اثر قارچ میکوریزای آروبسکولار بر رشد، میزان کلیوپیلومی نیش و جذب فسفر برگ (L. usitatissimum L.) تحت سطح مختلف کم آبی

/on تمتین 1 و مربع سلطانیان 2

گروه زراعت، دانشگاه کشاورزی و دانشجویان سایه کارشناسی ارشد رشته اگروکاولوری، دانشگاه شهرکرد

(تاریخ دریافت: 1392/10/27، تاریخ پذیرش نهایی: 1394/3/31)

چکیده

پیکر از مهم‌ترین عوامل دسترسی کننده رشد گیاهان زراعی مناطق خشک و نیمه خشک کمبود آب است. قارچ‌های میکوریزایی یکی از مهم‌ترین میکوراگیمسه‌های محیطی محسوب می‌شوند. اثرات این قارچ‌ها از طریق ایجاد تغییرات روی بیکاری از خصوصیات ریشه و جذب عناصر غذایی در گیاهان بهترین ردیف شناخت عامل می‌شود. به میزان بررسی فاکتور آینده میکوریزایی آروبسکولار در شرایط تنش خشکی بر روی بزرگ‌تر آزمایشی در معرض تحقیقات دانشگاه کشاورزی دانشگاه شهرکرد به صورت کرتیه در حالی که در قابل طرح پلوکهای کاملاً تصادفی با سه تکرار در سال 1392 انجام شد. نشان شکلی در واحدهای تخت شده 0/100 (دون تست) و 37 (تست ملایم) و 56 (تست متوسط) گیوم گیوم گیوم (تست شده) درصد نیاز آئین گیاه به عونان فاکتور اصلی و تلقیح بار گیاه بر پایه میکوریزا شاقل و یک تیمار بدون تلقیح میکوریزا به عونان فاکتور فرعي، منظور گردید. تأثیر آزمایش نشان داد که اثر تلقیح میکوریزا و تنش خشکی بر تمام صفات اندازه‌گیری شده می‌تواند اثر متقابل میکوریزا و تنش خشکی، به غیر از طول ریشه، نسبت وزن خشک ریشه به اندازه و جذب فسفر، بر سایر صفات مورد بررسی بود. تنش خشکی باعث کاهش صفات مورد بررسی شد و لیث نسبت وزن خشک ریشه به اندازه و همچنین رابطه داده بستری اکوسیستمیک میکوریزا ریشه گیاه بزرک (0/100) درصد در تیمار بدون تنش خشکی و تلقیح با گونه و کمترین میزان (0/07) درصد در تیمار تنش شدید و شاهد بدون تلقیح مشاهده گردید. بر اساس نتایج حاصل از این آزمایش هیپوتیزی برد بر قارچ‌های میکوریزا آروبسکولار توانست موجب افزایش صفات مورد بررسی در شرایط تنش خشکی گردید.

کلمات کلیدی: تلقیح، جذب عناصر غذایی، خشکی و همبستگی میکوریزا

مقدمه

خشکی به عنوان مهم‌ترین عامل محدود کننده غیر زنده رشد، اثر نامطلول بر رشد و تولید گیاهان زراعی می‌گذارد (Cheong et al., 2003). این استفاده از منابع بیولوژیک در کشاورزی، دارای قدرت بسیار بی‌سابقه است و در کنار نه کننده دور، تمام مواد غذایی موجود مصرف انسان با استفاده از چنین منابع ارزشمندی

tadayyon.sku@gmail.com

نویسنده مسئول، نماینده یکی: علی‌الدوله موه حسینی
می. شود (1995)، هر چند، در گیاهان میکوریزی تحت شرایط خشکی، نسبت به کمک به کاهش نشان و افزایش جذب عناصر غذایی نشان می‌دهد (Ruiز-Lozano و Azcon, 200) یکی از خاصیت‌های این قارچ‌ها محسوب می‌گردد. باوجود اینکه نتایج به طور کلی از گیاهان میکوریزی تحت شرایط خشکی را با فلز شیرین نشان می‌دهند (Ghazi و John Zак, 2001)، ولی بهترین گیاهان در نتایج این تحقیق به طور کلی نشان می‌دهند که نتایج این تحقیق به طور کلی نشان می‌دهند که نتایج این تحقیق به طور کلی نشان می‌دهند که نتایج این تحقیق به طور کلی نشان می‌دهند که نتایج این تحقیق به طور کلی نشان می‌دهند که نتایج این تحقیق به طور کلی نشان می‌دهند که نتایج این تحقیق به طور کلی نشان می‌دهند که نتایج این تحقیق به طور کلی نشان می‌دهند که نتایج این تحقیق به طور کلی نشان می‌دهند که نتایج این تحقیق به طور کلی نشان می‌دهند که نتایج این تحقیق به طور کلی نشان می‌دهن...
جدول 1- برخی خصوصیات فیزیکی و شیمیایی خاک مزرعه آزمایشی در عمق صرف تا 30 سانتیمتر مزرعه قبل از کاشت

