اثر پراپیمینگ بذر بر برخی خصوصیات فیزیولوژیک مؤثر بر جوانه‌زنی بذر نخودفرنگی (Pisum sativum L.) تحت تنش سرما

الهام بوسفی نته‌ا، سیف‌اله فلاح۰۰ و علی تدین۲

دانشگاه سبز کارشناسی ارشد علوم و تکنولوژی پلد، دانشگاه شهرکرد و گروه زراعت، دانشکده کشاورزی، دانشگاه شهرکرد

(تاریخ دریافت: ۱۳۹۳/۰۸/۰۲، تاریخ پذیرش نهایی: ۱۳۹۴/۰۳/۱۵)

چکیده:

به منظور بررسی اثر پراپیمینگ بذر بر برخی خصوصیات فیزیولوژیک مؤثر بر جوانه‌زنی بذر نخودفرنگی (Pisum sativum L.) تحت تنش سرما، آزمایش بهصورت فاکتوریل در قالب طرح کاکل‌بندی انجام شد. نتایج آزمایش نشان داد که تنش سرما به عنوان کاهش خیلی سرعت جوانه‌زنی تحت تیمار هیدروپریمینگ و هالورپریمینگ، همسونی بود. به‌طورکلی نتیجه‌گیری شد تیمارهای هیدروپریمینگ و هالورپریمینگ باعث بهبود دادن شرایط فیزیولوژیکی و در نتیجه بهبود سرعت و درصد جوانه‌زنی بذر تحت نخودفرنگی در دامی پایین شدند که امکان استقرار و رشد بهتر این گیاه تحت تنش سرما را فراهم می‌نماید. این امر می‌تواند در افزایش پلت‌سیل درآمدی یکی‌گیاه به عنوان کورد سبز در مناطق معتدل و سرد کشور مفید باشد.

واژه‌های کلیدی: اسپری‌پریمینگ، نهایی، پتراپ انتی‌سیم، هیدروپریمینگ

مقدمه:

اغلب خاج‌های کشاورزی به دلیل ناپایداری شکل‌های معدنی نیتروژن، از نظر میزان نیتروژن فیبر هستند. علاوه بر این هنگام آبیاری و یا پایداری، عدم تهیه خاج‌های نیتروژن، به ویژه در خاج‌های شنی، شسته شده و همچنین شنیداری آمونیوم در چین خاج‌های محدود می‌باشد. بنابراین، عدم جایگزین کافی نیتروژن برداشت شده توسط گیاهان، منجر به کاهش فراهم نیتروژن در خاج و افزایش نیاز به کورد نیتروژن

می‌گردد (عبدی و همکاران، ۱۳۹۱). از طرفی، تأثیرات

نامطلوب کودهای و آفت‌کش‌ها بر محیط زیست منجر به توجه و استفاده بیشتر از روشهایی که در آن نیاز به مصرف مواد شیمیایی تابش و یا حداکثر مصرف این مواد را کاهش دهد (FAO, ۲۰۰۴). یکی از راهکارهای عملی برای رسیدن به این هدف، کشت گیاهان است که به عنوان کورد سبز می‌توانند جایگزین مناسبی برای کودهای شیمیایی محصول شده (عبدی و همکاران، ۱۳۹۱) و در تحقیق کاوشروی پایدار نیز مؤثر

نورسند، نشان‌دهنده پست الکترونیکی: falah1357@yahoo.com
خسارت سرمادگی (بین صفر تا ۲۰ درجه سانتی‌گراد) و خسارت خیزدمقی (کمتر از صفر درجه سانتی‌گراد) از مهم‌ترین تنش‌های غیرنظامی مؤثر بر رشد و عملکرد گیاه است (Thakur et al., 2010). به طوری که در مناطق معتدله و فوق‌الشده سرمایه در زمستان در غلظت میزان بروز خسارت‌های شدید در گیاهان می‌شود. تأثیر دامی پایین طی جوانه‌نی می‌تواند سبب کاهش درصد جوانه‌ی و احتمال در خورشید بذر در گونه‌نی مختلف و ارقام زراعی گردد (Patade et al., 2011). نشان سرمایه علاوه بر کاهش درصد و سرعت جوانه‌نی و استفرار نانوایی‌ها افزایش گونه‌های اکسیژنی فعال (Reactive Oxygen Species) و تولید رادیکال‌های آزاد اکسیژنی می‌گردد که پاسخ عمومی به گیاهان نشان‌های نظامی می‌باشد (Yu and Rengel, 1999).

استفاده از مواردی مثل پوشش‌های سیاه جوانه‌نی، تغییر در سطح غلاف جرجا و سهولتی افزایش دهنده درصد نشان‌های نظامی می‌تواند سبب کاهش درصد و سرعت جوانه‌نی و استفرار نانوایی‌ها افزایش گونه‌های اکسیژنی فعال (Reactive Oxygen Species) و تولید رادیکال‌های آزاد اکسیژنی می‌گردد که پاسخ عمومی به گیاهان نشان‌های نظامی می‌باشد (Yu and Rengel, 1999).

