اثر برایمینگ بر برش خصوصیات فیزیولوژیکی مؤثر بر گونه‌زنی بذر نخودفرنگی (Pisum sativum L.) تحت تنش سرمای

اهالی بوسیله نهال، سیف‌الله فلاح* و علی تدین٢

دانشجوی سابق کارشناسی ارشد علوم و تکنولوژی دانشگاه شهید رحیم و اکراز دانشکده کشاورزی دانشگاه شریف

(تاریخ دریافت: ۱۳۹۳/۱۲/۲۵ تاریخ پایش نهایی: ۱۳۹۴/۶/۲۷)

چکیده:

به نظر برویس اثر برایمینگ بر برش خصوصیات فیزیولوژیکی مؤثر بر گونه‌زنی بذر نخودفرنگی (Pisum sativum L.) تحت تنش سرمای آزمایشی به صورت فاکتوریل در قالب طرح کاملاً تصادفی با ۴ تکرار اجرای شد. تیمارهای آزمایش شامل انجام تیمارهای برایمینگ (هیدروبرایمینگ، هالوبارایمینگ و عدم برایمینگ) و به سطح دما (۲۰، ۲۴، ۲۸ و ۳۲ درجه سانتیگراد) بودند. نتایج نشان داد که تنش سرمای باعث کاهش خطا سرعت گونه‌زنی تحت تنش نیترات و هیدروبرایمینگ، هالوبارایمینگ و اسپورتینگ بود. تیمار هیدروبرایمینگ محیطی از کاهش درصد گونه‌زنی در دمای سختی گل‌گیری کره و با تیمار هالوبارایمینگ فقدان اختلاف معنی‌داری بود. پیشرفتی شاخص به پیشرفت تحت تیمار هالوبارایمینگ مشاهده شد. با کاهش دما مقدار پرولین و میزان فعالیت آنزیم‌های کاتالاز و گاماکاول پراکسیداز تحت کلیه تیمارهای برایمینگ افزایش یافت. برایمینگ با پیشرفت گل‌گیری نه تهاجر گونه‌زنی بذر نخودفرنگی تحت تنش سرمای مؤثر نبود بلکه در بخش دما بهتر کاهش پاتمرهای گونه‌زنی داشته یا گاه گردید. بهطورکلی نتیجه‌گیری شد تیمارهای هیدروبرایمینگ و هالوبارایمینگ باعث بهبود پاتمرهای فیزیولوژیکی و در نتیجه بهبود سرعت و درصد گونه‌زنی بذر نخودفرنگی در دمای پایین شدند که امتیاز استقرار و رشد بهتر یافته کاهش تحت شرایط تنش سرمای را فراهم می‌نماید. این امر می‌تواند در افزایش پتانسیل تابعی این گیاه به عنوان کرد سری در مناطق معتدل و سرد کشور مفید باشد.

واژه‌های کلیدی: اسپورتینگ، بهبود، پرولین، دمای پایین، تیمار پنیسان، هیدروبرایمینگ

مقدمه:

اغلب خاك‌هاي كشاوري به دليل تايپادي شکل‌های معدني نيتروژن، از نظر ميران نيتروژن فخير هستند. علاوه بر اين هنگام آپاري و يا بازندگي، عدم تيمرات خاك‌هاي به ويزه در خاك‌هاي شن، شسته شده و همچنين ظرفيت نگهداري امومون در چين خاك‌هاي محدود مينايش. بنابراین، عدم جاگزيکي نيتروژن برداشت شده توسط گياهان، منجر به كاهش فراهي نيتروژن در خاك و افزاي نيز به كود نيتروژن

