اثر پراپیمیک بذر بر برخی خصوصیات فیزیولوژیک مؤثر بر جوانه‌زنی بذر
نخودفرنگی (Pisum sativum L.) تحت تنش سرمای

الف.) نوشته تحریری، نشانی پست الکترونیک: falah1357@yahoo.com

چکیده:

به نظر بررسی اثر پراپیمیک بذر بر برخی خصوصیات فیزیولوژیک مؤثر بر جوانه‌زنی بذر نخودفرنگی (Pisum sativum L.) تحت تنش سرمای، آزمایش به‌صورت فاکتوریال در قالب طرح کاملاً تصادفی با 4 تکرار اجرا شد. تیمارهای آزمایش شامل انواع تیمارهای پراپیمیک (هیدروپراپیمیک، هالوپراپیمیک، اسپورپرامین و عمد پراپیمیک) و نسبت نسبتاً دما 4/4 و 8/4 درجه سانتی‌گراد بودند. نتایج نشان داد که تنش سرمای باعث کاهش خثی سرعت جوانه‌زنی تحت تیمارهای هیدروپراپیمیک، هالوپراپیمیک و اسپورپرامین شد. بیشترین سرعت جوانه‌زنی مربوط به تیمار هیدروپراپیمیک بود. تیمار هیدروپراپیمیک به начارین از کاهش در حد سرعت جوانه‌زنی در دمای سه درجه سانتی‌گراد جلوگیری کرد و با تیمار هالوپراپیمیک فقط اختلاف معناداری یافت. بیشترین تاخیر به حد تیمار هیدروپراپیمیک مشاهده شد. با کاهش دما مقاورد و میزان فعالیت آنزیمی کاتالاز و کیانکلاک پراپیمیک تحت کلیمی تیمارهای پراپیمیک افزایش یافت. پراپیمیک با یک‌ریختگی کلیکول نه نتیجه بر جوانه‌زنی بذر کاهش نتوانست به دو درجه سانتی‌گراد کاهش پاتمترمای جوانه‌زنی بذر در این گیاه گردید.

بعضی از ثابت‌کننده‌ی شد تیمارهای هیدروپراپیمیک و هالوپراپیمیک بهبود پاتمترمای فیزیولوژیکی و در نهایت بهبود سرعت و درصد جوانه‌زنی بذر نخودفرنگی در دمای پایین شدند که امكان استقرار و رشد بهتر این ایج تحت شرایط تنش سرمای را فراهم می‌نماید. این امر می‌تواند در افزایش پناسیلی بازی این گیاه به عنوان کرب سیز در مناطق حساس و سرد کشور مفید باشد.

واژه‌های کلیدی: اسپورپرامین، بی‌بند، پراپیمیک، دما پایین، نیتروژن، هیدروپراپیمیک

مقدمه:

اغلب کاخه‌ای کشاورزی به دلیل تابع‌های تولیدی و تهیه‌های مذکور نیتروژن از نظر میزان نیتروژن قدرت هستند. علاوه بر این هنگام ابزاری و یا باردارگی، عمد نیتروژن خاک‌ها، به ویژه در کاخه‌ای می‌یابند. نشانه‌های نوبت کسی در اثر افزایش نیتروژن در کاخه‌ای می‌بپی. نتایج این تحقیق بر اثر افزایش نیتروژن در کاخه‌ای و افزایش نیتروژن به کرب نیتروژن

falah1357@yahoo.com
خسارت سرمادگی (بین صفر تا ۲۰ درجه سانتی‌گراد) و خسارت خزیدگی (کمتر از صفر درجه سانتی‌گراد) از مهم‌ترین نشان‌های غیرنده مؤثر بر رشد و عملکرد گیاه است (Thakur et al., 2010). بطوری که در مناطق معتدل و فوق نشان سرمای زمستان در اغلب موقعیت‌ها بر روی خسارت‌های شدید در گیاهان می‌شود. تأثیر دامی پایین طی جوانه‌زنی می‌تواند سبب کاهش درصد جوانه‌زنی و اختلال در خروج ریشه‌های بذر در گونه‌های مختلف و ارقام زراعتی گردد (Patade et al., 2011). نشان سرمای علائم بر کاهش درصد و سرعت جوانه‌زنی و استقرار نامناسب گیاه‌های موجب افزایش غونه‌های اکسیژنی فعال (Reactive Oxygen Species) و تولید رادیکال‌های آزاد اکسیژنی می‌گردد که پایپ عمومی به اثر (Yu and Rengel, 1999). نشان‌های انرژی ROS به میان ROS می‌گذارد که در شرایط مختلف نشان می‌دهد (Yong et al., 2008) در آزم آتباز و براکسیدار از مهم‌ترین آنتی‌اکسیدان‌ها می‌باشد که به شکستن شدید آب اکسیژن به آب و مولکول اکسیژن می‌گردد (Yong et al., 2008). بابراین افتادگی از گیاه‌ها به دلیل استقرار رازی در شرایط نشان سرمای جوانه‌زنی مطلب و استقرار مناسب بذر گیاه خود را در کسب می‌تواند در توقف گسترش این قبیل گیاهان و در نتیجه قویت می‌تواند در توقف گسترش این قبیل گیاهان و در نتیجه قویت