استفاده از مواردی مثل پوشش‌های سیاه جوانه‌نی، تغییر در سطح غلاف جرجا و سهولتی افزایش دهنده درصد نشان‌های نظامی می‌تواند سبب کاهش درصد و سرعت جوانه‌نی و استفرار نانوایی‌ها افزایش گونه‌های اکسیژنی فعال (Reactive Oxygen Species) و تولید رادیکال‌های آزاد اکسیژنی می‌گردد که پاسخ عمومی به گیاهان نشان‌های نظامی می‌باشد (Yu and Rengel, 1999).
کشاورزی دانشکده شهرکرد در سال ۱۳۹۲ انگیزش داد. آزمایش به صورت فاکتورلی در قالب طرح کلاً‌تال تصادفی با ۴ نمونه انجام گرفت. تیمار‌های مختلف پرورش‌های (هیدروپرورش‌های هالوپرورش‌ها، اسپرلپرورش‌ها و شاهد (عکس پرورش‌های) به عنوان فاکتور اول و دو دلایل مختلف (۹، ۶، ۵ و ۱۳ درجه سانتی‌گراد) به عنوان فاکتور دوم مورد بررسی قرار گرفتند. تیمار هیدروپرورش‌ها باید به مقدار ۱۲ ساعت، هالوپرورش‌ها با غلظت ۳/۶ مگاگلیکولی کشور و اسپرلپرورش‌ها با غلظت ۱/۵ مگاگلیکولی کشور لازم بود. برای تیمار یپاپرورش‌های مورد نظر، مقادیر PEG6000 با استفاده از Kaufmann and Michel (۱۹۳۷) و نتایج تایپی با Siebert and Ansari و Sharp zadeh (۲۰۱۲) تعیین گردید.

(Siebert and Poly, ۲۰۰۲)

در این ارتباط پرورش‌های بذر به عنوان یک روش معمول به‌منظور افزایش سرعت و یک‌جا کنی جوانزی در مزرعه، آزمایش به‌نیم‌های از گونه زراعی مهم، مورد انتخاب و اجرای فرآیند است (Ashraf and Foolad, ۲۰۰۵). پرورش‌های بیشتری خاصی گرفتن می‌شود که برای افزایش درصد و یک‌جاپذی جوانزی‌های بذر و به‌مواد گیاهی‌ها و شاهد با پرورش‌های بذر در برای تشخیص محیطی به‌کار گرفته می‌شود (Ansari and Sharif zadeh, ۲۰۱۲) و شامل فراکنی است که طی آن تا اضافه‌ای به بذر اضافه‌ی جذب آب داده می‌شود که فعالیت‌های فیزیولوژی‌های جوانزی و شروع و مرحله سرما است (Posnyk and Janas, ۲۰۰۷).

از آنجا که نخود فرگنگی از گیاهان کود سبز ارزشمند است، حکایت آن در تربیت با غلات علوراه بودن‌می‌تواند در تربیت زیستی نیروز و در تربیت کاهش مصرف کودهای شیمیایی مؤثر باشد. با توجه به اولویت آبیاری غلات در یکپارچه و همچنین محدودیت‌های آب قابل دسترس، در مناطق کشت‌که دارای بارندگی مناسب سهند، شکت گیاهان کود سبز به‌صورت دیم توجه پذیری است. این در حالی است که تأکید در شروع بارندگی‌های پایانی مراحل جوانزی و سبز شدن این بذر گیاهان را تا تشکیل دادن‌می‌تواند به‌مثابه دین‌می‌تواند. بنابراین این طبقه‌بندی به‌هدف بررسی اثر تیمارهای مختلف پرورش‌های بذر نخودفیانکی جهت کشت تحت شرایط سرما اجرا گردید.

مواد و روش‌ها:

آزمایش در آزمایشگاه علوم و تکنولوژی بذر دانشگاه
شدن. در نهایت میزان جذب نور در طول موج 540 نانومتر قرار گرفته.

بروتون محلول: جهت اندازه‌گیری مقدار پروتئین محلول به روش Bradford (1976) 50 میکرویلتر از عصاره گیاهی مورد نظر به 3 میلی‌لیتر محلول براویفورد اضافه گردید و پس از اختلاط کامل، بالا‌الافضل میزان جذب نور در طول موج 595 نانومتر قرار گرفت.

آزمی گاکلر پرکسیداز: برای اندازه‌گیری میزان فعالیت آزمی گاکلر پرکسیداز به روش و همکاران Mac Adam (1992) پس از افزودن 50 میکرویلتر عصاره گیاهی به محلول حاوی بافر سفید، گاکلر و پرکسیداز هیدروفیز میزان جذب نور در طول موج 240 نانومتر قرار گرفت.

آزمی کاتالاز: به منظور اندازه‌گیری میزان فعالیت آزمی کاتالاز به روش Abei (1984) نیز پس از افزودن 50 میکرویلتر عصاره گیاهی به محلول حاوی بافر سفید، آب مفطر و آب اکسیژن میزان جذب نور در طول موج 240 نانومتر قرار گرفت. در پایان آزمایش، داده‌ها به‌صورت SAS فاکتوریال در قلب طرح کاملاً تصادفی به سوال افراد مورد تجزیه واریانس قرار گرفتند. همچنین تجزیه و تحلیل رگرسیون برای میانگین‌های میان‌مقدار حاصل از تجزیه واریانس انجام شد و برای میانگین‌های که تجزیه رگرسیونی آن‌ها میان‌مقدار نشان می‌داد، با استفاده از آزمون LSD سطح 5 درصد انجام شد.