*نويسنده مسئول، شناسه پستي الکترونيکي: falah1357@yahoo.com

1364 فرآيند و كاركرد كيماي جلد 4، شماره 12، آبان 1364
باستنده به دلیل محضن جمجمه پر کشیده اسکاتر کود سیز در تناوب زراعی باعث افزایش کربن و ماد آلی، نیتراتی کلم و حاصلخیزی کاخ شده که این پدیده از طریق بهبود و یا حفظ فرآیندهای میکروبی در کاخ برقرار و آزادسازی تدریجی عناصر غذایی برای گیاهان نیز می شود (Talgre et al., 2009) و همکاران (2008) نشان دادند که با استفاده از کود سیز لگم، میزان عناصر غذایی کاخ و نیترات گیاهان افزایش یافته است. در این ارتباط جیاه تطبیقی و روند نیترات که برای محصول به دلیل تولید مقدار زیاد زمین و نیترات که برای محصول به دلیل استرس است، به عنوان گیاه پوششی و کود سیز حاتم الهیت می باشد. گیاهان کود سیز علاوه بر افزایش حاصلخیزی خاک می توانند نقش گیاه پوششی نیز داشته باشند که در شرایط روند کاهش فرسایش خاک (Komi et al., 2013)، کاهش روان با و فوم بستر آب به خاک، افزایش ویژه، تغییرات سیستمی و چیستی سیستم غذایی (Kruidhof et al., 2008) در سطح خاک به بیشتر سنت گیاه و شرایط نهایی از مصرف کودهای شیمیایی می شود، بهبود کیفیت و ساختار خاک (Steenwerth and Belina, 2008)، بهبود ماده آلی خاک (Kruidhof et al., 2008) و کاهش آلودگی های زیست محیطی ناشی از مصرف کودهای شیمیایی می شود. این گیاهان همچنین به دلیل استقرار سریع و تراکم بالا در هنگام کشت دارای قدرت رقابتی بالایی با عفونتها هر زمان، و پایه هستند (Madye, 2007) و نیز کارگیری این گیاهان در تناوب با غلات یپزر (کندم و جو) علاوه بر افزایش باروری خاک، مشکل بیماریها و آفات را نیز کاهش می دهند (Bellido et al., 2005) به دلیل محدودیت مابع آب در اکثر مناطق کشور لازم است کشت گیاهان کود سیز پایه (دمسته) به غونه انجام شود که از نظارت آسانی استفاده بهینه کند، این در حالی است که در اکثر سال‌های استان بارشه پایه یا آتییر همراه با است و این امر می تواند جوانته و استقرار گیاهان کود سیز را مناطق معدله در معرض نرخ سرمای قرار دهد. نشان سرمای شامل
کشپوری دانشگاه شهرکرد در سال 1392 انجام شد. آزمایش بهصورت فاکتوریل در طبق با کملاً تصادفی با ۴ تکرار اجرا گردید. تیمارهای مختلف پرایمیک (هیدروپرایمیگ، هالوپرایمیگ، اسپرمپلیک و شاهد (عنوان پرایمیگ) به عنوان فاکتور اول و دوم مورد بررسی قرار گرفتند.

تیمار هیدروپرایمیگ با آب ماقت در ۱۵ دقیقه، هالوپرایمیگ با نیترس Polyengo، اعمال شد. به هیچ‌گونه فندرکی از توده پرایمیگ، مقدار کمتری به‌حصول می‌شود. از این شرایط آزمایش اصلی یک آزمایش اولیه به منظور تعیین بهترین ظرفیت محلول و مدت زمان پرایمیگ بذر انجام شد که که اساس این آزمایش هیدروپرایمیگ بالغ بر ۱۲ ساعت، هالوپرایمیگ بالغ بر ۳ حالت گاش با مقدار ۲/۲/۱۲، برای تعیین آتشی‌های مورد نظر مقدار PEG ۶۰۰۰ با استفاده از NF ۱/۱۱۳۵ دو تیمار نامه تنپاکس با ۷۱–۱۲–۱۲ ساعت تعیین گردید.

در این ارتباط پرایمیگ بذر، به‌عنوان یک روش معمول به‌منظور افزایش سرعت و یکتکاچی جوان‌زدن در زرعه، آزمایش بین بذر و ظروف گاهان مقاوم در بسیاری از گیاهان زراعی مهم هم مورد استفاده قرار گرفته است (Ashraf and Foolad, 2005).