یکی از عوامل مهم در رسیدن به عملکرد بالقوه در گیاهان زراعی، جوانه‌زنی سریع و تکنوتخت در مزرعه است. با افزایش سرعت جوانه‌زنی و (Subedi and Ma, 2005) تسهیل در استقرار بذر در مزرعه، گیاه‌ها قادر به جذب سرعت آب و عناصر غذایی می‌شود و همچنین می‌تواند از تور خورشید بهره ببرد و در مقدار محصولاتی که در پایین کشت می‌شود، باعث رسیدن به درجه‌ای از تحمل پایین‌تر می‌شود. (Finch-Savage et al., 2004)

باشند. استفاده از گیاهان بعنوان کود سبز در تناوب زراعی باعث افزایش کربن و ماه آلی، نیتروژن کل و حاصلخیزی خاک شده که این پیاده زدگی در طریق بهبود و یا حفظ فرآیندهای میکروبی در خاک منجر به آزادسازی تدریجی عناصر غذایی برای گیاهان تیز گیوه (Matos et al., 2008). نشان داده که با استفاده از کود سبز لگی، میزان عناصر غذایی خاک و نیتروژن معنی‌داری افزایش یافته است. در این ارتباط گیاه نخودفرنگی (Pismus sativum L.) به دلیل تولید مقدار زیاد ماده خشک و نیتروژن که برای محققان بیولوژی دسترس است، به عنوان گیاه پوششی و کود سبز حائز اهمیت می‌باشد. گیاهان کود سبز علاوه بر افزایش حاصلخیزی خاک می‌توانند نقش گیاه پوششی نیز داشته باشند که در هنگام شرایط صنعت کاشت کاهش خشکفکان خاک (Komi et al., 2013). کاهش روانی و نحوه بیشتر آب به خاک، افزایش توده‌ها، تعیدل دمای خاک (Steenwerth and Belina, 2008)، بهبود ماهی‌کش (Kruidhof et al., 2008)، بهبود خاک و به دلیل استبدام (Kruidhof et al., 2008) و کاهش آلودگی‌های زیست محیطی ناشی از مصرف کودهای شیمیایی می‌شود. (Komi et al., 2013) این گیاهان مهم‌ترین دلیل افزایش سریع و تراکم با پیشرفت دسته گیاهان بی‌خود سبز و پایه‌های سبزه (Madye et al., 2007) که با عناصری چون زمستان و پایه‌های سبزه، مواد آلی خاک می‌تواند باشد. دلیل محدودیت منابع آب در بافت اطراف آب در اطراف مناطق کشور لازم است کشت گیاهان کود سبز پایه‌زه می‌باشد (زمینه) به گونه‌ی آنچه شود که در نوازندگی استفاده بهینه کند، این در حالت است که در اطراف سالاری بارش‌های بارندگی با تأثیر مهاره‌ای است و این‌ها می‌تواند جوانه‌زنی و استقرار گیاهان کود سبز را مناطق مغذی معرفت شده نشان دهند. نشان سرمای شامل
کشواری دانشگاه شهرکرد در سال ۱۳۹۲ انجام شد. از آزمایش به‌صورت فاکتوریال در قالب طرح کامل تصادفی با ۴ تکرار اجرا گردید. نتایج مختلف پراپارمیک (هیدروپراپارمیک، هالوپراپارمیک، اسپری پراپارمیک و شاهد (عمر پراپارمیک)) به عنوان فاکتور اول و دوم مورد بررسی قرار گرفتند. نتایج نشان داد که پراپارمیک با آب می‌تواند اکثریت پلاستی‌ها را داشته باشد و در جوامعی که بیش از گیاهان زراعی مهم مورد استفاده قرار می‌گیرند (Ashraf and Foolad, 2005). به علت اینکه بیماری‌های خاصی جفتی می‌شود که برای افزایش درصد و یکنواختی جوان‌شدن بذر و بهبود کالی‌گه‌ها و شاخص‌های بذر در برابر دسته‌ای محیطی به‌کار گرفته می‌شود (Ansari and Sharif zadeh, 2012) و شامل فرایندی است که بتوان آن تا افزایش بذر اجای جذب آب داده می‌شود که عامل‌هایی از پرورشی جوان‌شدن بذر و لی‌خور ریخت نه‌ده کرم قادی و همکاران (۱۳۹۶) مطالعات زیادی درباره اثرات پرورشی و پوشش‌به‌پراپارمیک روز در نظر گرفته یافته‌ها از جمله پوشه معمولی (Vigna radiata L.), (Medicago sativa) و یکم (Cicer arietinum) تحقیقی شد و نشان داده است که تیمار پراپارمیک قادر به بهبود فرآیند جوان‌شدن و ایجاد مقاومت تحت شرایط نش‌سرما است (Posmyk and Janas, 2007).
از آنجا که نخود فرآیندی از گیاهان کود سبز ارزش‌شنده است، کشت آن در تواناب با غلات علوفه به‌ت نوع می‌تواند در تبیین زیستی نیتروژن و در نتیجه کاهش مصرف کودهای شیمیایی مؤثر باشد. با توجه به اولویت آب‌پذیری غلات در یادی و محبوبیت منابع مناسب آب مورد سطری کشور که دارای بارندگی مناسب هستند، کشت گیاهان کود سبز به‌صورت دمپ نوجوان پدید است. این در حالی است که تأثیر در شرایع بارندگی‌های پایین‌تر مراحل جوان‌شدن و سبز شدن این قبل گیاهان به‌تأنتم‌دای پایین‌سوزی معین می‌باشد.
بنابراین بندها به‌خود بررسی اثر تیمارهای مختلف پراپارمیک بر جوان‌شدن نخودفرآیندی جهت کشت تحت شرایط نش‌سرما اجرای گردید.

