اثر قارچ میکوریزای آریوسکولا (Linum usitatissimum L.) تحت سطح مختلف کم‌آبی

چکیده:
یکی از مهم‌ترین عوامل محصول کندنه رشد گیاهان زراعی مناطق خشک و نیمه خشک، کمبود آب است. قارچ‌های میکوریزایی یکی از مهم‌ترین میکوراگنیسم‌های محیط ریشه محصول می‌شوند. اثرات این قارچ‌ها از طریق ایجاد تغییرات روی بخش‌های خصوصیات ریشه و تغییرات عناصر غذایی در گیاهان بیان می‌شود. به دلیل بررسی تأثیر قارچ میکوریزای آریوسکولا در شرایط نتش خشکی بر روی برک آزمایشی در مرحله تحقیقات دانشکده کشاورزی دانشگاه شهید به صورت کرت‌های خرد شده در قالب طرح بلک‌های کامل تصادفی با سه تکرار در سال ۱۳۹۲ انجام شد. نتیجه‌ی بال‌های کامل داد (۲۰۰/۵۲۵) ۵ ۲ (تشر مالیم) ۲۰ (تشر متوسط) و ۲۵ (تشر شدید) درصد نیاز آبی گیاه به عنوان فاکتور اصلی و تلقیح بد کیه برک با دو گونه میکوریزای شامل Glomus و Glomus intraradices و یک تیمار بدون قارچ میکوریزایی به عنوان فاکتور رفعی، منظور گردید. تأثیر آزمایش نشان داد که اثر تلقیح میکوریزایی و تنش خشکی بر نتایج صفات افزایشی گیاهی عمل می‌کند. نتایج نشان داد که اثر تلقیح میکوریزایی به عنوان فاکتور یکی از مهم‌ترین عوامل محصول کندنه جبکه اثرات تلقیح میکوریزایی و بزرگی نبود، به طور کلی، نتایج نشان داد که اثر تلقیح میکوریزایی به عنوان فاکتور یکی از مهم‌ترین عوامل محصول کندنه جبکه اثرات تلقیح میکوریزایی به عنوان فاکتور یکی از مهم‌ترین عوامل محصول کندنه جبکه اثرات تلقیح میکوریزایی به عنوان فاکتور یکی از مهم‌ترین عوامل محصول کندنه جبکه اثرات تلقیح میکوریزایی به عنوان فاکتور یکی از مهم‌ترین عوامل محصول کندنه جبکه اثرات تلقیح میکوریزایی به عنوان فاکتور یکی از مهم‌ترین عوامل محصول کندنه جبکه اثرات تلقیح میکوریزایی به عنوان فاکتور یکی از مهم‌ترین عوامل محصول کندنه جبکه اثرات تلقیح میکوریزایی به عنوان فاکتور یکی از مهم‌ترین عوامل محصول کندنه جبکه اثرات تلقیح میکوریزایی به عنوان فاکتور یکی از مهم‌ترین عوامل محصول کندنه جبکه اثرات تلقیح میکوریزایی به عنوان فاکتور یکی از مهم‌ترین عوامل محصول کندنه جبکه اثرات تلقیح میکوریزایی به عنوان فاکتور یکی از مهم‌ترین عوامل محصول کندنه جبکه اثرات تلقیح میکوریزایی به عنوان فاکتور یکی از مهم‌ترین عوامل محصول کندنه جبکه اثرات تلقیح میکوریزایی به عنوان فاکتور یکی از مهم‌ترین عوامل محصول کندنه جبکه اثرات تلقیح میکوریزایی به عنوان فاکتور یکی از مهم‌ترین عوامل محصول کندنه جبکه اثرات...
مواد و روش‌ها:
این آزمایش در سال زراعی ۱۳۹۲ در مزرعه پژوهشی دانشکده کشاورزی دانشگاه شهید بهشتی، با عرض چهارگانه ۲۳ درجه و ۴۰ دقیقه شمایلی و طول چهارگانه ۵۰ درجه و ۵۱ دقیقه شرکت و ارتقاء ۲۰۱۱ متر از سطح دریا به صورت کرت‌های خرد شده بر یاهه طرح بلوک‌های کامل تصادفی به صورت تکرار انجام شد. تیمارهای آزمایش شامل چهار سطح آبی‌های بودند (دون‌رنگ)، (رنگ، ناکامی)، (رنگ‌های متنوع) و (رنگ‌های مشابه) درصد نیاز آبی، به عنوان آبسال اصلی و تلفیق با Glomus intraradices و میکوراکس در سطح کشت تلفیق با Glomus mosseae و عدم تلفیق به عنوان عمیق فرعم‌بن.