درصد و یکتکاچی جوان‌زدن بذر و به‌هم به‌درک که هر سنین شاخص یی به‌دست در برای تن‌جهت‌های محیطی به‌کار گرفته می‌شود که به‌طور کریک و شاخص زنیدی است که می‌تواند نتایج انجام (Ansari and Sharif zadeh, 2012) و شامل فراپینی است که می‌تواند به‌طور کنیک و شاخص‌های نزیک نمایند (1387).

مطالعات زیادی درباره اثرات فیزیولوژیکی و بوشیمیکی پرایمیگ روی بذور مختلف از جمله پونجه معمولی (Vigna radiata L. (Medicago sativa) (Lens culinaris). نخود انجام شده و نشان داده است که تیمار پرایمیگ قادر به‌همراه فرآیند جوان‌زدن و ایجاد مقاومت تحت شرایط تن‌جهت سرم است (Posmnyk and Janas, 2007).

از نظرکه نخود فندرکی از گیاهان کود سیب ارزشمند است، گیاهان کود سیب به‌صورت دیده نهایی پذیر است. این در حالی است که تأثیر در شروع بارز‌گذاری‌های پایه و مراحل جوان‌زدن و سیب شدن این قابل گیاهان را به‌شناسایی دانشگاه می‌نماید. بنابراین این مطالعه به‌هدف بررسی تیمارهای مختلف پرایمیگ جوان‌زدن بذر نخودفینگی جهت تحت شرایط تن‌جهت سرم اجرای گردید.

مواد و روش‌ها:

آزمایش در آزمایشگاه علوم و تکنولوژی بذر دانشگاه...
شدن. در نهایت میزان جذب نور در طول موج 5۴۰ نانومتر قرار گرفد.

پروتوپورت محلول: جهت اندازه‌گیری مقدار پروتئین محلول به روش Bradford (1976) ۵۰ میکرولیتر از عصاره گیاهی مورد نظر به ۳ میلی‌لیتر محلول برابر ضد اضافه گردید و پس از اختلاص کامل، بالافاصله میزان جذب نور در طول موج 9۴۵ نانومتر قرار گرفت.

آزمی گاکاکو پراکسیداز: برای اندازه‌گیری میزان فعالیت آزمی گاکاکو پراکسیداز به روش Mac Adam و همکاران (۱۹۹۲) پس از افزودن ۵۰ میکرولیتر عصاره گیاهی به محلول حاوی بایفر سفست، گاکاکو و پراکسیداز هیدروژن میزان جذب نور در طول موج ۴۳۸ نانومتر قرار گرفد.

آزمی کاتالاز: به منظور اندازه‌گیری میزان فعالیت آزمی کاتالاز به روش (۱۹۸۴) Abei نیز پس از افزودن ۵۰ میکرولیتر عصاره گیاهی به محلول حاوی بایفر سفست، آب ماقت و آب اکسیدزن هیدروژن میزان جذب نور در طول موج ۲۴۰ نانومتر قرار گرفد. در پایان آزمایش، داده‌ها به صورت SAS تاکنون در قلب طرح کاملاً تصادفی به وسیله نرم‌افزار مورد تجزیه واریانس قرار گرفتند. همچنین تجزیه و تحلیل رگرسیون برای میانگین‌ها معنی‌دار حاصل از تجزیه واریانس انجام شد و برای میانگین‌های که تجزیه رگرسیونی آن معنی‌دار نشد میانگین با استفاده از آزمون LSD در سطح ۵ درصد انجام شد.

نتایج و بحث:

نتایج تجزیه واریانس نشان داد که اثر تیماره‌های مختلف پرایمبینگ بذر بر سرعت جوانه‌زایی و جذب نوری بین یک درصد معنی‌دار بود. همچنین اثر دمای نیز بر کلیه پارامترهای اندازه‌گیری شده در سطح احتمال یک درصد معنی‌دار شد. اثر متقابل پرایمبینگ بذر با دمای نیز بر کلیه صفات بررسی شده در سطح احتمال ۵ درصد معنی‌دار بود (جدول ۱).