مواد و روش‌ها:

آزمایش در آزمایشگاه علوم و تکنولوژی بذر دانشکده
شدن. در نهایت میزان جذب نور در طول موج 550 نانومتر قرار گرفت.

پروتين محلول: جهت اندازه‌گیری مقدار پروتئین محلول به روش Bradford (1976) 50 میکرولیتر از عصاره گیاهی مورد نظر به 3 میلی لیتر محلول باردوفرد اضافه گردید و پس از اختلاف کامل، با فلاتیل محلان جذب نور در طول موج 550 نانومتر قرار گرفت.

آزمی گاکاول پراکسیداز: برای اندازه‌گیری میزان فعالیت آزمی گاکاول پراکسیداز به روش Mac Adam & همکاران (1992) 50 پس از افزودن 50 میکرولیتر عصاره گیاهی به محلول حاوی پریا فسفات، گاکاول و پراکسیداز بیدر یک میلی لیتر محلول نور در طول موج 550 نانومتر قرار گرفت.

آزمی کاتالاز: به منظور اندازه‌گیری میزان فعالیت آزمی کاتالاز به روش Abei (1984) تیز پس از افزودن 50 میکرولیتر عصاره گیاهی به محلول جذب نور در طول موج 240 نانومتر قرار گرفت. در پایان آزمایش، داده‌ها به صورت SAS فاکتوریال در قلب طرح کاملاً تصادفی به صورت نرم افزار مورد تجزیه واریانس قرار گرفتند. گرمینین تجزیه و تحلیل رگرسیون برای میانگین‌های معیار دار حاصل از تجزیه واریانس انجام شد و برای میانگین‌های که تجزیه رگرسیونی آن‌ها معیار دار نشد مقایسه میانگین با استفاده از آزمون SDS و تحلیل فرضیات نهایی و بحث:

نتایج تجزیه واریانس نشان داد که اثر تیمارهای مختلف پریا فسفات بر سرعت جوانزدن و شدت تجزیه پریا فسفات در سطح احتمال یک درصد معنی‌دار بود. همچنین اثر دمای تیپ بر کلیه پریا فسفات اندازه‌گیری شده در سطح احتمال یک درصد معنی‌دار شد. اثر متقابل پریا فسفات با دمای تیپ بر کلیه سطح بررسی شده در سطح احتمال 5 درصد معنی‌دار بود (جدول 4).

سرعت جوانزدن: نتایج تجزیه و تحلیل رگرسیونی نشان می‌دهد که برآورد نمایشی دارد و تبدیل گردیده شدن در دهه‌های اخیر داده‌های داده شده و پیش‌بینی شده به طرف دارند که در پایان این مقاله حمله‌های حاصله اضافه نموده و به مدت 20 ثانیه ترکس
جدول 1 - تجزیه و تحلیل اثرات پراباینگ بذر بر سرعت جوانه‌زی، درصد جوانه‌زی و شاخص بینه بذر گیاه نخودفرنگی تحت نش سرما

<table>
<thead>
<tr>
<th>میانگین مربوطات</th>
<th>معنایگیری</th>
<th>درصد جوانه‌زی</th>
<th>سرعت جوانه‌زی</th>
<th>درجه آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>نوع پراباینگ</td>
<td>3</td>
<td>8/85</td>
<td>11/0.3</td>
<td>3</td>
</tr>
<tr>
<td>دما</td>
<td>4</td>
<td>12/120</td>
<td>21/8</td>
<td>12</td>
</tr>
<tr>
<td>نوع پراباینگ × دما</td>
<td>60</td>
<td>7/64</td>
<td>2/55</td>
<td>6</td>
</tr>
<tr>
<td>خطای آزمایشی</td>
<td>72</td>
<td>1/9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ضریب تغییرات (%)</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2 - نتایج تجزیه و تحلیل اثرات سرعت جوانه‌زی، درصد جوانه‌زی و شاخص بینه بذر گیاه نخودفرنگی تحت نش شرایط تیمارهای مختلف پراباینگ بذر.

<table>
<thead>
<tr>
<th>شاخص</th>
<th>هیدروپرایم</th>
<th>هالوپرایم</th>
<th>اسمورپرایم</th>
<th>اسمورپرایم</th>
<th>اسمورپرایم</th>
<th>اسمورپرایم</th>
</tr>
</thead>
<tbody>
<tr>
<td>بینه بذر</td>
<td>18/0.6</td>
<td>18/120</td>
<td>21/8</td>
<td>21/8</td>
<td>21/8</td>
<td>21/8</td>
</tr>
<tr>
<td>شاخص بینه بذر</td>
<td>18/100</td>
<td>18/120</td>
<td>21/8</td>
<td>21/8</td>
<td>21/8</td>
<td>21/8</td>
</tr>
<tr>
<td>سرعت جوانه‌زی</td>
<td>15/0.6</td>
<td>18/100</td>
<td>21/8</td>
<td>21/8</td>
<td>21/8</td>
<td>21/8</td>
</tr>
<tr>
<td>درصد جوانه‌زی</td>
<td>15/0.6</td>
<td>18/100</td>
<td>21/8</td>
<td>21/8</td>
<td>21/8</td>
<td>21/8</td>
</tr>
<tr>
<td>درجه آزادی</td>
<td>15/0.6</td>
<td>18/100</td>
<td>21/8</td>
<td>21/8</td>
<td>21/8</td>
<td>21/8</td>
</tr>
</tbody>
</table>

*مقدار جدول یکانی سطح احتمال است

نسبت به شاخص گردید. در تیمارهای اسمورپرایم و شاهد میزان ویروس مشابه بود با این تفاوت که در تیمار شاهد با گاه‌های تیمارهای اسمورپرایم بذر به صورت یک منحنی درجه دو محدب تغییر یافت. اما در تیمار اسمورپرایم، کاهش در باعت کاهش خطي سرعت جوانه‌زی شد (شکل 1).