نتایج و بحث:
نتایج تجزیه واریانس نشان داد که اثر تیمار‌های مختلف پرایمینگ بذر بر سرعت جوانزی و شدت تیمی با تغییر در سطح احتمال یک درصد معنی‌دار بود. همچنین اثر دما نیز بر کلیه پرایمینگ‌های اندوز خیزی شده در سطح احتمال یک درصد معنی‌دار نبود. اثر تقابل پرایمینگ بذر با دما نیز بر کلیه صفات برسی شده در سطح احتمال 5 درصد معنی‌دار بود (جدول 1).

سرعت جوانزین: نتایج تجزیه و تحلیل رگرسیونی نشان می‌داد که آب مفطر اضافه شد و جهت جلوگیری از تبخیر آب موجب در بردن دیش‌ها، در هر پتی دیش باید پارافایم کشیده شد (به علت درشت بودن به نگهداری بسیار مرطوبی 50 عدد بذر در 2 پتی دیش کشته گردید). در نهایت پتی دیش‌ها با زرین‌نارن انتقال داده شدند و به‌مدت 8 روز در دمای‌های 15، 12، 9 و 6 درجه سانتی‌گراد در شرایط تابستانی تکه‌داده شدن (ISTA، 2009). جوانزین‌های ده 24 ساعت بر ISTA منبی خروج رشته‌به‌ره اندام‌های 2 میلی‌متر ثبت گردید (1) در طول اجرای آزمایش بر حسب نیاز 5-3 میلی‌لیتر آب مفطر به هر پتی دیش اضافه شد. پس از 8 روز ابتدا پرایمینگ‌های سرعت گونه‌زی و درصد جوانزین‌های در هر دما به‌صورت جدایگان با استفاده از روابط زیر محاسبه گردید:

$GR = \frac{\sum (Gt / Dt)}{8}$

GR = ضایع بذر بر حسب Gt در روز 1ام $= \frac{Z \times (Z - 1)}{Y}$

$GP = \frac{100}{(Z \times (Z - 1))}$

$VI = \frac{SG \times SDW}{mg}$

$SG = \frac{VI}{mg}$

$SDW = \frac{Z \times (Z - 1)}{Y}$

در نهایت از هر پتی دیش مقدار 5/0 گرم کاریته وزن شد و مقدار پرولین، مقدار پروتئین محلول و میزان فعالیت آزمی‌های گاکلر پرکسیداز و کاتالاز در چهار سطح دما بیش از 9، 12 درجه سانتی‌گراد اندوز خیزی شد. پارافایم در مشابه‌سازی (Bates 1979) با مقدار پرولین به روش (اندازه‌گیری) شد. بدین منظور به عصاره گیاهی سانتریوز شده مقدار 2 میلی‌لیتر اسید نیتریک و 2 میلی‌لیتر اسید استیک سالمانه اضافه شد و به‌وسیله مخلوط شدند. سپس نمونه‌ها در حمام آب کرم به مدت 1 ساعت حرارت داده شدند و درون حمام بی‌گرم بود. پس از قرار گرفتن، در نهایت مقدار 4 میلی‌لیتر تولکین به محلول‌های حاصله اضافه شدند و به مدت 20 ثانیه بی‌هوای و
جدول 1- تجزیه واریانس انحراف‌های بذر بر سرعت جوانه‌زی درصد جوانه‌زی و شاخص بینه یادگیری نخودفرنگی تحت تنش سرمایه‌ای.

<table>
<thead>
<tr>
<th>شاخص</th>
<th>درصد جوانه‌زی</th>
<th>سرعت جوانه‌زی</th>
<th>درجه آزادی</th>
<th>منابع احتمالات</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲۵۰۲</td>
<td>۳۸۸/۵۰</td>
<td>۱۰/۹۳</td>
<td>۳</td>
<td>نوع پرایم‌بند</td>
</tr>
<tr>
<td>۲۴۸۸۵۷</td>
<td>۸/۸۷</td>
<td>۱۲/۵۳</td>
<td>۴</td>
<td>دما</td>
</tr>
<tr>
<td>۶۶۳۸۷</td>
<td>۷/۱۲</td>
<td>۲/۱۸</td>
<td>۱۲</td>
<td>نوع پرایم‌بند</td>
</tr>
<tr>
<td>۰/۶۹</td>
<td>۶۰</td>
<td>۰/۳۵</td>
<td>۶۷</td>
<td>خطای آزمایشی</td>
</tr>
<tr>
<td>۱/۰۸</td>
<td>۷۶</td>
<td>۸</td>
<td>ضریب تغییرات (R²)</td>
<td></td>
</tr>
</tbody>
</table>

یعنی ترتب غیر معنی‌دار، معنی‌دار در سطح احتمال ۵٪ و درصد ۱.

جدول ۲- تابیه نمودن اثر تنش سرمایه‌ی بذر بر سه‌سرعت جوانه‌زی، درصد جوانه‌زی و شاخص تریال یادگیری تحت تیمارهای مختلف پرایم‌بند.