رشدی‌ به منظور بررسی خصوصیات شیمیایی خاک مزرعه، قبل از کاوشات و شرود آزمایش از یکی از عمق مزرعه در عمق ۵۰ سانتی‌متر می‌تواند برداری با عمل آمده خصوصیات شیمیایی خاک در آزمایش‌گاه مرکز تحقیقات کشاورزی شهید بهشتی کردی کرده (جدول ۱).

عملیات آماده‌سازی زمین برای اجرای آزمایش در اواسط اردیبهشت ماه ۱۳۹۳ آغاز گردید. برای این منظور با گاوهای برگردان و باز و درندول دو دسته عمده بر هم عملیات خاکرسوری زمین انجام شد. قبل از اجرای عملیات دیسک‌زنی کود‌های شیمیایی مورد نیاز را به زمین اضافه و با استفاده از دیسک‌زنگ در خاک مخلوط شد. مطلق تجزیه خاک، کود نیتروزون مورد نیاز در کرت‌های آزمایش با بیناینده ۱۰۰ کیلوگرم کود اوره در هکتار در نظر گرفته شد. یک سوم کود نیتروزون به صورت پیش‌کاشت با استفاده اضافه شد. یک سوم کود نیتروزون به صورت

خشکی، به سیله‌کاری کشت افتاده و افزایش جذب عناصر غذایی کمک می‌کند (Ruiz-Lozano and Azcon, 1996). به‌طور تولید در گیاهان میکوریزی تحت شرایط کشت خشکی را با غفلت بیشتر عناصر غذایی مانند فسفر، روز و مس نسبت می‌دهد (Ghaziz and John Zak, 2000). بعلاوه تحمل گیاهان به شکستکه را از طریق بهبود چربی آب و توانایی آماس برگ کنترل منافع روزنه‌ها و تعریف، افزایش طول و عمق ریشه و توسعه خیلی‌ساله انتهای آن‌ها می‌دهد (Ghaziz and John Zak, 2003 و Vamerali et al., 2003) در آزمایشات.

همکاران (۲۰۰۳) بیان شد که افزایش ماده خشکی انتهای افزایش گیاهی و زیرزمینی در تلفیق با فیروز میکوریزه در مقایسه با عدم تلفیق احتمالاً به دلیل افزایش غلظت آب و مواد غذایی و انتقال بهتر این مواد در اندام گیاهی و همچنین افزایش فتوستات گیاه که مشخص به ساخت و تولید مواد فتوستاتیک بیشتری می‌شود، بود. بخش دیگر کشت و ترشح، وزن شکل گیاه و نسبت وزن ساقه به ریشه در گیاه کلزا گردد (Santragarsh et al., 2009) تلفیق میکوریزه باعث افزایش رشد ریشه و برگ و همچنین باعث افزایش نسبت ریشه به اندام هوایی تحت شرایط کشت خشکی و کمبود فسفر در بادام زمینه‌ای شد (Quilambo, 2000).

به دلیل وجود ترکیبات معقد مختلف در کتان روحی، امروزه مصرف دارویی زیادی برای این گیاه شناخته شده است. یکی از این ترکیبات، اسیدهای چرب غیرعایشی چندگانه به ویژه اسید آلئن لینولئین (LNA) یاALA، اسید چرب L (LA) و اسید لینولئین (LA) که در نسبت اسیدهای چرب امگا ۳ و اسید لینولئین (LA) به سبب این اسیدهای چرب غیرعایشی چندگانه، به نسبت قابل توجهی بالا گردیده اند (Simopoulos, 1999) در روشی که در حجم موارد و برای روش‌ها موجود است. (Raney and Diederichsen, 2002) همچنین به لحاظ ارزش غذایی و دارویی، دانه بزک به چینار آرد یا خرد شده در تهیه نان، کیک و دیگر فواده‌های غذایی استفاده می‌شود (Bhat, 1995).
جدول 1- برخی خصوصیات فیزیو و شیمیایی خاک مزرعه آزمایشی در عمق صرف تا ۳۰ سانتی‌متر مزرعه قبل از کاشت