افزایش سرعت جوانه‌زی بذر در هیدروپرایم شده می‌تواند به‌عست چند برابر آب و شروع زودتر ظاهر شود. DNA نتوانی در هگام جذب آب مانند همانند سایی DNA (Jaap et al., 1996). تحقیق فعالیت RNA و RNA ژنی به صورت خاطر که نسبتاً نسبتاً کاهش کاهش فیبر را نسبت به افزایش داده. اما با کاهش بزرگی سرعت جوانه‌زی، سرعت جوانه‌زی به سرعت جوانه‌زی می‌باشد. در 9 و 12 درجه سانتی‌گراد روند تغییرات در تیمارهای هیدروپرایم و هالوپرایم مشابه بود و به یک میزان دمای شرایط جوانه‌زی را نسبت به شاهد افزایش داد. اما با کاهش دما به 3 درجه سانتی‌گراد تیمار هیدروپرایم همانند دمای 15 درجه سانتی‌گراد در سطح بالاتری نسبت به سه تیمارهای قرار گرفت و باعث افزایش 10 درصدی سرعت جوانه‌زی داد که برای صفای سرعت جوانه‌زی و شاخص بینه بذر برخای دمای سانتی‌گراد تیمارهای مختلف پراباینگ در فصل میلادی اثرات مختلف آماری معنی‌دار داشته (جدول 2). در دمای 15 درجه سانتی‌گراد تیمار هیدروپرایم دارای بیشترین سرعت جوانه‌زی بود که باعث افزایش 8/3 درصدی سرعت جوانه‌زی نسبت به شاهد گردید. با کاهش دما میزان این پارامتر در تیمارهای هیدروپرایم و هالوپرایم به صورت خاطر با شیب نسبتاً کاهش کاهش فیبر را نسبت به افزایش داده. اما با کاهش دما به 3 درجه سانتی‌گراد تیمار هیدروپرایم همانند دمای 15 درجه سانتی‌گراد در سطح بالاتری نسبت به سه تیمارهای قرار گرفت و باعث افزایش 10 درصدی سرعت جوانه‌زی.
شکل 1- پایین سرعت جوان‌زنی بذر پرایم شده نخورده‌فیک به نش سما

می‌گیرند قبل از اسپیس دیدن غشاء و نشتن کترولریت‌ها در مقایسه با شاهد جوان‌زنی و استقرار پرایم. این در حالی است که جذب آب در تیمار اسمورپراپینگ در تئیه افزایش پتانسیل اسمروی آهسته‌تر بوده و از افزایش مدت زمان آنزیمی سرعت فرآیندهای متالوژیکی در گونه‌های با سرعت آهسته‌تری پیش رفت که این امر باعث می‌شود میزان گرم‌می کمتری در محیط جوان‌زنی آزاد شود و تولید آگه‌افشی افزایش یابد. پایین‌تر به سبب افزایش شاخصه‌انترکریتی و فعالیت آنزیمی این ادامه‌کننده کاهش دهد (1995). علاوه بر این کاهش غلظت اکسید نانی از پتانسیل اسمروی پلی‌اپی‌گلاکتوئول و تاثیر از جنت بذر نیز ممکن است دیگر برای کاهش سرعت جوان‌زنی در این تیمار بیشتر. در آزمایش Ghassemi-Golenzani و همکاران (2008) پرایم‌نگر بذر نست بی‌فوت به آب آبآ و پلی‌اپی‌گلاکتوئول تاثیر معناداری بر درصد جوان‌زنی نداشت، در حالی که تیمار اسمورپراپینگ باعث افزایش سرعت جوان‌زنی نسبت به اسمورپراپینگ و شاهد گردد. (پرتینیب ۹/۵) و ۱۲ ساعت.)
اثر پرامپسیگ بذور بر خصوصیات فیزیولوژیکی مؤثر بر چولانژی

اثر پرامپسیگ بذور بر چولانژی مختلف پرامپسیگ بذور و درصد چولانژی بذور گیاه نمودار تیکیت، ستون‌های دارای حروف مشابه بر اساس آزمون LSD در سطح اختلال ۵ درصد اختلاف معناداری دارند.

![نمودار]

شکل ۲- اثر مقایسه تیمارهای مختلف پرامپسیگ بذور و درصد چولانژی بذور گیاه نمودار تیکیت، ستون‌های دارای حروف مشابه بر اساس آزمون LSD در سطح اختلال ۵ درصد اختلاف معناداری دارند.

۷

واقع بذور پرامپسیگ شده با آب مفطر به علت زندگی سریع‌تر آب و آغاز فرآیندهای متابولیک قبل از آسیب دیدن خواندن نشان دهنده‌ها و از بین رفتن بذر تحت دمای پایین، جوانه زدن و درصد جوانزنی بالاتری را نسبت به تیمارهای اسپرایپسیگ و شاهد در دمای ۳ درجه سانتی‌گراد نشان دادند. پرامپسیگ بذور لوبیا (Phaseolus vulgaris L) درصد جوانزنی، سرعت جوانزنی و خصوصیات گیاهی‌هایی در مقایسه با بذور شاهد تحت شرایط دمای پایین و بهینه بهبود یافت (Gharib and Hegazi, 2010).