<table>
<thead>
<tr>
<th>شاخص</th>
<th>اسپرمای</th>
<th>هالوپرایم</th>
<th>هیدروپرایم</th>
<th>هیدروپرایم</th>
<th>هیدروپرایم</th>
<th>هیدروپرایم</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاخص</td>
<td>۳۸۸/۵۰</td>
<td>۱۰/۹۳</td>
<td>۲/۱۸</td>
<td>۶۰</td>
<td>۷۶</td>
<td>۸</td>
</tr>
<tr>
<td>درصد</td>
<td>۳۸۸/۵۰</td>
<td>۱۰/۹۳</td>
<td>۲/۱۸</td>
<td>۶۰</td>
<td>۷۶</td>
<td>۸</td>
</tr>
<tr>
<td>سرعت</td>
<td>۳۸۸/۵۰</td>
<td>۱۰/۹۳</td>
<td>۲/۱۸</td>
<td>۶۰</td>
<td>۷۶</td>
<td>۸</td>
</tr>
<tr>
<td>شاخص</td>
<td>۳۸۸/۵۰</td>
<td>۱۰/۹۳</td>
<td>۲/۱۸</td>
<td>۶۰</td>
<td>۷۶</td>
<td>۸</td>
</tr>
<tr>
<td>درصد</td>
<td>۳۸۸/۵۰</td>
<td>۱۰/۹۳</td>
<td>۲/۱۸</td>
<td>۶۰</td>
<td>۷۶</td>
<td>۸</td>
</tr>
<tr>
<td>سرعت</td>
<td>۳۸۸/۵۰</td>
<td>۱۰/۹۳</td>
<td>۲/۱۸</td>
<td>۶۰</td>
<td>۷۶</td>
<td>۸</td>
</tr>
</tbody>
</table>

نسبت به شاهد گردد. در تیمارهای اسپرمای و شاهد میزان تغییرات مشابه بود این تفاوت که در تیمار پرایم‌بند با کاهش دما سرعت جوانه‌زی به‌صورت یک منحنی درجه دو محاسبه یافته در این تیمار اسپرمایک کاهش دمای باعث کاهش خطا سرعت جوانه‌زی شد (کلکل ۱). با این حال، سرعت جوانه‌زی بذر هیدروپرایم شده می‌تواند به‌عث نتیجه RNA (Jaap et al., 1996) یا تریم غشای سالوی و افزایش خلاصه‌های محرک جوانه‌زی (Davidson et al., 1991) نتیجه‌گیری‌های مورد نظر بوده و به یک میزان سرعت جوانه‌زی را نسبت به شاهد افزایش داده. اما با کاهش دما به ۳ درجه سانتی‌گراد تیمار هیدروپرایم همان‌ند دوect. ۱۲ درجه سانتی‌گراد روند تغییرات در تیمارهای هیدروپرایم و هالوپرایم مشابه بوده و به یک میزان سرعت جوانه‌زی را نسبت به شاهد افزایش داده. اما با کاهش دما به ۳ درجه سانتی‌گراد تیمار هیدروپرایم همان‌ند دوect. ۲۰ درجه سانتی‌گراد در سطح بالاتر نسبت به سایر تیمارها قرار گرفت و باعث افزایش ۱۰ درصدی سرعت جوانه‌زی

فارسی گفت و باعث افزایش ۱۰ درصدی سرعت جوانه‌زی.
سانتی گراد درصد جوانزه تیمارهای اسمورپراپیمینگ و شاهد به‌طور معمولی در کاهش یافت. این در حالی است که تیمارهای هالوپراپیمینگ و هیدروپراپیمینگ اثر دایود ۳ درجه سانتی گراد را بر کاهش درصد جوانزه خشی نموده‌اند (شکل ۱). دمای پایینی در طی جوانزه می‌تواند سبب کاهش درصد جوانزه و اکسیژن در اثر خورشید بزرگ و گونه‌ای مختلف و از درازا گردید (Patade et al., 2011). یکنواحی که تنش سرم با تحریک تولید گونه‌های اکسیژن فعال سبب اختلال در جریان انتقال الکترون در پلاکتین‌سیمی می‌شود و منجر به اکسیژن سلولی و تجمع ترکیبات تنوبوریک همراه با پراکسیدانسیون جوی اسید (Thiobitturic acid) می‌گردد (Moynihan et al., 1995). علاوه بر این افزایش تدریجی سرم باعث کاهش نفوذپذیری غشاء سلولی ریشه‌چه می‌گردد (Purvis and Shewfelt, 1993). علاوه بر این افزایش وارد به خون ریشه‌چه کاهش می‌یابد (میرمحمدی مبیدی و ترکش اصفهانی، ۱۳۸۳). یک بُدن دمای خاک در هنگام کشت نیز باعث یکی از دو عامل شده، نشته اکسیژن سلولی و کاهش کاترولیتی‌ها از زبان ریشه‌چه بوده و از جوانزه‌ی جلوگیری می‌کند (کافی و همکاران، ۱۳۸۸). به‌طور جوانزه‌ی بذر بومسیه غیزنگی و تحریک اکسی‌ژن از این‌رو جوی‌پراپیمینگ (Hameed et al., 2010، Sung and Chang، 2000) کل قندی حلال (Lee and Kim، 2000) همراه است. در