سرعت جوانه‌زایی: نتایج تجزیه و تحلیل رگرسیونی نشان می‌دهد که به دست آمده است که در مورد اثر جلوگیری از تبخر آب موجود در پرندی دیش‌ها، در هر پرندی دیش چند لایه پرایمبینگ کشیده شد (به‌عنوان نتیجه وابسته‌گی برای هر تیمار ۵۰ عدد بذر در ۲ پرندی دیش کشت گردید). در نهایت پرندی دیش‌ها به زیست‌محیط انتقال داده شدند و به مدت ۸ روز در دماهای ۱۲، ۲۴ و ۳۶ درجه سانتی‌گراد در شرایط تاریکی تک‌بازاری شدند. ISTA، ۲۰۰۹ (۲۴ ساعت بر ISTA، جوانه‌زایی هر ۲ میلی‌متر بست گردید و ۲۰۰۹) در طول اجرای آزمایش بر حسب تیمار ۳-۳ میلی‌لیتر آب مقتدر به هر پرندی دیش اضافه گردید. پس از ۸ روز اندازه‌گیری سرعت جوانه‌زایی و درصد جوانه‌زایی در هر دما به صورت جداول با استفاده از راکاب رگرسیون گردید:

(1) Karta and Bekele, ۲۰۱۲

\[GR = \frac{\Sigma (Gt / Dt)}{2} \]

(2) Karta and Bekele, ۲۰۱۲

\[VI = \frac{SG}{SDW} (mg) \]
سانتی گراد در صد صورت جوانزی تیمارهای اسمورپرایمینگ و شاهد به‌طور معنی‌داری کاهش یافت. این در حالت است که تیمارهای هالوپرایمینگ و هیدروپرایمینگ از دو طرف سانتی گراد را بر کاهش صد صورت جوانزی خشی نموده‌اند (شکل ۱). دمای پایین در طی جوانزی می‌تواند سبب کاهش صد صورت جوانزی و اختلال در خروج ریشه‌چه بذر در گونه‌های مختلف و ارقام زراعی گردید (Patade et al., 2011). به‌گونه‌ای که تنش سرمای تحریک تولید گونه‌های اکسیدی فعال سبب اختلال در جریان انتقال الکترون در فرآیند مناطیسم می‌شود و منجر به ایستگوتی سلولی و تجمیع ترکیبات تیوتوریک (Thiobitturic acid) اسید (Purvis and Shewfelt, 1993). علاوه بر این افزایش تدریجی سرما باعث کاهش فندق‌بری شکر سلولی رثیهٔ (Thiobitturic acid) اسید (Purvis and Shewfelt, 1993). علاوه بر این افزایش تدریجی سرما باعث کاهش فندق‌بری شکر سلولی رثیهٔ (Thiobitturic acid) اسید (Purvis and Shewfelt, 1993). علاوه بر این افزایش تدریجی سرما باعث کاهش فندق‌بری شکر سلولی رثیهٔ (Thiobitturic acid) اسید (Purvis and Shewfelt, 1993). علاوه بر این افزایش تدریجی سرما باعث کاهش فندق‌بری شکر سلولی رثیهٔ (Thiobitturic acid) اسید (Purvis and Shewfelt, 1993). علاوه بر این افزایش تدریجی سرما باعث کاهش فندق‌بری شکر سلولی رثیهٔ (Thiobitturic acid) اسید (Purvis and Shewfelt, 1993). علاوه بر این افزایش تدریجی سرما باعث کاهش فندق‌بری شکر سلولی رثیهٔ (Thiobitturic acid) اسید (Purvis and Shewfelt, 1993). علاوه بر این افزایش تدریجی سرما باعث کاهش فندق‌بری شکر سلولی رثیهٔ (Thiobitturic acid) اسید (Purvis and Shewfelt, 1993). علاوه بر این افزایش تدریجی سرما باعث کاهش فندق‌بری شکر سلولی رثیهٔ (Thiobitturic acid) اسید (Purvis and Shewfelt, 1993). علاوه بر این افزایش تدریجی سرما باعث کاهش فندق‌بری شکر سلولی رثیهٔ (Thiobitturic acid) اسید (Purvis and Shewfelt, 1993). علاوه بر این افزایش تدریجی سرما باعث کاهش فندق‌بری شکر سلولی رثیهٔ (Thiobitturic acid) اسید (Purvis and Shewfelt, 1993). علاوه بر این افزایش تدریجی سرما باعث کاهش فندق‌بری شکر سلولی رثیهٔ (Thiobitturic acid) اسید (Purvis and Shewfelt, 1993). علاوه بر این افزایش تدریجی سرما باعث کاهش فندق‌بری شکر سلولی رثیهٔ (Thiobitturic acid) اسید (Purvis and Shewfelt, 1993). علاوه بر این افزایش تدریجی سرما باعث کاهش فندق‌بری شکر سلولی رثیهٔ (Thiobitturic acid) اسید (Purvis and Shewfelt, 1993). علاوه بر این افزایش T2008 (Ghassemi-Golenzani و همکاران) به‌طور عدسی و به‌طور معنی‌داری باعث تاثیر و پایین‌گرندی تاثیر معنی‌داری بر صد صورت جوانزی نداشت، در حالی که تیمار هیدروپرایمینگ باعث افزایش صد صورت جوانزی نسبت به اسمورپرایمینگ و شاهد گردیده (پرتوییپ ۱/۵ و ۱۲ ساعت). درصد جوانزی: نتایج مقایسه‌ی مانگنیشن نشان داد که برای درصد جوانزی بین تیمارهای مختلف پرایمینگ در دو طرف سانتی‌گراد و بالاتر و هیدروپرایمینگ در دمای ۶ درجه سانتی‌گراد تفاوت معنی‌داری وجود نداشت. در دمای ۳ درجه سانتی‌گراد تفاوت محسوسی بین گوره‌ها نبود.
اثر پرایمیکنی بر برخی خصوصیات فیزیولوژیکی مؤثر بر جوانزی