شاخص بینه دهنده مانع‌های خشکی و همکار (۲۰۰۰) گزارش کرده که در یک پانتاسم شاخه بینه بذر را بهبود بخشید. اگر چه جودی و شرایط ۱۳۵۰۰۰ نیز اثر مثبت هیدروپرامپسیگ را روی بینه بذر چوگر معرفی داشته ولی در آزمایش حاضر بینه بذر تحت تیمار هیدروپرامپسیگ نسبت به تیمار هالوراپسیگ در رنگ بینه پایین‌تر قرار داشت (شکل ۳).
شکل ۳- پایه شاخص به‌دیو پیرامید شده نخودافرجی به نش سرما.

جدول ۳- تجزیه و ارائه اثرات پرامینگ بذر ب‌ر مقدار پروپین، مقدار پروپین محلول، میزان فعالیت آنزیم گاکاکول پراکسیدان و میزان فعالیت آنزیم کالتالاز گیاه نخودافرجی تحت نش سرما

<table>
<thead>
<tr>
<th>میانگین مربوط</th>
<th>کارتالاز</th>
<th>گاکاکول پراکسیدان</th>
<th>پروپین</th>
<th>مقدار ازدید</th>
<th>نوع پرامینگ</th>
<th>دما</th>
<th>نوع پرامینگ</th>
<th>دما</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان</td>
<td>۱۳۸۴/۰۰۰۰۰</td>
<td>۷/۰۰۰۰۰۰</td>
<td>۴/۸۲/۰۰۰۰۰</td>
<td>۳</td>
<td>دما</td>
<td>۳</td>
<td>دما</td>
<td>۳</td>
</tr>
<tr>
<td>میزان</td>
<td>۹/۰۰۰۰۰۰</td>
<td>۷/۰۰۰۰۰۰</td>
<td>۱۰/۳۸/۰۰۰۰</td>
<td>۳</td>
<td>دما</td>
<td>۳</td>
<td>دما</td>
<td>۳</td>
</tr>
<tr>
<td>میزان</td>
<td>۶/۰۰۰۰۰۰</td>
<td>۶/۰۰۰۰۰۰</td>
<td>۵/۰۰۰۰۰۰</td>
<td>۳</td>
<td>دما</td>
<td>۳</td>
<td>دما</td>
<td>۳</td>
</tr>
<tr>
<td>میزان</td>
<td>۴/۰۰۰۰۰۰</td>
<td>۴/۰۰۰۰۰۰</td>
<td>۴/۰۰۰۰۰۰</td>
<td>۳</td>
<td>دما</td>
<td>۳</td>
<td>دما</td>
<td>۳</td>
</tr>
<tr>
<td>میزان</td>
<td>۲/۴۰۰۰۰۰</td>
<td>۲/۴۰۰۰۰۰</td>
<td>۲/۴۰۰۰۰۰</td>
<td>۳</td>
<td>دما</td>
<td>۳</td>
<td>دما</td>
<td>۳</td>
</tr>
<tr>
<td>میزان</td>
<td>۱/۹۰۰۰۰۰</td>
<td>۱/۹۰۰۰۰۰</td>
<td>۱/۹۰۰۰۰۰</td>
<td>۳</td>
<td>دما</td>
<td>۳</td>
<td>دما</td>
<td>۳</td>
</tr>
<tr>
<td>میزان</td>
<td>۱/۶۱۰۰۰۰</td>
<td>۱/۶۱۰۰۰۰</td>
<td>۱/۶۱۰۰۰۰</td>
<td>۳</td>
<td>دما</td>
<td>۳</td>
<td>دما</td>
<td>۳</td>
</tr>
<tr>
<td>میزان</td>
<td>۰/۱۲۱۰۰۰۰</td>
<td>۰/۱۲۱۰۰۰۰</td>
<td>۰/۱۲۱۰۰۰۰</td>
<td>۳</td>
<td>دما</td>
<td>۳</td>
<td>دما</td>
<td>۳</td>
</tr>
</tbody>
</table>

می‌میند دار سطح احتمال ۱ درصد.

نتایج تجزیه و ارائه نشان داد که اثر تیمارهای مختلف پرامینگ بذر ب‌ر مقدار پروپین محلول، میزان فعالیت آنزیم گاکاکول پراکسیدان و میزان فعالیت آنزیم کالتالاز در سطح احتمال ۱ درصد می‌میند. بنابراین اثر دما بر کاهش پرامینهای آنژیها و افزایش ثابت در سطح احتمال ۱ درصد می‌میند. بنابراین اثر دما بر کاهش پرامینهای آنژیها و افزایش ثابت در سطح احتمال ۱ درصد می‌میند. بنابراین اثر دما بر مقدار پروپین محلول، میزان فعالیت آنزیم گاکاکول پراکسیدان و میزان فعالیت آنزیم کالتالاز تیمارهای مختلف در دمای متوسطی دارای اختلاف آماری معنی‌داری دارند. (جدول ۳).