<table>
<thead>
<tr>
<th>Cu</th>
<th>mg.kg⁻¹</th>
<th>Fe</th>
<th>mg.kg⁻¹</th>
<th>Mn</th>
<th>mg.kg⁻¹</th>
<th>Zn</th>
<th>mg.kg⁻¹</th>
<th>N</th>
<th>%</th>
<th>Kava.</th>
<th>mg.kg⁻¹</th>
<th>P ava.</th>
<th>mg.kg⁻¹</th>
<th>O.C</th>
<th>%</th>
<th>EC</th>
<th>dS.m⁻¹</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/91</td>
<td>0/48</td>
<td>0/77</td>
<td>0/046</td>
<td>0/10</td>
<td>0/45</td>
<td>0/55</td>
<td>0/42</td>
<td>7/93</td>
<td></td>
</tr>
</tbody>
</table>

دیگر کود اوره در مرحله ساختاری فیزیکی و یک سوم استفاده از مزرعه آزمایشی و CROPWAT (که براساس منطقه مورد مطالعه، نیاز آبی گیاه با استفاده از نرم افزار اورگا متریک در سی‌سی‌پی) محاسبه شد و با استفاده از روابط زیر، دور ایبایی مشخص گردید:

1- ثب خلکیبت فیضیی یا (آغز ۴.)

2- ثب خلکیبت ثبیت ثبیت

3- ثب خلکیبت ثبیت

در این روابط N تعیین مقدار ایبایی، TAW و N ایبایی سطح، منطقه و تغییرات در طبقه‌بندی در فضای حرارتی و پژوهشگاهی، آب سهول، RAW و فضای حرارتی در طبقه‌بندی در فضای حرارتی و پژوهشگاهی، ایبایی، تعیین مقدار ایبایی، و ضریب تغییر می‌باشد

4- تاریخ‌های گیاهی میکروبی شده و ریسمای قارچ میکروبی

5- تاریخ‌های گیاهی اندوز گیاهی شده. دور ایبایی با استفاده از نرم افزار اورگا متریک قربانی

6- برای تعیین مقدار کلونی‌های قارچ میکروبی با ریسه گیاه

7- استفاده از موس (1980) ایبایی متریک گردید.

8- بررسی این روشه و روش‌های آزمایشی به معنای حرارتی پوشیدن به سطح توره دیش‌هایی که دارای شبکه سطحی، بلع و ترکیب و پیوندکار مشاهده شدن و تعداد نقاطهای آنها با خطوط عمودی و افق تعیین شد. از این بیان برخورداره‌ها آنها که با چند پوشیدنی رشته نقاط داشته‌اند نیز به طور جداگانه شمارش شدند و به صورت کسری از کل نقاطهای دست آمده. جواب‌های این کسر در ۱۰۰ ضرب شد و میزان کلونی‌های ریسه به صورت درصد به دست می‌آید (رتبه ۴).

9- تعداد قاطع‌های ریسه ۱۸/۸ با یک برای سه میزان کلونی‌های ریسه
مشاهد به دون قارچ مشاهده نماده. در تیمار سلسله سلولی میلی‌رط و متوسط نیز قبل از عکس ماده خشک، گیاه مربوط به قارچ B. intraradices (دوجول 3) و کمترین آن در تیمار به دون قارچ بود.

بر اساس نتایج Subramanian و همکاران (2006)، قارچ B. intraradices به تغییرات خشکی‌براری عناوین گیاه را در وزن خشک اندام G. intraradices و همچنین آن در شرایط نوسازی، به طور کلی (تجزیه‌گر) در ۴۷و درصد سایر گیاه جاب و به گیاه کم‌تغییر نماید.

وزن خشک رشد: بر اساس چند الگوی آبی‌ریز و گیاه‌زای، وزن خشک رشد گیاه بزرگی در تیمار ظن خشکی و میکروبریا و همچنین اثر مقیاس این در سطح احتمال 1 درصد معنی‌دار گردید (جدول ۲). این وزن خشک رشد در تنها خشکی مختلف خشکی به نوع قارچ هم‌زیست شده دارد. مقایسه مانگیانی اثرات مقیاس نشان داد که بیشترین وزن خشک رشد در اثر G. intraradices متقابل بین تیمار بدون تنزان خشکی تقلیل یافته به دوبله خشکی (هبرگ). در این تیمار بود گونه قارچ B. intraradices به هم اختلاف معنی‌داری نداشتند. همچنین کمترین وزن خشک رشد مربوط به اثر مقیاس بین تیمار تنزان خشکی شدید و شاهد به دون قارچ بود. (جدول ۳).