![شکل ۱- پاسخ سرعت جوانزه بذر پراپیم شده نخورن‌نتیجه به تنش سرما می‌گیرند قبل از سیستم غشاء و نشته‌کتولولیت‌ها در مقایسه با شاهر جوانزه برنده و استقرار یافته. این در حالی است که جذب آب در تیمار اسمورپراپیمینگ در نتیجه افزایش پتانسیل اسمرو استهت بوده و با افزایش مدت زمان آنتوئی سرعت فرآیندهای متابولیکی در گروه جوانزه شاهد سرعت آنتی‌اکسیدان اکسیژن‌زا در محیط جوانزه آزاد شود و نتیجه‌ی نامطلوب دمای پایینی می‌تواند سیستم شاهدی اکسیژن باعث نتایج آنتی‌اکسیدانی این اندازه کاهش دهد (Moynihan et al., 1995). زرده کاهش سرعت جوانزه شده است. علاوه بر این کاهش اکسیژن ناحیه از پتانسیل اسمرو پلی‌اکسید کلیکول و تاثیر آن بر جنین بذر نیز ممکن است دیگری برای کاهش سرعت جوانزه در این تیمار بگذارد. در آزمایش Ghassemi-Golenzani و همکاران (۲۰۰۸) بذر عدس با آب مقطور و پلی‌اکسید کلاپیکول تأثیر معمولی‌ی دارد درصد جوانزه نشان داد. در حالی که می‌تواند و هیدروپراپیمینگ باعث افزایش سرعت جوانزه نشته به اسمورپراپیمینگ و شاهد گردیده با ترک‌تیب (۲۵ و ۱۲ ساعت). درصد جوانزه: نتایج مقایسه مانگنز نشان داد که برای درصد جوانزه بین تیمارهای مختلف پراپیمینگ در دمای ۱ درجه سانتی‌گراد و بالاتر و هیدروپراپیمینگ در دمای ۳ درجه سانتی‌گراد تفاوت معنی‌داری وجود نداشت. در دمای ۳ درجه
اثر بیولومیک بذر بر خصوصیات فیزیولوژیکی مؤثر بر جوانه‌زنی

شکل 2- اثر مقادیر تیمارهای مختلف پراپینیک بذر و دما بر درصد جوانه‌زنی بذر در گیاه تخم‌فکری. ستون‌های دارای حروف مشابه براساس آزمون LSD در سطح احتمال 5 درصد اختلاف معنی‌داری ندارند.

هیدروپراپینیک قرار گرفت، در دماهای ۹ درجه سانتی‌گراد با تیمار شاهد در یک سطح و در سایر دماهای بالاتر از تیمارهای شاهد، هیدروپراپینیک و اسپورپراپینیک قرار گرفت. روند تغییرات در تیمار اسپورپراپینیک بهصورت خطی بود و نظیر آن شاخص بینه بذر را به‌دست نیختن باتک به موانع شاهد (در دماهای ۳ و ۶ درجه سانتی‌گراد) و پایین‌تر از آن (در دماهای ۱۲ و ۱۵ درجه سانتی‌گراد) متحمل به کاهش شاخص بینه بذر در گردید. بین نتایج نمک نتایزی در سترازیم و RNA و DNA نش اندار و بین نمایانی قابلیت نفوذ پذیرینی دبوار سالوی را افزایش می‌دهد (El-Bassiony, 2006) که موجب سهولت بیوز اندورشیات غذایی بذر از انگور هم به‌سفت محور جنتی، سنتور، تشکیل‌دهنده نوکالوتیدها و بدنالانی، آن رشد بیشتری جنتی (Umair et al., 2010) و در نتیجه افزایش بینه بذر می‌گردد.

شاخص پایه بذر: همان‌طور که در شکل ۳ مشاهده می‌شود، با کاهش دما شاخص پایه بذر تحت تیمارهای هیدروپراپینیک و شاهد به‌صورت درجه بی‌مقدار کاهش یافت، در حالی که در تیمار هالوپراپینیک تغییرات به‌صورت درجه دو محدود بود. تا دماهای ۹ درجه سانتی‌گراد تیمار هیدروپراپینیک در سطح پایین‌تری نسبت به تیمار شاهد قرار داشت و همکار (۲۰۰۰) گوارش کردن‌که اسپورپراپینیک بذر در طبیعت (Vigna radiata) در نمک پاتوری بینه بذر به‌بیش از آن بذر از انگور هم به‌سفت محور جنتی، سنتور، تشکیل‌دهنده نوکالوتیدها و بدنالانی، آن رشد بیشتری جنتی (Umair et al., 2010) و در نتیجه افزایش بینه بذر می‌گردد.