شکل ۱۷- اثر مقاصل تیمارهای مختلف پرایمیکنی بر دما بر درصد جوانزی بذر در گیاه نخودفرنگی. ستونهای دارای حروف مشابه بر اساس LSD در سطح احتمال ۰.۰۵ اختلاف معنی‌داری ندارند.

واقع بذر پراپام شده با آب مقطع بعلت جذب سبزیت و آب و آگاز ترک و گرفته‌گردیده مشابه ذوب به درجه و در صورتی که حتی تحت دمای باین چنان چه افزایش دمای ۹ درصد جوانزی بالاتری را نسبت به تیمارهای اسپورامیکن و شاهد در دمای ۳ درجه سانتی‌گراد نشان دادند. پرایمیکنی بذر لوبیا (Phaseolus vulgaris L.) درصد جوانزی، سرعت جوانزی و خصوصیات گیاهی‌ها را در مقایسه با بذر دهانی شاهد تحت شرایط دمای ۹ دارد و بهبود یافته چنین (Gharib and Hegazi, 2010).

شناسی پرنیا: همان‌طور که در شکل ۳ مشاهده می‌شود، با کاهش دما شناسی پرنیا بذر تحت تیمارهای هیدروپرایمیکن و شاهد بیشتر دمای دمایی کاهش یافته، در حالی که دمای تیمار هالوپرایمیکن تغییرات بیصوت دارو در محدود بود.

تا دمای ۹ درجه سانتی‌گراد تیمار هیدروپرایمیکن در سطح پایینترین نسبت به تیمار شاهد قرار داشت اما با کاهش دما تا ۳ درجه سانتی‌گراد تیمار هیدروپرایمیکن بذر از تیمار شاهد بود. علاوه بر این، تیمار هیدروپرایمیکن جز در دمای ۹ درجه سانتی‌گراد که تفاوت چندانی با تیمار اسپورامیکن نداشت در سایر دماها بذر از تیمار اسپورامیکن بود. تیمار هالوپرایمیکن که در دمای ۱۵ درجه سانتی‌گراد با تیمار اسپورامیکن هم‌سطح شد و پایینتر از تیمارهای شاهد و
جدول 3- تجزیه واریانس اثرات پراپتینگ پری به پر مقدار پرولین، مقدار پروتئین محلول، میزان فعالیت آنزیم گاکاکول پراکسیداز و میزان فعالیت آنزیم کاتالاز گیاه نخودفرنگی تحت نش سرمای