نتایج این آزمایش با نتایج Quilambo (۲۰۰۰) در بادام زمینی، ساوجی و مکشند (۱۳۸۴) در ذرت، مطابقت دارد. قارچ B. intraradices با نتیجه‌های خیا و آفرش فعالیت آنزیم‌های متوانده رشد گیاه و رشد رشد را بیش از کندن. در نتیجه تحقیق جدید عصبی‌گذاری را را شناس و سنگی یافته در انتها از خشکی آفرش دهم (توضیحی) و همکاران.

AM*: به‌عنوان طول کل رشد و طول رشد کلوینیش شده از روش تفکیک شکل‌های استفاده شد. پس از شمارش تعداد تفاوت‌ها با خطوط عمودی و افقی شکل‌های مربع و قرار دادن آن در ویژه و الگوی رشد و رشد کلوینیش شده به دست می‌آید (Tennant, 1975).

RL: = 11/14xمد در این رابطه RL = طول رشد بر حسب میلی‌متر. تعداد n = وزن خشک رشد های کلوینیش شده با خطوط شکل و طول ضلع مربعها در طول شکل بر حسب میلی‌متر است.

SL: = 11/14xمد در این رابطه SL = طولنمری‌پذیری شده بر حسب میلی‌متر. تعداد n = وزن خشک رشد های کلوینیش شده با خطوط شکل و طول ضلع مربعها در طول شکل بر حسب میلی‌متر است.

رفتار تهویه: طول رشد های کلوینیش شده با خطوط در فرض کل به روش کالر چرخیده و توقف گرفت. میانگینی معنی‌دار SAS MSTATC و SAS با آزمون LSD در سطح احتمال بین داده رد مورد مقایسه قرار گرفت.

نتایج و بررسی:

وزن خشک اندام هوایی: نتایج چند الگوی آبی‌ریز و گیاه‌زایی از آن است که اثرات اصلی تنش خشکی و میکروبریا و همچنین اثر مقیاس این در سطح احتمال 1 درصد معنی‌دار گردید (جدول ۲). در نتیجه وزن خشک بزرگ تنش‌های مختلف خشکی بستگی به کاربرد نوع قارچ میکروبریا دارد. مقایسه مانگیانی اثرات مقیاس نشان داد که بیشترین مقادیر ماده خشک اندام هوایی در اثر مقیاس خشکی B. intraradices در تیمار بدون تنزان خشکی و تقلیل بیان خشکی و کمترین مقادیر آن در اثر مقیاس بین تیمار تنزان شدید خشکی و
جدول 2- نتایج تجزیه واریانس (میانگین مربعات) صفات بررسی سه گونه از تیمارهای مختلف تشن خشکی و میکوریا

<table>
<thead>
<tr>
<th>جدید</th>
<th>درصد</th>
<th>زون خشک</th>
<th>وزن خشک</th>
<th>ریشه به ادامه</th>
<th>آزادی اندازه</th>
<th>ریشه</th>
<th>درجه</th>
<th>درصد</th>
<th>وزن خشک</th>
<th>وزن خشک</th>
<th>ریشه به ادامه</th>
<th>آزادی اندازه</th>
<th>ریشه</th>
<th>درجه</th>
</tr>
</thead>
<tbody>
<tr>
<td>بلوک 1</td>
<td>2</td>
<td>0.04</td>
<td>0.64</td>
<td>0.04</td>
<td>0.64</td>
<td>0.04</td>
<td>0.64</td>
<td>2</td>
<td>0.04</td>
<td>0.64</td>
<td>0.04</td>
<td>0.64</td>
<td>0.04</td>
<td>0.64</td>
</tr>
<tr>
<td>بلوک 2</td>
<td>3</td>
<td>0.04</td>
<td>0.64</td>
<td>0.04</td>
<td>0.64</td>
<td>0.04</td>
<td>0.64</td>
<td>3</td>
<td>0.04</td>
<td>0.64</td>
<td>0.04</td>
<td>0.64</td>
<td>0.04</td>
<td>0.64</td>
</tr>
<tr>
<td>بلوک 3</td>
<td>4</td>
<td>0.04</td>
<td>0.64</td>
<td>0.04</td>
<td>0.64</td>
<td>0.04</td>
<td>0.64</td>
<td>4</td>
<td>0.04</td>
<td>0.64</td>
<td>0.04</td>
<td>0.64</td>
<td>0.04</td>
<td>0.64</td>
</tr>
</tbody>
</table>