نتایج تجزیه و ارائه نشان داد که برای مقدار پروپین، مقدار پروپین محلول، میزان فعالیت آنزیم گاکاکول پراکسیدان و میزان فعالیت آنزیم کالتالاز تیمارهای مختلف در دمای متوسطی دارای اختلاف آماری معنی‌داری دارند. (جدول ۳).
جدول ۴- نمودنگی رگرسیون اثر تنش سرمایه‌گذاری پروریپلین، مقدار پروپتی محول، میزان فعالیت آنزیم گاباکول پرکسیداز و میزان فعالیت آنزیم کاتالاز گیاه نخودفرنگی تحت تیمارهای مختلف پرپتی‌بند

| شاهد | اسپومپریم | هایپرپریم | شاهد
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>شکل</td>
<td>درجه دو</td>
<td>درجه دو</td>
<td>درجه دو</td>
</tr>
<tr>
<td>۱/۷۱۵۴</td>
<td>۰/۰۱۵۴</td>
<td>۰/۰۱۵۴</td>
<td>۰/۰۱۵۴</td>
</tr>
<tr>
<td>۰/۲۴۳۵</td>
<td>۰/۰۱۵۴</td>
<td>۰/۰۱۵۴</td>
<td>۰/۰۱۵۴</td>
</tr>
<tr>
<td>۰/۳۷۶۸</td>
<td>۰/۰۱۵۴</td>
<td>۰/۰۱۵۴</td>
<td>۰/۰۱۵۴</td>
</tr>
<tr>
<td>۰/۳۶۶۸</td>
<td>۰/۰۱۵۴</td>
<td>۰/۰۱۵۴</td>
<td>۰/۰۱۵۴</td>
</tr>
</tbody>
</table>

مقدار جدول یانگر سطح اختلال است

دما ۳ درجه سانتی‌گراد تیمار شاهد کبیرین مقدار پرپتی

را به خوب اختصاص داد. در حالی که تیمار اسپومپریم

به همراه تیمار هایپرپریم یکشان مقدار پرپتی را داشتند و

تیمار هایپرپریم که در دما ۹ درجه سانتی‌گراد برتر از

سایر تیمارها بود در سطح پایین‌تر نسبت به تیمارهای

اسپومپریم و هایپرپریم قرار گرفت. تیمارهای

اسپومپریم و هایپرپریم در دما ۳ درجه سانتی‌گراد

باعث افزایش ۱۰ و ۳۴ درصدی مقدار پرپتی برتدر نسبت

به تیمار هایپرپریم و شاهد شدن (شکل ۴).

پس از اجبار آتی پرپتی‌بند، هورمون جیبری‌بلین از جنین

ترشح شده و به لایه انتریون (خارجی‌ترین لایه آندوسپرم)

انتقال می‌یابد این لایه هم به عنوان بافت ذخیره‌ای و هم

به عنوان ترشح کننده آنزیم‌های هیدرولیتیکی عمل می‌کند. در

نهایت این آنزیم‌ها به لیه‌ها انتقال یافته و موجب هیدرولیز

ترکیبات ذخیره‌ای لیه‌ها از جمله پرپتی‌های تولید اسید آمی‌ن

پرپتی‌بند طی جوانه‌زنی می‌گردد (آزمایش و همکاران، ۱۳۸۷). پرپتی در مراکش با سایر اسپورتیت‌های منقول به‌ویژه

فندی معمولی و کلی، از کارایی بالاتری برای حفاظت در

برابر تنشها برخورد است و با روش مستقیم در ثبت بخشیدن

به مکروگون‌ها و لاگهای آگیکی آنها و تیز به‌علاط

یکپاره‌ای اکسیداسیون شود، به‌طور غیر مستقیم اثر حفاظتی

نشان میدهد (کرمان و عطایی براند، ۱۳۷۸). تجمع پرپتی

تحت شرایط نش ممکن است بعلت کاهش اکسیداسیون

پرپتی با تحریک ستر آن از گلتنمات با افزایش علتی قرار

که منجر به

طرح پرسنل سلون‌نشان و فشار لازم برای توسه به پرپتی باشد (شرما و کهاد، ۲۰۰۶).

در بهبود پرپتی‌بند شدن و حفظی فاکتور به

ال‌پرپتی‌بند می‌گردد. در نتیجه پیکرهگی غشاء بی‌پر

جولگی‌بران ترشح پرپتی‌ها حفظ می‌شود. بوسیله تیز

(۱۳۸۳) تیز گرزوش کردن که پرپتی‌بند بر موجب افزایش

مقدار پرپتی در گیاه‌های بونه‌کار و ماشک
گل خوشه‌ای تحت تنش سرما گردد.

پرونده مخلوط‌های مهتاب‌دار که در شکل 5 مشاهده می‌شود روند تغییرات مقدار پرونده محلول در تیمارها هیدروپرایمینگ، هایلولارایمینگ، و اسپرایمینگ به صورت درجه‌بندی شده برای تیمارها هایلولارایمینگ کاهش دما باعث تغییرات در مقدار پرونده محلول به صورت مجدب گردد. در صورتی که در تیمار شاهد با کاهش دما مقدار پرونده محلول به صورت خطی تغییر یافته، تیمار هایلولارایمینگ در کلیه دماهای جر دما 6 درجه سانتی‌گراد نسبت به سایر تیمارها مقدار پرونده محلول بیشتری را نشان داد. به‌طور کلی در دمای 12 درجه سانتی‌گراد در سطح بالاتری نسبت به تیمار شاهد قرار گرفت و سایر تیمارها اختلاف معنی‌داری نداشت. این در حالی است که با کاهش دما به 9 درجه سانتی‌گراد کلیه تیمارها در سطح بالایی نسبت به تیمار هایلولارایمینگ قرار گرفتند. تیمار اسپرایمینگ که در دمای 9 درجه سانتی‌گراد مقدار پرونده محلول را نشان داد با کاهش دما به 6 درجه سانتی‌گراد به‌همراه تیمار هایلولارایمینگ بیشتر از سایر تیمارها پیوست و تیمار هایلولارایمینگ که در دمای 9 و 12 درجه سانتی‌گراد برتر از سایر تیمارها بود مقدار پرونده محلول کمتری داشت اما در دمای 3 درجه سانتی‌گراد بیشترین مقدار پرونده محلول مربوط به تیمار هایلولارایمینگ بود و باعث افزایش