<table>
<thead>
<tr>
<th>میزان (mg.kg⁻¹)</th>
<th>CU</th>
<th>Fe</th>
<th>Mn</th>
<th>Zn</th>
<th>N</th>
<th>Kava.</th>
<th>Pava.</th>
<th>O.C</th>
<th>EC</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار</td>
<td>452</td>
<td>7</td>
<td>15</td>
<td>30</td>
<td>3</td>
<td>10/3</td>
<td>6/50</td>
<td>5/45</td>
<td>7/52</td>
<td>9/4</td>
</tr>
</tbody>
</table>

برای به دست آوردن دور آبیاری، نیاز آب گیاه با استفاده از نرم افزار CROPWAT (که براساس منطقه مورد مطالعه، نیاز آبیاری را در ماههای مختلف برآورده می‌کند) محاسبه شد و یا استفاده از روابط زیر، دور آبیاری مشخص گردید:

1.

\[\text{RAW} = \text{TAW} \times \left(\frac{\text{EC}}{\text{EC}_{\text{PWP}}} \right) \]

۲.

\[\text{N} = \frac{\text{RAW}}{\text{ETc}} \]

درصد دمای رطوبت در طرفیت دریایی و \(\theta_{FC} \) درصد درم جرمی رطوبت در نطفه پژوهشگی، آب سهولتی و \(\theta_{WP} \) مخصوص ظاهری خاک (کم بر سانتی‌متر ترکیبی) می‌باشد که در آزمایشگاه اندوزه‌گیری شد. دور آبیاری با استفاده از نرم‌افزار قرار آوار تقریباً برای تعیین میزان کلنزیاسیون قارچ گیشا با روش گیاهی از روش (1982) (Mosse و Giovanni). استفاده گردید.

برای بررسی روش کلنزیاسیون قارچ گیشا در سطح ترکیب دیش‌های که دارای شبکه مربعی هستند، بخش‌گردنی و زیر بينیکوال مشاهده شرایط و تعداد نقاط آنها با خطوط عمودی و افقی تعیین شد. از این بخش‌گردنی آب‌های که با ابعاد آب‌گیری شده ریشه از نقاط داشتن نیز طور جدی‌گرایی در کلنزیاسیون، و به صورت کسری از کل نقاط سطح آماده شد. جفت‌های ان در 100 ضرب شود، میزان کلنزیاسیون ریشه به صورت درصد به دست می‌آید (رابطه 4).

\[\text{تعداد قاطع‌های ریشه} = \frac{100 \times \text{عدد کل نقاطی بین ریشه و شبکه}}{\text{عدد کل نقاطی}} \]
شاده بدوزن فارز مشاهده کردیم. در تیمار تنش رعوبی ملامی و متوسط نیز بالاتر عکسی ماده خشک گیاه مربوط به قارچ بود (جدول ۳). قارچ بدوزن (G. intraradices) قارچ بود (G. intraradices) در تیمار مشاهده انجام شد. در تیمار تنش خشک شد.

مطالعه انجام شده توسط نایدان (۱۳۹۰) نشان داد که افزایش وزن ماده خشک سرورگ نتیجه شده بود. اینکه نیز سرورگ نتیجه شده تحت تنش خشکی می‌تواند به دلیل افزایش پتانسیل آب برگ و با افزایش میزان مصرف دی‌اکسیدکربن باشد. وجود شکه گسترده هیفته‌ای خشک می‌تواند به عنوان ادامه می‌باشد. ریشه‌های گیاه میزان قادر است این نشان دهنده تبیعی و درد از مبادرت گیاه جلوگیری و هیچ‌گونه متغیر نماید.