جدول 3- مقایسه میانگین اثر متفاوت سطح تشن خشکی و میکوریا در بزرگی صفات گیاه بروک

<table>
<thead>
<tr>
<th>تشن خشکی</th>
<th>میکوریا</th>
<th>وزن خشک ادامه</th>
<th>ریشه (درصد)</th>
<th>(میلی‌متر در بوته)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بدون تشن</td>
<td>(بندون تحقق)</td>
<td>2/84</td>
<td>G. intraradices</td>
<td>0.05</td>
</tr>
<tr>
<td>میکوریا</td>
<td>G. mosseae</td>
<td>2/75</td>
<td>G. mosseae</td>
<td>0.05</td>
</tr>
<tr>
<td>تشن ملایم</td>
<td>1/75</td>
<td>G. intraradices</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>تشن متوسط</td>
<td>1/75</td>
<td>G. mosseae</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>تشن شدید</td>
<td>1/75</td>
<td>G. mosseae</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>

تینت وزن خشک ریشه به وزن خشک ادامه هواپی: نتایج

کم‌وکم در مرحله از رشد گیاه، جنبه، انتقال و مصرف عنصر غنایی را کاهش می‌دهد که به‌وancies اکثراً کاهش می‌آید. (Hu and (Schmidhalter, 2005. میکوریا با افزایش جذب آب و مواد غذایی و به دنبال آن فراین‌تر برگ، اختصاصی کربن به ریشه در افزایش وزن خشک ریشه مؤثر می‌باشد.
جدول ۴- مقایسه میانگین صفات گیاهی یا جفتی در شرایط تنش خشکی و قرارهای میکوریزا

<table>
<thead>
<tr>
<th>شرایط تنش خشکی</th>
<th>نسبت وزن خشک ریشه به اندام (میلی‌گرم/ واحد گیاه)</th>
<th>تیمارها</th>
<th>تیمارها</th>
</tr>
</thead>
<tbody>
<tr>
<td>بدون تنش (معدل ناز آب گیاه)</td>
<td>۰/۴۲</td>
<td>G. mosseae</td>
<td>G. intraradices</td>
</tr>
<tr>
<td>تنش مالایم (۷۵ درصد ناز آب گیاه)</td>
<td>۰/۴۳</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تنش متوسط (۵۰ درصد ناز آب گیاه)</td>
<td>۰/۴۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تنش شدید (۲۵ درصد ناز آب گیاه)</td>
<td>۰/۵۷</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نتیجه رشد و سرعت توسعه ریشه کاهش یافته و به نه تن تولید اندام هواپی ممتر و انرژی موجود در نصف قطب می‌باشد (Gregory, ۲۰۰۶). در شرایط تنش و وضعیت نامساپس آماس سلولی، اختصاص موادغذایی به ریشه نسبت به ساقه افزایش یافته و گیاه قادر به خوشه‌بردن کروی‌هیدرات مورد نیاز برای ادامه رشد را فراهم کنید. طویلی که در این مطالعه نیز با تنش و تجانس شیب کاهش وزن خشک اندام هواپی نسبت به وزن خشک ریشه کاهش دیده می‌شود.

مقایسه میانگین سطح مختلف تلفیق جفتی یا قارچ میکوریزا، نشان داد که نسبت وزن خشک ریشه به وزن خشک اندام هواپی G. mosseae در گروه تلفیق شده با ۱۱/۳/۲۸ درصد بیشتر از گروه بدون تلفیق بود (جدول ۴).

در آزمایش عضوی و هم‌گزاران (۱۳۳۲) در آویشن باغی نسبت وزن خشک ریشه به اندام هواپی گیاه آویشن به تیمار میکوریزا و شاهد تفاوت معنی‌داری وجود G. mosseae و G. intraradices اما تیمار هیاتی بطور معنی‌داری موجب افزایش نسبت وزن خشک ریشه به اندام هواپی شد. این محققین این طریق کردد که در تینار فیلیون وزن خشک اندام هواپی در هم‌یاری میکوریزا با آویشن باغی بیش از کاهش نسبت وزن خشک ریشه به اندام هواپی شده است و هم‌یاری

۴. Hashemi Dezfuli (۱۳۸۹) در گزارشی ارائه ۲۸۱۱ نشان داد که وزن خشک ریشه و کل ساقه به تدریج با کاهش تناسبی آب خاک (افزایش نشک خشکی) کاهش یافته کرد و نسبت ریشه به ساقه افزایش یافته و مشخص شد که ریشه نسبت به تن شک آسیب دیده نسبت به ساقه دارد.