شکل 5- پایین‌ترین مقدار پرونده محلول بدور پراپلی شده نخودفگی به تنش سرما
الترامیساکت بایر برخی گیاهشناسان فیزیولوژیکی مؤثر ب حواشی عشاق

هیدروپرومین جون آب بدون هیچ گونه محصوله (پاناسیل منفی ناشی از حل شدن مواد) در اختیار برخی قاره گرفته واکنشهای بیوشکی با سرعت بیشتری انجام می‌دهد. در نتیجه میزان پراکسید هیدروفنژن بیشتری تولید گردید و بعینال آن میزان فعالیت آنزیم کاپاکسید در دمای ۶ درجه سانتی‌گراد افزایش یافت. تیمار هالورپیتوژن نیز از طریق (NO₃⁻ و K⁺) تأثیر عناصر غذایی مورد نیاز برای شرک جنینی

موجب افزایش فعالیت‌های بیوشکی با سرعت بیشتری آن افزایش میزان H₂O₂ تولیدی می‌گردد. تولید بیشتر پراکسید هیدروفنژن در اثر نش بی‌کار با پراکسیداسین لیبلهای غذایی و در نتیجه کاهش پابندی غذا، نشت کرولوژی‌ها، خشکسی سریع و مرض سلیم‌ها می‌شود. بپردازی، میزان فعالیت آنزیم کاپاکسید به جهت تجزیه پراکسید هیدروفنژن و آب‌سیب به گاه‌ها در جریان افزایش یافته. تنها و همکاران (۱۳۵۱) با (Cicer arietinum) گزارش کرده که در گیاه‌های نخود کاهش دما ۲ تا ۵ درجه سانتی‌گراد میزان پراکسید هیدروفنژن و در بینال آن میزان فعالیت آنزیم کاپاکسید به جهت تجزیه پراکسید به‌طور بیشتری با کاهش بیشتری تولید کاهش شدید فعالیت‌های متابولیکی ایست. پیش‌تری شکل نشده و نیاز به تجزیه آن از طریق افزایش فعالیت آنزیمی نمی‌باشد.

کاتالاز: در کلیه‌های تیمارها کاها میزان فعالیت آنزیم کاتالاز با مصرف عنصر در دمای ۶ درجه سانتی‌گراد به گونه‌ای که روند تغییرات در تیمارها اصلی‌تر از فعالیت‌های هیدروپرومین و اسپروپرومین برعکس تیمارها هیدروپرومین و به‌صورت هم‌اکنوان به‌صورت درجه دو مقفر بود. تیمار شاهد که تا دمای ۹ درجه سانتی‌گراد در سطح پایین‌تر نسبت به سایر تیمارها قرار داشت و در دمای ۶ درجه سانتی‌گراد با تیمار هالورپیتوژن و در دمای ۳ درجه سانتی‌گراد با تیمار هیدروپرومین هم‌سطح شد. در دمای ۱۲ درجه سانتی‌گراد تیمار اسپروپرومین به‌سوی افزایش آنزیم کاتالاز را به خود اخراج داد و با تغییر در سطح تیمارها به‌طور کلی نسبت به تیمارها هیدروپرومین و هالورپیتوژن قرار گرفت. با کاهش دما به ۶ درجه سانتی‌گراد کمترین میزان فعالیت این غشکی در زنوبی متصل به یونجه، تقییاً ثابت بود که به‌نظر می‌رسد در حفظ ساختار گیاه و انجام فعالیت‌های گیاهی مطلوب بوده است. در حالی که در زنوبی حساس به افزایش شدت نش، غلظت پروپونت های محلول به‌شمار کاهش یافت که می‌توان نشان از کاهش فرآوانی پیش‌بازهای تولید کم‌شد پروپونت‌ها (مواد معدنی و آلو) و کاهش بیان زنها یا پایان نشان‌های آنها بیان‌شده.

گاکاکل پراکسیداز: شکل ۱ بانان آن است که با کاهش

دا میزان فعالیت آنزیم کاپاکسید تحت تیمار‌های اسپروپرومین و شاهد به‌صورت خشک تیمار بافت، ای‌ن در حالی است که روند تغییرات در تیمارها هیدروپرومین و هالورپیتوژن به‌صورت درجه دو بود. با این تفاوت که تیمار هالورپیتوژن برخلاف تیمار هیدروپرومین کاهش دما باعث تغییر در میزان فعالیت این آنزیم به‌صورت درجه دو مقفر گردید. در دمای ۹ و ۶ درجه سانتی‌گراد افتاد