وزن خشک رشد: بر اساس جدول آنالیز واریانس، وزن خشک رشد گیاه یکی از تیمار تنش خشکی و میکوریزا و همجین اثر مقابل این اثر در سطح احتمال ۱ درصد معنی‌دار گردید (جدول ۴). اینکه برخی نشان داده شده است. مقایسه میانگین اثرات مقابل مشاهده داد که بیشترین وزن خشک رشد در اثر G. میکوریزا با هم اختلاف معنی‌داری نداشتند. همین‌چنان، کمترین وزن خشک رشد مربوط به اثر مقابل بین تیمار تنش خشکی شادید و مشاهده بدون قارچ دیده شد (جدول ۴).

نتایج این آزمایش با نتایج Quilambo (۲۰۰۰) در بادام زمینی، سالمی و سالمی (۱۳۸۷) در ذرت، مطالعات دارد. قارچ‌های میکوریزا با تولید هترومونه‌های گیاهی و خشکی فعالیت آزمایش‌ها می‌تواند رشد گیاه و رشد رشد را تشدید کند. در نتیجه تحقیق جدی عاصر گیاهی را می‌تواند به بردگی و شاخص کیفی را در انجام از خشکی افزایش دهنده (عظامی و همکاران، ۱۳۹۲).

نتایج و بررسی:

وزن خشک اندام هواپی: نتایج جدول آنالیز واریانس حاکی از آن است که اثرات اصلی تنش خشکی و میکوریزا و همجین اثر مقابل این دو عامل در وزن خشک اندام هواپی یکی در سطح احتمال ۱ درصد معنی‌دار گردید (جدول ۴). اینکه برخی مشاهده شده که بیشترین وزن خشک رشد در اثر G. میکوریزا دارد. مقایسه میانگین اثرات مقابل مشاهده داد که بیشترین وزن خشک رشد در اثر G. میکوریزا با هم اختلاف معنی‌داری نداشتند. همین‌چنان، کمترین وزن خشک رشد مربوط به اثر مقابل بین تیمار تنش خشکی شادید و مشاهده بدون قارچ دیده شد (جدول ۴).
جدول ۲- تأثیر تجزیه واریانس (میانگین مربوط) صفات بررسی شده پروکرد در تیمارهای مختلف تنش خشکی و میکوریا

<table>
<thead>
<tr>
<th>جدید</th>
<th>طول ریشه کلوئیز کلی</th>
<th>درصد وزن خشک</th>
<th>درصد وزن خشک ریشه به اندازه هواهای</th>
<th>رشد (میلیتر در بیوتون)</th>
<th>متغیر</th>
<th>میانگین تالف</th>
<th>باعثات اتفاق</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲</td>
<td>۸۱/۹۹**</td>
<td>۴۴/۳۰**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
<td>بلوک</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
</tr>
<tr>
<td>۳</td>
<td>۸۱/۹۹**</td>
<td>۴۴/۳۰**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
</tr>
<tr>
<td>۶</td>
<td>۸۱/۹۹**</td>
<td>۴۴/۳۰**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
</tr>
<tr>
<td>۲</td>
<td>۸۱/۹۹**</td>
<td>۴۴/۳۰**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
</tr>
<tr>
<td>۶</td>
<td>۸۱/۹۹**</td>
<td>۴۴/۳۰**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
</tr>
<tr>
<td>۲</td>
<td>۸۱/۹۹**</td>
<td>۴۴/۳۰**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
</tr>
<tr>
<td>۶</td>
<td>۸۱/۹۹**</td>
<td>۴۴/۳۰**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
</tr>
<tr>
<td>۲</td>
<td>۸۱/۹۹**</td>
<td>۴۴/۳۰**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
</tr>
<tr>
<td>۶</td>
<td>۸۱/۹۹**</td>
<td>۴۴/۳۰**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
<td>۷/۸۴**</td>
</tr>
</tbody>
</table>

با توجه به سطح‌های مختلف تنش خشکی و میکوریا در بیونت‌های جدول ۳ ثابت یافته که بروز تنش خشکی و میکوریا به صورت مشابه باعث افزایش وزن خشک ریشه باعث افزایش وزن خشک ریشه بود.

