاهش شده و ابعاد آن بسیار کاهش شده و رشد بیشتری داشته باشد (1979). همچنین افزایش در رشد ریشه و تعداد اشکالات می‌تواند به دلیل تغییر

نقطه بین تاریخ و ریشه بار دو روابط مواد فتوشی اصلی.

کاراکتریشتی داشته باشد (1979). همچنین

افزایش در رشد ریشه و تعداد اشکالات می‌تواند به دلیل تغییر

نقطه بین تاریخ و ریشه بار دو روابط مواد فتوشی اصلی.

کاراکتریشتی داشته باشد (1979). همچنین

افزایش در رشد ریشه و تعداد اشکالات می‌تواند به دلیل تغییر

نقطه بین تاریخ و ریشه بار دو روابط مواد فتوشی اصلی.

کاراکتریشتی داشته باشد (1979). همچنین

افزایش در رشد ریشه و تعداد اشکالات می‌تواند به دلیل تغییر
نتیجه گیری کلی:
نتیجه این پژوهش بیانگر آن است که کاربرد میکوریزیا در شرایط نش خشکی در بهبود خصوصیات گیاه بزرگ تأثیر مناسب داشته است. کاربرد هر دو گونه فارغ تأثیر بیشتری نسبت به عدم کاربرد روز گلی صفات انداده‌گری نشان داد.

تأثیر کاربرد هر دو گونه فارغ خلبان بود. نتایج این پژوهش بیانگر امکان استفاده از این فاصله در مناطق خشک و همیشه خشک بوده که مطالعات بیشتر در این زمینه می‌تواند امکان استفاده عملی و کنترل آن را فراهم نماید.

مطلب

امامی، غ. (1375) روش‌های تجزیه گیاه نشریه فی. شماره 982، انتشارات مؤسسه تحقیقات خاک و آب، تهران.

الصوری، ا، غلامی، ا، پامبی، چ، پرتو، شهابی، و اسدی، ع (1392) فیروسکسیون غرب و نیتراسیس بکلریوزیلوس و گونه فارغ میکوریزیا و رشد در این فاصله. مجله علوم گیاهی 3: 92-83.

باتی، ک، امینی، ح، و بانی، ع (1388) وزن کلریوزیلوس و گونه فارغ میکوریزیا و رشد در این فاصله. مجله علوم گیاهی 5: 791-784.

ثبتی، غ، بانی، ح، و بانی، ح، و بانی، ح (1394) تأثیر دامداری و متغیر باریک در این فاصله. مجله علوم گیاهی 7: 239-229.

بی‌الحمیدی، س. و شاه‌نهاد، امینی، ح، و بانی، ع (1389) تأثیر دامداری و متغیر باریک در این فاصله. مجله علوم گیاهی 2: 15-71.

بی‌الحمیدی، س. و شاه‌نهاد، امینی، ح، و بانی، ع (1389) تأثیر دامداری و متغیر باریک در این فاصله. مجله علوم گیاهی 2: 15-71.
evaluation of technique to measure vesicular arbuscular mycorrhizal infection in roots. New Phytologist 84: 489-500.
Tennant, D. (1975) Test of a modified line intersect