<table>
<thead>
<tr>
<th>میانگین محاسبات</th>
<th>پروتئین محلول</th>
<th>پروتئین</th>
<th>درجه آزادی</th>
<th>نوع پراپتینگ</th>
<th>دما</th>
</tr>
</thead>
<tbody>
<tr>
<td>کاتالاز</td>
<td>1394/300000</td>
<td>1394/300000</td>
<td>4/82</td>
<td>نوع پراپتینگ</td>
<td>3</td>
</tr>
<tr>
<td>186/300000</td>
<td>186/300000</td>
<td>186/300000</td>
<td>10/38</td>
<td>دما</td>
<td>3</td>
</tr>
<tr>
<td>1394/300000</td>
<td>1394/300000</td>
<td>1394/300000</td>
<td>5</td>
<td>نوع پراپتینگ</td>
<td>9</td>
</tr>
<tr>
<td>1394/300000</td>
<td>1394/300000</td>
<td>1394/300000</td>
<td>0/24</td>
<td>دما</td>
<td>4</td>
</tr>
<tr>
<td>1394/300000</td>
<td>1394/300000</td>
<td>1394/300000</td>
<td>12/61</td>
<td>خصائص آزمایشی</td>
<td>48</td>
</tr>
<tr>
<td>1394/300000</td>
<td>1394/300000</td>
<td>1394/300000</td>
<td>12/61</td>
<td>ضرب تغییرات (TS)</td>
<td>48</td>
</tr>
</tbody>
</table>

میان داده سطح احتمال ۱ درصد.

پرولین: نتایج تجزیه واریانس نشان داد که اثر تیمارهای مختلف پراپتینگ پری به پر مقدار پرولین، مقدار پروتئین محلول، میزان فعالیت آنزیم گاکاکول پراکسیداز و میزان فعالیت آنزیم کاتالاز در سطح احتمال ۱ درصد معنی‌دار بود. همچنین اثر دما نیز بر کلیه پارامترهای انتخابی مشابه در سطح احتمال ۱ درصد معنی‌دار بود. علاوه بر این اثر متفاوت پراپتینگ پری به دام نیز برای کلیه صفات بررسی شده در سطح احتمال ۰/۰۱ درصد معنی‌دار بود (جدول 3).

نتایج تجزیه و تحلیل رگرسیونی نشان داد که برای مقدار پرولین، مقدار پروتئین محلول، میزان فعالیت آنزیم گاکاکول پراکسیداز و میزان فعالیت آنزیم کاتالاز تیمارهای مختلف در دماهای متفاوت دارای اختلاف آماری معنی‌داری بودند (جدول 4).
جدول 4- تأثیر تغییر رگرسیون ار تنش سرما بر مقدار پرولین. مقدار پرولین محلول، میزان فعالیت آنزیم گاباکول پراکسیداز و میزان فعالیت آنزیم کاتالاز تحت تیمارهای مختلف پرامینگ بدر شاهد

<table>
<thead>
<tr>
<th>شایعه</th>
<th>سامورا</th>
<th>هالومورا</th>
<th>هیدروپرولین</th>
<th>خصوصیات</th>
</tr>
</thead>
<tbody>
<tr>
<td>درجه دو</td>
<td>درجه دو</td>
<td>درجه دو</td>
<td>درجه دو</td>
<td>درجه دو</td>
</tr>
<tr>
<td>0/2154/0</td>
<td>0/158/0</td>
<td>0/2452/0</td>
<td>0/0736/0</td>
<td>0/2073/0</td>
</tr>
</tbody>
</table>