جدول ۳- مقایسه میانگین اثر متغیری سطح تنش خشکی و میکوریا در برخی صفات گیاه بروکد

<table>
<thead>
<tr>
<th>محصول</th>
<th>طول ریشه کلوئیز کلی (میلیتر در بیوتون)</th>
<th>وزن خشک اندازه هواهای</th>
<th>میکوریا</th>
<th>رشد (میلیتر در بیوتون)</th>
<th>متغیر</th>
<th>میانگین تالف</th>
<th>باعثات اتفاق</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰۰۰۱</td>
<td>۱۲/۹۹**</td>
<td>۸۰/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>بلوک</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
</tr>
<tr>
<td>۲۰۰۰۳</td>
<td>۱۲/۹۹**</td>
<td>۸۰/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
</tr>
<tr>
<td>۲۰۰۰۵</td>
<td>۱۲/۹۹**</td>
<td>۸۰/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
</tr>
<tr>
<td>۲۰۰۰۷</td>
<td>۱۲/۹۹**</td>
<td>۸۰/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
</tr>
<tr>
<td>۲۰۰۰۹</td>
<td>۱۲/۹۹**</td>
<td>۸۰/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
</tr>
<tr>
<td>۲۰۰۱۱</td>
<td>۱۲/۹۹**</td>
<td>۸۰/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
</tr>
<tr>
<td>۲۰۰۱۳</td>
<td>۱۲/۹۹**</td>
<td>۸۰/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
</tr>
<tr>
<td>۲۰۰۱۵</td>
<td>۱۲/۹۹**</td>
<td>۸۰/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
</tr>
<tr>
<td>۲۰۰۱۷</td>
<td>۱۲/۹۹**</td>
<td>۸۰/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
</tr>
<tr>
<td>۲۰۰۱۹</td>
<td>۱۲/۹۹**</td>
<td>۸۰/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
<td>۸۸/۹۹**</td>
</tr>
</tbody>
</table>

(کمک‌یابی از نظریه از هر مرحله از رشد گیاه، انتقال و گیاه در اختلالات مختلفی می‌باشد (Hu and Schmidhalter, 2005). میکوریا با افزایش تنش خشکی جذب آب و مواد غذایی به دنبال آن فوستر برجسته اخخص کردن به رشد در افزایش وزن خشک ریشه مؤثر می‌باشد.)
جدول 4- مقایسه میانگین صفات گیاهی برری در شرایط تنش خشکی و قارچ‌های میکوریزا

| گیاه فسفر (گرم در متری) | تیمارها | نسبت وزن خشک ریشه به اندازه هوایی | طول ریشه (میلی‌متر واحد گیاه) |
|--------------------------|---------|---------------------------------|----------------|------------------|
| 0/87b | G. mosseae | 0/71 | 11/33 |
| 0/86b | G. intraradices | 0/58 | 11/33 |
| 0/49b | G. mosseae | 0/64 | 11/33 |
| 0/46b | G. intraradices | 0/71 | 11/33 |
| 0/37b | G. mosseae | 0/64 | 11/33 |
| 0/43b | G. intraradices | 0/71 | 11/33 |
| 0/32b | G. mosseae | 0/64 | 11/33 |
| 0/29b | G. intraradices | 0/71 | 11/33 |
| 0/26b | G. mosseae | 0/64 | 11/33 |
| 0/23b | G. intraradices | 0/71 | 11/33 |
| 0/21b | G. mosseae | 0/64 | 11/33 |
| 0/19b | G. intraradices | 0/71 | 11/33 |
| 0/17b | G. mosseae | 0/64 | 11/33 |
| 0/15b | G. intraradices | 0/71 | 11/33 |
| 0/13b | G. mosseae | 0/64 | 11/33 |
| 0/11b | G. intraradices | 0/71 | 11/33 |
| 0/09b | G. mosseae | 0/64 | 11/33 |
| 0/07b | G. intraradices | 0/71 | 11/33 |
| 0/05b | G. mosseae | 0/64 | 11/33 |
| 0/03b | G. intraradices | 0/71 | 11/33 |
| 0/01b | G. mosseae | 0/64 | 11/33 |
| 0/00b | G. intraradices | 0/71 | 11/33 |
| 0/00b | G. mosseae | 0/64 | 11/33 |

نتیجه‌های به رسمیت و سرعت توسعه ریشه کاهش پایه و به‌نویق آن تولید
ادام هواپی و کنترلی می‌تواند در شرایط شرود و یافتن نامناسب
فناوری، خشکی به امکان دستیابی به سطح خشکی افزایش یافته
درصد، نسبت به شرایط بدون تنش خشکی نشان داده که در مطالعه یک
تیمار بدون تنش خشکی و تیمار تنش مالایی انتخاب می‌شود
داری با هم نداشتند (جدول 4). به‌نظر می‌رسد که گیاه برکه
در شرایط تنش خشکی، از سازوکار افزایش نسبت ریشه به
ادام هواپی استفاده کرده است.