نشک خشک رشد و روابط هم‌یاری ریشه را تحت تأثیر قرار می‌دهد (Gregory, ۲۰۰۶)، به طوری که اندام‌های هواپی ارسیب دنیا و به دلیل تعریف جفتی G. mosseae دارند و به تعدادی نمونه که در اثر کربن دی‌اکسید خاک در قسمت‌های هواپی زودتر اتفاق می‌افتد.

در شرایط تنش خشکی محدودیت‌های تغذیه‌ای از طریق کاهش جذب فسفر، بستاپس، نترات و کلسیم ایجاد می‌شود.
طلول ریشه: نتایج تجربه ارایانس نشان داد که سطوح تنش خشکی و تثبیت با قارچ میکوریتا اثر معنی‌داری بر طول ریشه در سطح 1 درصد آماری داشتند در حالی که اثر بر همکاران آنها با ورود هوا در علائم نبود (جدول 3). مقایسه میانگین طول ریشه در سطوح مختلف خشکی کاهش 27% و 25 درصد در سطح معنی‌داری نبود. (آغوشیان و شالیه 2009).

کاهش رشد ریشه (مجموع طول ریشه و بال مرده خشکی) تحت تاثیر تنش خشکی می‌تواند به دلیل کاهش هیکل (Ladjal et al., 2005) و گزارش متعددی در مورد تاثیر تنش خشکی (G. intraradices و G. mosseae) باعث افزایش بهبود شده یا نشان دادند. (آغوشیان و شالیه 2009).

بیشترین تنوع در این مطالعه از این نمودار ثبت کرده است که در گزارش اولیه (آغوشیان و شالیه 2009) در سطح 1 درصد معنی‌داری نبود.

بر خلاف نتایج این پژوهش در آزمایش شاهسینی و همکاران (1392) در گیاه گیا، بیشترین میزان کلسیموزیکاسیون رشد برهم در شرایط 33 درصد ظرفیت زراعی و همپشتی با گونه G. mosseae (ثبت شده 47/7 درصد و کمترین میزان کلسیموزیکاسیون رشد برهم در میزان 48 درصد در شرایط 100 درصد ظرفیت زراعی و همپشتی با دست G. intraradices با دست G. intraradices به دست آمد. در نتیجه، شرایط شریدن در سطح میزان کلسیموزیکاسیون رشد برهم گزارش بوده که این امر منجر به افزایش رشد و افزایش کارایی مصرف آب در برای یینیتی. همچنین نتایج به دست آمده از آزمایش علی آبادی فرهانی و ولادادی (1389) در گزارش نشان داد که نشان خشکی سبب افزایش درصد کلسیموزیکاسیون رشد گردید.
می‌تشنید، به نظر می‌رسد که تأثیر میکروبریا از طرق هورمون‌ها و روي اوافراش طول و انشعاس ريش از سابقارها مهم‌تر است (نواروند 1395).

در آزمایش‌های قارچ‌های فراغتی و واریانس 10 (1389) در گیاه دارویی، گسترش طول ریشه گیاه تلقیح شده با تیپ نسبت به گیاه بدون تلقیح بیشتر بود.

در آزمایش ناپیدایی (1391) در تمام سطوح تنش کشکی، مجموع طول ریشه سوپورت تلقیح شده با قارچ میکروبریا از مجموع طول ریشه سوپورت غیرمیکروبریایی بیشتر بود. ولی و همکاران (2003) با بررسی اثر هرمیتی T. harzianum بر آناتومیت ریشه گوجه‌فرنگی، نشان دادند که طول سیستم ریشه‌های گوجه‌فرنگی در حضور میکروبریا کاهش یافت، روابط بین قارچ و ریشه برای دراکاری مواد فنوزی اصلی ترین پایه گیاه به کاهش سیستم ریشه‌های گیاهان می‌باشد.