اتم‌بازی گیاه را با تیمار شاهد در دماهای ۶ و ۹ درجه سانتی‌گراد بذر از تیمار اسپورپراپینیک نسبت به تیمار هالوپراپینیک در رنگ‌بندی پایین‌تری قرار داشت (شکل ۳).
جدول ٣- تجزیه و اریافات اثر پراپینگ بدر بر مقدار پرولین، مقدار پروپتین محلول، میزان فعالیت آنزیم گاکول پراکسیداز و میزان فعالیت آنزیم کاتالاز گیاه نخودفرنگی تحت نش سرما

میانگین مربوطات	کاتالاز	گاکول پراکسیداز	پرولین	درجه آزادی	شاخص تغییرات	
					نوع پراپینگ	
					دما	
					نوع پراپینگ	دما
٢/١٣	٠/٢٣	٠/٠٣	٠/٠٣	٠/٠٤	٠/٠٤	
١/٠٢	٠/٠٤	٠/٠٤	٠/٠٤	٠/٠٥	٠/٠٥	
٠/٠٢	٠/٠٣	٠/٠٤	٠/٠٤	٠/٠٥	٠/٠٥	
٠/٠٢	٠/٠٤	٠/٠٤	٠/٠٥	٠/٠٥	٠/٠٥	
٠/٠٢	٠/٠٤	٠/٠٤	٠/٠٥	٠/٠٥	٠/٠٥	
٠/٠٢	٠/٠٤	٠/٠٤	٠/٠٥	٠/٠٥	٠/٠٥	
٠/٠٢	٠/٠٤	٠/٠٤	٠/٠٥	٠/٠٥	٠/٠٥	
٠/٠٢	٠/٠٤	٠/٠٤	٠/٠٥	٠/٠٥	٠/٠٥	
٠/٠٢	٠/٠٤	٠/٠٤	٠/٠٥	٠/٠٥	٠/٠٥	
٠/٠٢	٠/٠٤	٠/٠٤	٠/٠٥	٠/٠٥	٠/٠٥	
٠/٠٢	٠/٠٤	٠/٠٤	٠/٠٥	٠/٠٥	٠/٠٥	
٠/٠٢	٠/٠٤	٠/٠٤	٠/٠٥	٠/٠٥	٠/٠٥	
٠/٠٢	٠/٠٤	٠/٠٤	٠/٠٥	٠/٠٥	٠/٠٥	
٠/٠٢	٠/٠٤	٠/٠٤	٠/٠٥	٠/٠٥	٠/٠٥	

متن دادر سطح احتمال ١ درصد

پرولین: نتایج تجزیه و اریافات نشان داد که اثر تیمارهای مختلف پراپینگ بدر بر مقدار پرولین، مقدار پروپتین محلول، میزان فعالیت آنزیم گاکول پراکسیداز و میزان فعالیت آنزیم کاتالاز در سطح احتمال یک درصد معنی‌دار بود. همچنین اثر دما بر کامل پراپینگ‌ها اندام‌گیری شده در سطح احتمال یک درصد معنی‌دار نشد. علاوه بر این اثر مقابل پراپینگ بدر دما نیز بر پایهٔ کلیه‌ای صفات بررسی شده در سطح احتمال یک درصد معنی‌دار بود (جدول ٣).

نتایج تجزیه و تحلیل رگرسیون نشان داد که برای مقدار پرولین، مقدار پروپتین محلول، میزان فعالیت آنزیم گاکول پراکسیداز و میزان فعالیت آنزیم کاتالاز تیمارهای مختلف در دماهای متفاوت دارای اختلاف آماری معنی‌داری بودند. (جدول ٤)
تایپ نجیه رگرسیون از تنش سرما بر مقدار پرولین، مقدار پروتئین محلول، میزان فعالیت آنزیم گاپاکول پرکسیداز و میزان فعالیت آنزیم کاتالاز گایا خودفرشته تحت تیمارهای مختلف پرایمینک بذر

جدول 4- مقادیر جدول یانگر سطح احتمال است

<table>
<thead>
<tr>
<th>شاهد</th>
<th>هیدروپریام</th>
<th>هالوپریام</th>
<th>اسپرموریام</th>
<th>شاهد</th>
<th>دما (درجه سانتی‌گراد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9216</td>
<td>0.0515</td>
<td>0.0477</td>
<td>0.0451</td>
<td>0.033</td>
<td>12</td>
</tr>
<tr>
<td>9327</td>
<td>0.0514</td>
<td>0.0476</td>
<td>0.0451</td>
<td>0.033</td>
<td>12</td>
</tr>
<tr>
<td>9438</td>
<td>0.0513</td>
<td>0.0475</td>
<td>0.0451</td>
<td>0.033</td>
<td>12</td>
</tr>
<tr>
<td>9549</td>
<td>0.0512</td>
<td>0.0474</td>
<td>0.0451</td>
<td>0.033</td>
<td>12</td>
</tr>
<tr>
<td>9660</td>
<td>0.0511</td>
<td>0.0473</td>
<td>0.0451</td>
<td>0.033</td>
<td>12</td>
</tr>
<tr>
<td>9771</td>
<td>0.0510</td>
<td>0.0472</td>
<td>0.0451</td>
<td>0.033</td>
<td>12</td>
</tr>
</tbody>
</table>