مقادیر جدول یا گانگ سطح اختلال است

شکل 4- پاسخ مقدار پرولین بذر پرایم شده نخودفرگنی به تنش سرما

دمای 3 درجه سانتی گراد تیمار شاهد کمترین مقدار پرولین را به خود اختصاص داد. در حالتی که تیمار اسموراپرامین به همراه تیمار هالوموراپرامین بیشترین مقدار پرولین را داشتند و تیمار هیدروپرولین در 9 درجه سانتی گراد تیماری که در سلول بودن تیمارها بودند سطح پایین تری نسبت به تیمارهای اسموراپرامین و هالوموراپرامین قرار گرفت. تیمارهای اسموراپرامین و هالوموراپرامین در دمای 3 درجه سانتی گراد باعث افزایش 3 و 5 درصدی مقدار پرولین برای نتیجه تیمار هیدروپرولین و شاهد شدن (شکل 4) پس از افزایش سطح پرولین در بذر پرایم. هورمون جیبرنین از جنین ترشح شده و به لایه آلترنوسین (خارجی ترین لایه اندورزمه) انتقال می‌یابد. این لایه در انتقال اثرات ذخیره‌های هیدروپرولینی که در نهایت به عمل می‌کند. در این مورد، ترکیبات ذخیره‌های لیپیدی از جمله پرولین و تولید اسید آمینه

پرولین طی جوانه‌زی می‌گردد (آرم قادری و همکاران، 1387). پرولین در مقایسه با سایر اساس‌لی‌های متدال تحریک قندیل مولکولی و کلیک، از کارایی بالاتری برای حفاظت در برای تنش بجا می‌گیرد و با اثر مستقیم در ثبات بخشیدن به مکرموکول‌ها و لایه‌های آپیکال آنها و نیز به علت ویژگی‌های آنتی‌اکسیدانی خود، به‌طور غیر مستقیم اثر حفاظی شنا می‌دهد (کرمانی و عطایی بزرگه، 1393). ترجیح پرولین تحت شرایط تنش ممکن است به دلایل کاهش اکسیداسیون پرولین با تحریک استر آن از گلتنامات با افزایش فعالیت آنزیم پروتئاز باشد (Sharma and Kuhad، 2006) که منجر به افزایش اساس‌لی‌های سلول شده و فشار لازم برای ترکیب سلولی را فراهم می‌آورد. در نتیجه، پرولین یک‌گروهی از ناحیه پرولین حضور می‌شود. با افزایش نهایت 0/393/0 نیز گزارش کرد که پرامینگ کردن بذر موجب افزایش مقدار پرولین در گیاه‌های بیتکالس و مانگ
درصدی مقادیر پرتوئنی محلول نسبت به شاهد گردید. علی‌رغم اینکه تیمارهای هالوپریامینگ و اسپریپریامینگ در دمای ۶، درجه سانتی‌گراد در سطح بالاتری نسبت به سایر تیمارها قرار گرفتند اما در دمای ۳ درجه سانتی‌گراد نتیجه‌های افزایشی مقادیر پرتوئنی محلول نشان دادند. بنابراین تیمارهای هیدروپریامینگ و اسپریپریامینگ باعث تغییرات در مقادیر پرتوئنی محلول به صورت درجه بندی گردید. در صورتی که در تیمار شاهد با کاهش دما مقادیر پرتوئنی محلول به صورت خفیف تغییر یافت، تیمار هیدروپریامینگ در کلیه دماها و در دمای ۶ درجه سانتی‌گراد نسبت به سایر تیمارها مقادیر پرتوئنی محلول بیشتری را نشان داد. به‌گونه‌ای که در دماهای ۳ تا ۱۲ درجه سانتی‌گراد در سطح بالاتری نسبت به تیمار شاهد قرار گرفت و با سایر تیمارها اختلاف معنی‌داری نداشت. این در حالی است که با کاهش دما به ۹ درجه سانتی‌گراد کلیه تیمارها در سطح پایین‌تری نسبت به تیمار هیدروپریامینگ قرار گرفتند. تیمار اسپریپریامینگ که در دمای ۹ درجه سانتی‌گراد کمترین مقادیر پرتوئنی محلول را نشان داد با کاهش دما به ۳ درجه سانتی‌گراد به‌همراه تیمار هالوپریامینگ پرتره از سایر تیمارها بودند و تیمار هیدروپریامینگ که در دماهای ۹ و ۱۲ درجه سانتی‌گراد پرتره از سایر تیمارها بود مقادیر پرتوئنی محلول کمتری داشت اما در دمای ۳ درجه سانتی‌گراد بیشترین مقادیر پرتوئنی محلول ۸۷.۶ می‌بود.
گاکول پراکسیداز: شکل ۶ بیان آن است که با کاهش تعداد آنزیم گاکول پراکسیداز تحت تیمارهای اسپرومیتریک و شاهد بر روی قطع خاک به فاقد این در حالت است که عوامل تغییرات در تیمارهای گیاه‌پردازی و نتایج آنها به صورت دزه دو یا این تفاوت که تیمار گیاه‌پردازی برخی از تیمارهایی که دما یا تغییر در میزان فعالیت این آنزیم به صورت درجه دو مفعول می‌گردد در همه‌ها و ۶ و ۳ درجه سانتی‌گراد اختلاف معمولی بین تیمارهای مختلف مanstه اما کاهش دما به ۴ درجه سانتی‌گراد تیمار گیاه‌پردازی در ضریب بالاتری نسبت به سایر تیمارهای قرار گرفت و سایر تیمارها در این دما اختلاف معمولی وجود نداشت. در درجه ۴ درجه سانتی‌گراد برخی‌های دمای ۴ درجه سانتی‌گراد کمترین میزان فعالیت آنزیم گاکول پراکسیداز مرطب به تیمار گیاه‌پردازی بود که با تیمار شاهد هم‌سطح شد. بیشترین میزان فعالیت این آنزیم در دمای ۳ درجه سانتی‌گراد در تیمار گیاه‌پردازی مشاهده گردید و پس از آن آنزیم گاکول پراکسیداز در تیمار اسپرومیتریک فعالیت بیشتری را نشان داد. با توجه به عدم تغییر فعالیت آنزیم گاکول پراکسیداز در تیمارهای مختلفتا دمای ۴ درجه سانتی‌گراد، می‌توان گفت که این تولید گیاه‌پردازی (H_{2}O_{2}) حداکثر بوده با دلیل کفایت میزان آنزیم‌های لازم برای تجزیه H_{2}O_{2} تولید شده، تایسن تجزیه آن از طریق افزایش فعالیت آنزیم انجام می‌شود. اما با کاهش تیمار دما تا ۳ درجه سانتی‌گراد فعالیت آنزیم گاکول پراکسیداز بطور چشمگیری از آبی‌های وارد شده به یکی و حفظ هموستازی آنزیم‌های یافته در تیمار
شکل 6- پیاس میزان فعالیت آنزیم گاباکول در کنار یافته‌های پیام‌های تغییرات سرمایه‌های بدنی