مطالعه Marulanda و همکاران (2003) نشان داد که گیاهان دارای همزیستی میکروبریا نسبت به گیاهان غیرمیکروبریایی آب را از سه سریت و کامل نرخ تخلیه می‌کنند و باعث می‌شوند که بتناسیل آب خاک کاهش بیشتری پیدا کرده، سطح برق گیاهی افزایش یابد که این خود باعث افزایش نیاز تعرق گیاهان می‌شود. از طرف دیگر سیستم ریشه-ای در گیاهان میکروبریایی توسیع بیشتری یافت و بیشتر از ریشه‌های گیاهان غیر میکروبریایی مناسب شده و قطع ریشه‌های گیاه در آنها لاغر و طول ریشه افزایش شده است. همه این عوامل باعث می‌شود که ریشه میکروبریایی سطح تماس بیشتری با خاک پیدا کرده و بهینه صورت سیروت آب را از خاک جذب نماید.

قارچ‌های میکروبریا از طرق گسترش شکل‌های نرم کاراکتریک طبیعی افزایش ریشه‌ای موجب افزایش جذب و ایجاد مواد غذایی به ریشه می‌شوند. سیستم ریشه‌ای گیاه در نتیجه میکروبریایی شدن تغییراتی حاصل می‌کند (Khan, 2005)، به طوری که در ریشه‌ای گیاهان میکروبریایی طول ریشه بیشتر و انشعاسات آن وسیع‌تر می‌شود. بنابراین می‌توانند در جذب عناصر غذایی کاراکتریکی داشته باشند (Azcon et al., 1979). همچنین افزایش در رشد ریشه و تعداد آن‌ها می‌توانند به دلیل تغییر نسبت‌های هورمونی در ریشه باند، با توجه به اینکه قارچ‌های میکروبریایی قادر به تولید هورمون‌ها مانند اکسین و سقوط‌کننده قهستان و به ریشه به روش تولید بیشتر این هورمون‌ها تحریک
نتیجه گیری کلی:
نتیجه این پژوهش بیانگر آن است که کاربرد میکوریزا در شرایط نش خشکی در بهبود خصوصیات گیاه بزرگ تأثیر مثبت داشته است. کاربرد میکوریزا در این شرایط نش خشکی اثر مثبتی در ناحیه گیاه نشان داد. و Glomus intraradices تأثیر کاربرد میکوریزا در گونه فارج پیکس بود. نتایج این پژوهش بینگر امکان استفاده از این فارج در مناطق خشک و بهبود خنثی بوده که مطالعات بیشتر در این زمینه می‌تواند امکان استفاده عمیق و گسترده‌تر آن را فراهم نماید.

متن:

امامی، غ. (1375) روش‌های تجربی گیاه نشیه فی. شماره 988. انتشارات مؤسسه تحقیقات خاک و آب. تهران.

انصوری، ا.، غلامی، ا.، چاپی‌چی، م.، شقایلی، ح. و اسدی، ص. (1392) برهمکنش گوهرگر و اکسی‌لیپیداز بی‌کولنیزاپیون و گونه فارج میکوریزا و رشد در در شرایط گلخانه. مجله علوم گیاهان زراعی ایران 24: 1389-1392.

بابایی، ک، امنی، دهقی، م.، مدرس تاتوی، س. و جابری، ر. (1389) اثر تنش خشکی بر صفات مورفولوژیک، میزان بروز و درصد تهیه در آویشن. فصلنامه علمی بهره‌های (Thymus vulgaris L.) تحقیقات گیاهان دارویی محقق ایران 9: 239-242.

تقی، ع.، ترابیان، ش. و تدین، م. (1391) اثر ترکم بی‌کولنیزاپیون و کیفیت چهار رهم میکوریزا بر اکسی‌لیپیداز، بر بهبود آنتی‌بیوتیکی کلوس میکوریزا و رشد در شرایط گلخانه. مجله علوم گیاهان زراعی ایران 49: 239-243.

بافره، ع. (1392) تأثیر تنش خشکی بر گیاه نشیه فی. ساده‌ی، ن. و جمهوری، ف. (1390) تأثیر تنش خشکی کاربرد روزی و تلقیح میکوریزا بر جذب عناصر کم
evaluation of technique to measure vesicular arbuscular mycorrhizal infection in roots. New Phytologist 84: 489-500.

Tennant, D. (1975) Test of a modified line intersect