(جدول 1) مقایسه میانگین این صفت در سطح مختلف تنش
خشکی یاگنگ آن است که نسبت وزن خشک ریشه به وزن
خشک اندازه‌های هواپی در تیمار شاهد خشکی، 3/5
درصد، نسبت به شرایط بدون تنش خشکی افزایش یافته
تیمار بدون تنش خشکی و تیمار تنش مالایی انتخاب می‌شود
داری با هم نداشتند (جدول 4). به‌نظر می‌رسد که گیاه برکه
در شرایط تنش خشکی، از سازوکار افزایش نسبت ریشه به
ادام هواپی استفاده کرده است.

(جدول 2) مقایسه میانگین این صفت در سطح مختلف تنش
خشکی یاگنگ آن است که نسبت وزن خشک ریشه به وزن
خشک اندازه‌های هواپی در تیمار شاهد خشکی، 3/5
درصد، نسبت به شرایط بدون تنش خشکی افزایش یافته
تیمار بدون تنش خشکی و تیمار تنش مالایی انتخاب می‌شود
داری با هم نداشتند (جدول 4). به‌نظر می‌رسد که گیاه برکه
در شرایط تنش خشکی، از سازوکار افزایش نسبت ریشه به
ادام هواپی استفاده کرده است.

(جدول 3) مقایسه میانگین این صفت در سطح مختلف تنش
خشکی یاگنگ آن است که نسبت وزن خشک ریشه به وزن
خشک اندازه‌های هواپی در تیمار شاهد خشکی، 3/5
درصد، نسبت به شرایط بدون تنش خشکی افزایش یافته
تیمار بدون تنش خشکی و تیمار تنش مالایی انتخاب می‌شود
داری با هم نداشتند (جدول 4). به‌نظر می‌رسد که گیاه برکه
در شرایط تنش خشکی، از سازوکار افزایش نسبت ریشه به
ادام هواپی استفاده کرده است.

(جدول 4) مقایسه میانگین این صفت در سطح مختلف تنش
خشکی یاگنگ آن است که نسبت وزن خشک ریشه به وزن
خشک اندازه‌های هواپی در تیمار شاهد خشکی، 3/5
درصد، نسبت به شرایط بدون تنش خشکی افزایش یافته
تیمار بدون تنش خشکی و تیمار تنش مالایی انتخاب می‌شود
داری با هم نداشتند (جدول 4). به‌نظر می‌رسد که گیاه برکه
در شرایط تنش خشکی، از سازوکار افزایش نسبت ریشه به
ادام هواپی استفاده کرده است.
طلول ریشه: نتایج تحقیق با فارج میکروبیا اثر معنایی بار طول ریشه

خشکی و تلفیق با فارج میکروبیا اثر معنی‌داری بار طول ریشه در سطح 1 درصد آماری داشتند در حالی که اثر بر همکنش آنها به ورود هواپیمای نیول (جدول 3). مقیاسه

میانگین طول ریشه در صورت مختلف خشکی کاهش 2.77 و 5 درصدی طول ریشه به ترتیب در تیمارهای تنش خشکی را نشان داد (جدول 3).

کاهش رشد ریشه (مجمع طول ریشه و ناحیه ماده خشک ریشه) تحت تأثیر تنش خشکی می‌تواند به دلیل کاهش هبایت هیدرولیکی کیاز (2005) و ایا افزایش مقاومت (Ladjal et al., 2005) باشد (Whitmore and Whalley).

چنانچه فشار ریشه‌های گیاه کمتر از مقاومت مکانیکی خاک Whitmore and Whalley,

باید رشد ریشه کاهش می‌یابد (پایان 1389) با افزایش تنش خشکی طول ریشه در گیاه داروی آویشی (بابی) و همکرایان (1389) کاهش پیدا یافت. ناپایانی (1389) گزارش کرد که با افزایش تنش خشکی مجموع طول ریشه سوزگم کاهش معنی‌دار ردپا می‌نمود و ایجاد از کاهش طول ریشه سوزگم تحت تأثیر نش خشکی در این مطالعه را به دلیل افزایش مقاومت مکانیکی خاک دانستند. در حالی که در آزمایش علی‌اکبر فرخنی و ولدابادی (1389) در گیاه داروی گل‌بستان تنش خشکی بار طول ریشه گردد.