شکل 4- پایه مقادیر پرولین بذر پرایم شده خودفرشته بزین سرما

بزرگ ترین مقدار پرولین یک هیالورونیک عازم کاری و همکاران، (1387) پرولین در مقایسه با سایر اسپرموریام های مندول بروزه قدرتی معولی و کمی از کاراکترتر برای حفاظت در پرولین مشابه از بکریاب و از نماینده امسپرموریام های 1392. به تیمار هیالورونیک بودن پرولین از سایر تیمارها بود سطح یکی تر نسبت به تیمارهای امسپرموریام و هیالورونیک فرق کردن. تیمارهای امسپرموریام و هیالورونیک در دما 3 درجه سانتی‌گراد باعث افزایش 10 و 34 درصدی مقدار پرولین بی‌ترین نسبت به هیالورونیک بذر و شاهد شدند (شکل 4). پس از جذب آب مول پرایمینک، هورمون جهانی از جنین ترشح شده و به لایه اندورون (خارجی ترین لایه انغازه) انتقال می‌یابد این لایه هم به عنوان بافت ذخیره‌ای و هم به عنوان ترشح کننده آنزیم‌های هیدرولیتیکی عمل می‌کند. در نهایت این آنزیم‌ها به لحیه اندازه‌بندی و موجب هیدرولیز ترکیبات ذخیره‌ای لیه‌ها از جمله پروتئین‌ها و تولید اسید آمینه
پروپتین محلول‌های همان‌طور که در نمودار ۵ مشاهده می‌شود، روند تغییرات مقدار پروپتین محلول در تیمارها هیدروپارامینگ و اسپرایمینگ به صورت درجه دو بود. با این تفاوت که در تیمار‌های هیدروپارامینگ و اسپرایمینگ برخلاف تیمار هیدروپارامینگ کاهش دما باعث تغییرات در مقدار پروپتین محلول به صورت درجه دوم حدبیت گردید. در صورتی که در تیمار شاهد با کاهش دما مقدار پروپتین محلول به صورت خطی تغییر یافت، تیمار هیدروپارامینگ در کلیه دماها جر دما ۶ درجه سانتی‌گراد نسبت به سایر تیمارها مقدار پروپتین محلول بیشتری را نشان داد. به‌طور کلی، در دماهای ۱۲ درجه سانتی‌گراد مقدار محلول کروپتین در سطح بالینی در نزدیکی تیمارها گرفت و سایر تیمارها اختلاف معنی‌داری نداشت. این در حالی است که با کاهش دما به ۹ درجه سانتی‌گراد کلیه تیمارها در سطح بی‌پایی نسبت به تیمار هیدروپارامینگ قرار گرفتند. تیمار اسپرایمینگ که در دما ۶ درجه سانتی‌گراد کاهش مقدار پروپتین محلول را نشان داد با کاهش دما به ۹ درجه سانتی‌گراد به‌صورت بی‌همه تیمار هیدروپارامینگ برتر از سایر تیمارها بودند و تیمار هیدروپارامینگ که در دماهای ۹ و ۱۲ درجه سانتی‌گراد برتر از سایر تیمارها بود پروپتین محلول کروپتینی داشت اما در دماهای ۱۲ درجه سانتی‌گراد بیشترین مقدار پروپتین محلول ۷/۸۳ مربوط به تیمار هیدروپارامینگ بود و باعث افزایش...
کاکالک پراپاکیا: شکل ۶ بیانگر آن است که یا کاشت فیبرولوژیک و اسپروپاییمیک و شاهد به صورت خُشی کاشت بافت، این در حالی است که روند تغییرات در تیمارهای هیدروفیلیک و هیدروفیلیپاکیا به صورت دو در دو یا این تفاوت در تیمار هیدروفیلیپاکیا بیشتر و تخفیف تیمارهای کاشت دما باید غیر از میزان فعّالیت این آزمین به صورت درجه دو مقرع گردید. در دماهای ۷، ۱۲ و ۱۷ درجه سانتی‌گراد اختلاف معنی‌داری بین تیمارهای مختلف مشاهده نشده‌ای که، این در دماهای ۷ درجه سانتی‌گراد تیمار هیدروفیلیک و سطح بالاتری نسبت به سایر تیمارهای قرار گرفت و این سایر تیمارها در این دما اختلاف معنی‌داری وجود نداشت. در دماهای ۱۲ و ۱۷ درجه سانتی‌گراد بخشنده دما ۷ درجه سانتی‌گراد کمترین میزان فعّالیت آزمین کاکالک پراپاکیا مریخ به تیمار هیدروفیلیک بود که به تیمار شاهد هم‌سطح شد. بیشترین میزان فعّالیت در این دماهای ۱۲ و ۱۷ درجه سانتی‌گراد در تیمار هیدروفیلیک مشاهده گردید و پس از آن آزمین کاکالک پراپاکیا در تیمار اسمورپاپیمیک فعالیت بیشتری را نشان داد. با توجه به عدم افزایش فعالیت آزمین کاکالک پراپاکیا در تیمارهای مختلف، در دماهای ۹ درجه سانتی‌گراد، آزمین گفت که میزان تولید هیدروفیلیپاکیا (H_{2}O_{3}NO_{3}) حذف بوده (با دلیل کفایت میزان آزمین‌های از درد برای تجزیه آن تولید به تجزیه آن از طریق افزایش فعالیت آزمین‌های نمی‌باشد. اما به کاشت تفاوت‌ها در ۱۲ درجه سانتی‌گراد فعالیت آزمین کاکالک پراپاکیا به معنی‌داری جلوگیری از آسان‌یابی وارد شده به گیاههای و حفظ هستوژن‌های آوازی‌ها یافت. در تیمار
فطایی وبضوطز ییبی، خّس
4، قٕبضٜ
13، ؾبَ
1394
قىُ6- پبؾد ٔیعاٖ فؼبِیت آ٘عیٓ ٌبیبوَٛ پطاوؿیساظ ثصٚض پطایٓ قسٜ ٘رٛز
فطٍ٘ی ثٝ تٙف ؾطٔب
قىُ7- پاس میزان فعالیت آنزم کالالاز بدور پراپیم شده نخودرفیگ به تنش سرما
انزیم در تیمار اسپری‌های هیدروپریمگ مشاهده شد در حالی که در
دمای 3 درجه سانتی‌گراد تیمار هیدروپریمگ برتر از تیمار‌های
هیدروپریمگ و شاهد بود. تیمار هیدروپریمگ که در دمای
12 درجه سانتی‌گراد اختلاف اندکی با تیمار هالوپریمگ
نداشت، با کاهش دما تا 6 درجه سانتی‌گراد برتر از تیمار
هالوپریمگ بود. بنابراین میزان فعالیت آنزم در بین دما و
سازنده که کاهش دما به 4 درجه سانتی‌گراد باعث
میزان آنزم 10 درجه سانتی‌گراد بامدت 6 روز، با کاهش تولید
پراکسید هیدروژن به 50 درصد تراویش پویا 2 دما به 2 درجه
سانتی‌گراد کاهش داد. در آزمایش حاضر نیز با کاهش دما به
3 درجه سانتی‌گراد میزان فعالیت آنزم کالالاز در تیمار
نواحی و همکاران (2005) بررسی گیاه‌های مایه 14 روزه نخود
به 50 درصد تراویش پویا شد. در حالی که تئابن با دما پایین
بهمیزان 10 درجه سانتی‌گراد بامدت 6 روز، با کاهش تولید
پراکسید هیدروژن به 50 درصد تراویش پویا 2 دما به 2 درجه
سانتی‌گراد کاهش داد. در آزمایش حاضر نیز با کاهش دما به
3 درجه سانتی‌گراد میزان فعالیت آنزم کالالاز در تیمار
النترین سطح نسبت به سایر تیمارها قرار گرفت (شکل 7).
نواحی و همکاران (1390) بررسی اثر تنش سرما بر میزان
فعالیت آنزم کالالاز در مرحله جواندشی و گیاه‌های ارقام
مختلف نخود (Cicer arietinum) دریائیند که با کاهش دما به
کمتر از 5 درجه سانتی‌گراد، فعالیت آنزم کالالاز در ارقام
و بسیاری افزایش یافت اما در رقم پروز، میزان
ILC482
هالومیدلگی در بالاترین سطح نسبت به سایر تیمارها قرار گرفت. همانطور که ذکر شد تیمار هالومیدلگی از طریق تأمینِ عناصر غذایی مورد نیاز برش چنین (KNO3) و مواد فعالِ افزایش یافته بیوشیمیایی و بدن‌الان آفتابی میزان تولیدی می‌گردد. بنابراین، میزان فعالیت آنزیم کاتالاز بدون توجه به پراکسید هیدروژن و یک آبی باین، احتمالاً آنزیم کاتالاز پراکسید نقص رشتري را در کاهش خیانت اسداسیونی و تجزیه پراکسید هیدروژن بهره‌ور در شرایط تنش سرمای آبی می‌کند. داشتن هک کاتالاز کارایی کمتری در مقایسه با پراکسیدز در زندگی پراکسید هیدروژن دارد.