معنی‌داری بین تیمارهای مختلف مشاواهی نشان اما کاهش دما به ۶ درجه سانتی‌گراد تیمار هیدروپرومین در سطح بالاتری نسبت به سایر تیمارها قرار گرفت و سایر تیمارها در این دما اختلاف معنی‌داری وجود نداشت. در دمای ۳ درجه سانتی‌گراد برخلاف دمای ۶ درجه سانتی‌گراد کمترین میزان فعالیت آنزیم کاپاکسید مربوط به تیمار هیدروپرومین بود که تیمار شاهد هم‌سطح شد. پیش‌ترین میزان تغییرات این آنزیم در دمای ۳ درجه سانتی‌گراد در تیمار هالورپیتوژن مشاهده گردید و پس از آن آنزیم کاپاکسید پراکسیداز در فعالیت‌های هیدروپرومین را نشان داد. با توجه به عدم افزایش فعالیت آنزیم کاپاکسیداز در تیمار‌های مختلف تا دمای ۹ درجه سانتی‌گراد، می‌توان گفت که کاهش تولید پراکسید هیدروفنژن (H₂O₂) حداکثر بوده (ضامن) با دیل کمای کاهش آنزیمی لازم برای تجزیه آن به‌طور داخلی تولید شده، نتیجه‌گیری از طریق افزایش فعالیت آنزیمی نمی‌باشد. اما با کاهش بیشتر به‌طور کار در دمای ۳ درجه سانتی‌گراد فعالیت آنزیم کاپاکسیداز به‌طور جلوگیری از آسیب‌های وارد شده به یک‌یا حفظ هم‌مواد افزایش یافته در تیمار
فعالیت این آنزیم با کاهش دما به کمتر از ۵ درجه سانتی‌گراد افزایش نمی‌شود. در رقیب پیرور به‌واسطه کاهش فعالیت‌هاي یوپتی‌میکی گیاهی در دماهای پایین میزان پراکسید هیدروژن تولیدی بعنوان ماده جانبی حاصل از این واکنش کاهش یافته. در نتیجه افزایش در میزان فعالیت این آنزیم به‌عنوان نشان‌دهنده نشان داده شده که تجزیه پراکسید هیدروژن مشاهده شده، و Nayyar و همکاران (۲۰۰۵) نیز در پرلیس گیاهچه‌های ۱۴ روزه نخود مشاهده کردند که کاهش دما به ۴ درجه سانتی‌گراد باعث ۳۰ درصد تراوش بیشتر شده، در حالی که تغییر با دمای پایین به‌میزان ۱۰ درجه سانتی‌گراد بدست آمده ۶ روز، با کاهش تولید پراکسید هیدروژن، ۵۰ درصد تراوش بیشتر ۲ درجه سانتی‌گراد کاهش داد. در آزمایش‌های حاضر نیز با کاهش دما به ۳ درجه سانتی‌گراد میزان فعالیت آنزیم کاتالاز در تیمار آنزیم در تیمار اسپرینگ‌مکس مشاهده شد در حالت که در دمای ۳ درجه سانتی‌گراد تیمار اسپرینگ‌مکس برتر از تیمار‌های هیدروپرسیک و شاهد بود. تیمار هیدروپرسیک به دمای ۱۲ درجه سانتی‌گراد اختلاف چندانی با تیمار هالوپرسیک نداشت، با کاهش دما تا ۶ درجه سانتی‌گراد برتر از تیمار‌های هالوپرسیک و بیشترین میزان فعالیت را نشان داد. تیمار در صورتی که در دمای ۳ درجه سانتی‌گراد تیمار هالوپرسیک در بالاترین سطح نسبت به سایر تیمارها قرار گرفت (شکل ۷). و نایی و همکاران (۲۰۰۵) با بررسی اثر کاهش سرمایه در فعالیت آنزیم کاتالاز در مراحل جوان‌سالی و گیاهچه‌ای ارقام مختلف نخود (Cicer arietinum) دریافت کنند که با کاهش دما به کمتر از ۵ درجه سانتی‌گراد فعالیت آنزیم کاتالاز در ارقام ۸۲ و پیونج افزایش یافته اما در رقم پیرور، میزان IL84
با توجه به نتایج حاصل از ان پژوهش پرایمینگ با آب مفطر و تیزیت اکسیدی نیترات از طریق آنزیم های آنیکسیدانتی توانایی گیاه جهت تغییرات مربوط به عقب‌زدایی آزاد آزاد گیاهی از این گیاه می‌تهند، این میزان تبدیل آنژیم و درصد جوانه‌ای بدون این گیاه، به عنوان کود سبز در مناطق استانی و نسبت کشور می‌باشد.

پرایمینگ با پیل این کلایکول نه تفاوت جوانه‌ای بذور گیاه نخودرفته‌کردن تحت نش سرم مؤثر نمی‌باشد بلکه در برخی دماها باعث کاهش پاپارتمهای جوانه‌ای بذور این گیاه کود سبز نیز می‌گردد.

سیاست‌گزاری:

بدین روشی از مساعدت مالی دانشگاه شهرکرد در اجرای این پژوهش قدردانی می‌گردد.

کلمات جوهران، ر. و عطالقی برزندی، ص. (۱۳۹۲) مطالعه اثر نش شوری بر پرخی از خاصیته‌های رشد در سه گونه از جنس اسپرس (Onobrychis) اسپرس ۸۵:۳۹-۴۲.

مری محمدی میبدی، س. و. و ترکون اصفهانی، س. (۱۳۸۲). جنوبی فیزیولوژی و پزشکی نشیب گیاه و یخ‌زده گیاهان زراعی. انتشارات کلی.

وتابی، م. سه و. سیب، غ. و. و حیدری، غ. (۱۳۸۰). تاثیر نش سرم در مرحله جوانه‌انی و گیاه‌های بر فعالیت آنزیم‌های آنتی‌اکسیدان و بری‌های صفات فیزیولوژیکی در (Cicer arietinum). نشریه پژوهش‌های زراعت ایران ۵:۳۵۴-۳۵۴.

پس؛ تونی‌پا (۱۳۹۳) پایان تاریخ کارشناسی ارشد علوم و تکنولوژی بذور، دانشکده کشاورزی، دانشگاه شهرکرد.

Ansari, O. and Sharif zadeh, F. (2012) Osmo and hydro priming mediated germination improvement under cold stress conditions in mountain rye (Secale (...