مقایسه میانگین طول ریشه مختلف تلفیق با فارج میکروبیا G. intraradices باعث افزایش G. mosseae

نشان داد که تلفیق با فارج میکروبیا طول ریشه نسبت به تیمار نش به دو برابر تلفیق شد. گیاه تلفیق 78 G. intraradices شده با میکروبیا G. mosseae نسبت به گیاه به تیمار افزایش داد. تیمار تلفیق با فارج از نظر آماری

G. mosseae

اختلاف معنی‌داری بار به نشان دادند (جدول 4). نتایج آزمایش انگلیسی و همکاران (1392) در چرت این نشان داد که میکروبیا باعث افزایش معنی‌دار طول ریشه نسبت به G. intraradices و G. mosseae شاهد شد و بین گونه‌های مختلف فارج (G. mosseae

نسبت به گیاه به تیمار تلفیق با فارج درصد کلولیپیونیس ریشه گردد.
در آزمایش با فضه‌دار فرهنگ و وولتادایی (1389) در گیاه
داروی گشتن طول رشد گیاه تلقیح شده با فارج نسبت به
گیاه بدون تلقیح بیشتر بود.

در آزمایش نادایی (1390) در نمای سطح نش خشکی،
مجمع طول رشد بسیاری تلقیح شده با فارج میکروبیا از
مجمع طول رشد بسیاری استفاده کرده و همکاران Taylor
میکروبیا بر آن‌طور رشته گوشه‌گری نشان داده که طول
سیستم رشته‌های گوشه‌گری در حضور میکروبیا کاهش یافت،
رقابت بین تارج و رشته باید در داده شده فاصله‌ای بر
تیرین را به یادآوری که به آن راه سیستم می‌باشد.

مطالعه مولالندا و همکاران (2003) نشان داد که
گیاهان دارای هم‌زیستی میکروبیا نسبت به گیاهان
غیر میکروبیا اب را از گاب سبز نام و گل تخلیه می کنند
و باعث می‌شود که نکس بیشتر باشد که در
کرده، سطح برد گیاهان افزایش یابد که این خود باعث افزایش نیاز
تعرق گیاهان میکروبیا می‌شود. از طرف دیگر سیستم ریشه-ی
ای در گیاهان میکروبیا توسه بیشتر یافته و بیشتر از رشته
گیاهان غیر میکروبیا مناسب شده و قطر رشته‌های فرعی در
آنها کاهش و طول رشد از افزایش جهت کاهش
همه این عوامل باعث شده که باعث می‌شود که سیستم میکروبیا سطح نام
بیشتر باشد و ممکن است این افزایش
گاهان میکروبیا یکی از دقت قلید شکست هنگ
خوانی و تنخور اندام هوای: نتایج تجربه و ارتباط نتیجه داد
که مساحت نش خشکی در علت احتمال ۱ درصد و تلقیح با
فارج میکروبیا در سطح احتمال ۱ درصد اثر معتبری بر
جلب بیشتری برون داشته در حالی که اثر همسترس آنها
بر جلب نش خشکی برون داده (جدول ۲). رویکرد مبنای
مساحت مختلف نش خشکی ۳ درصد، مستند به شرایط، افزایش
تشیع خشکی ۲۳ درصد، مستند به شرایط بدون
تشیع خشکی یافته (جدول ۴). ساجدی و همکاران (1389) نیز
بان کردن که به عنوان کم عصری بود، در شرایط
خشکی میزان جلب آن در دید گرد که به شدت کاهش یافت.

مقياسی میانگین مساحت مختلف تلقیح با فارج میکروبیا
۲۱ G. intraradices
نتیجه‌ای داد که گیاه تلقیح شده با فارج میکروبیا
درصد جلب نش خشکی نسبت به گیاه بدون تلقیح نشان
داد (جدول ۴). تأثیر آزمایشی ساجدی و همکاران (1389)
نتهایی گیره کلی:
نتهایی بیانگر آن است که کاربرد میکوریزا در شرایط نش خشکی در بهبود خصوصیات گیاه زیر تأثیر مثبت داشته است. کاربرد و گونه فلور تأثیر بخشی نسبت به عدم کاربرد روی کلیه گیاه‌های نشان داد و گونه فلوری پیکسل بود. نتایج این یژه‌بانگر امکان استفاده از این قارچ در مناطق خشک و همین خشک بوده که مطالعات بیشتر در این زمینه میتواند امکان استفاده عمیق و کستره آن را فراهم نماید.