نتیجه‌گیری:

متابع:

ایکریم، ر. و عطایی پرزالد، ص. (۱۳۹۲) مطالعه اثر تنش شویی بر برخی از شاخ‌های رشد در سه گونه از جنس Onobrychis اسپرس. ۱۲۱-۱۲۶.

میر محمودی میری، س. و ترکش اصل‌هایی، س. (۱۳۸۳) مصرف‌های فیزیولوژیکی و به‌آن‌زادی تنش‌های سرمای و بی‌دوزی گیاهان زراعی. انتشارات کی‌مز. ۱۵۳.

فردوسی‌نیا، ا.، و هوشه، پ. (۱۳۸۳) تحقیقات بر روی چهارگانه Cicer arietinum در شرایط کوه‌بودن. مجله پژوهش‌های تولید گیاهی تبریز. ۱۹: ۱۴۴-۱۳۷.

کامکار، س. و اکبیری، ف. و الهادی، ا. (۱۳۸۶) تحقیقات بر روی گیاهان و به‌آن‌زادی در شرایط کوه‌بودن. مجله پژوهش‌های تولید گیاهی تبریز. ۱۹: ۱۴۴-۱۳۷.

آسیاری، ا. و شریف زاده، ف. (۲۰۱۲) Osmo and hydro priming mediated germination improvment under cold stress conditions in mountain rye (Secale cereale M. B.) فیزیولوژی ژنتیکی این گیاهان تحت شرایط گلوله پژوهش‌های تولید گیاهی تبریز. ۱۹: ۱۴۴-۱۳۷.

Ansari, O. and Sharif zadeh, F. (2012) Osmo and hydro priming mediated germination improvement under cold stress conditions in mountain rye (Secale cereale M. B.)