مختص در ژ. مجله پژوهش‌های خاک (علوم خاک و آب) ۲: ۸۳-۹۹.

ساجدی، ن. و ساجدی، ع. (۱۳۸۹) اثر تنش خشکی، میکوریزا و مقدار روی خصوصیات اکروفیتولوژیک درخت زنبورک جکاس. مجله علوم زراعت ایران ۳: ۲۰۱-۲۰۲.

ساجدی، ن. ارکانی، م. و ساجدی، ع. و بهرامی، ع. (۱۳۸۹) جذب برخی عناصر غذایی تحت تأثیر میکوریزا، مطلوب مختلف روی و تنش خشکی در درخت نش ملکه ایران ۵: ۷۳-۹۸.

شاک حسنی، ز. غلامی، ا. و اصغری، ح. (۱۳۸۶) بررسی تأثیر هم‌بسته میکوریزا بر کاهش اثرات (Zea) نش کم‌آبی، شاخص‌های رشد و عملکرد درخت. مجله علوم گیاهان زراعی ایران ۲: ۲۰۰-۲۴۹.

عباسی، ر. جنگجو، م. و اصغری، ح. (۱۳۹۲) تأثیر تلقیح میکوریزا بر استقامت اولیه و خصوصیات مورفولوژیک گیاه دارویی زعفران بازی در شرایط نشان داد که کاربرد میکوریزا از درخت میزان جذب فسفر را ۹ درصد نسبت به شاهد افزایش داد. به نظر می‌رسد که میکوریزی‌های قارچ با گسترش مناسب در خاک، میزان جذب عنصر فسفر را افزایش داده‌اند. درعین حال این امر منتفی است. بعضی شواهد بیان می‌کند که میکوریزا-های گیاهان میکوریزا-ایز خود مواد ترشح می‌کنند که برای قابل حل کردن فسفر در خاک و جذب آن بسیار مؤثر است. افزایش سرعت جذب فسفر در مقایسه با گیاهان غیرمیکوریزا از دلایل دیگر می‌باشد. به نظر می‌رسد که افزایش جذب عناصر غذایی یک‌دیگر به دلیل انتشار میکوریزی‌های میکوریزا مرتبط با بافت‌های درونی ریشه و تشکیل پک سیستم جذب اضافی به صورت مکمل سیستم ریشه‌های گیاه باشد که بهره‌گیری از حجم بیشتری از خاک که ریشه‌های

منابع:
امامی، ع. (۱۳۷۵) روش‌های تجویز گیاه. نشریه فنی‌شماره ۹۸۲. انتشارات مؤسسه حفظ‌الکرامات، تهران.
انصوری، ا. (۱۳۸۶) غلامی، ا. پاک‌چی، ن. و قربانی، ح. ماهی‌کش گردو و تیونیولوس بر کلونی‌سازی‌ها به کاربرد میکوریزا و رشد درخت در شرایط گلخانه. مجله علوم گیاهان (Zea mays L.) ۵: ۵۰۵-۴۹۵.
بیابانی، ک. اکرمی، م. و مریمی، ع. (۱۳۹۴) اثر تنش خشکی بر صفات مورفولوژیک، میزان پرولین و درصد تیولز در آویشن (Thymus vulgaris L.) تحقیقات گیاهان دارویی و معطر ایران ۲: ۲۹-۷۹.
بنده، ع. و نژادی، ش. و نژادی، م. (۱۳۸۴) اثر تراکم بوته بر عملکرد و کیفیت چهار رقم تجاری بزرگ‌عملکردی مولکولی مجله پژوهش‌های کشاورزی (channel ۱۳۹۲: ۱۳۹۲: ۷۹-۷۹.
ساجدی، ن. و رجبی، ف. (۱۳۹۲) تأثیر تنش خشکی، کاربرد روی تلقیح میکوریزا بر جذب عناصر کم
evaluation of technique to measure vesicular arbuscular mycorrhizal infection in roots. New Phytologist 84: 489-500.

Tennant, D. (1975) Test of a modified line intersect