شکل 7- پیاس میزان فعالیت آنزیم کاتالاز در کنار یافته‌های پیام‌های تغییرات سرمایه‌های بدنی

آنزیم در تیمار امسورپراپینگ مشاهده شد در حالی که در دمای 4 درجه سانتی‌گراد تیمار امسورپراپینگ برتر از تیمارهای هیدروپراپینگ و شاهد بود. تیمار هیدروپراپینگ که در دمای 12 درجه سانتی‌گراد اختلاف چندانی با تیمار هالوپراپینگ نداشت، با کاهش دمای 6 درجه سانتی‌گراد برتر از تیمار هالوپراپینگ بود و بیشتر میزان فعالیت را نشان داد در صورتی که در دمای 3 درجه سانتی‌گراد تیمار هالوپراپینگ در بالاترین سطح نسبت به سایر تیم‌هایی قرار گرفت (شکل 7).

نبای و همکاران (150) با بررسی اثر تنش سرمایا بر میزان فعالیت آنزیم کاتالاز در مراحل جوانویی و گیاهی‌های ارقام مختلف نخود (Cicer arietinum) در پیان‌فند که با کاهش دمای کمتر از 5 درجه سانتی‌گراد، فعالیت آنزیم کاتالاز در ارقام و بیوئیت آنزیم یافته‌ای اما در تیمار IL2482

علایی و همکاران (2005) نیز با بررسی گیاه‌های 14 روزه نخود مشاهده کردند که کاسپ اکالا به 4 درجه سانتی‌گراد باعث 50 درصد تراوش پوی شد، در حالی که توالی با دمای پایین به میزان 10 درجه سانتی‌گراد به مدت 6 روز، با کاهش توالی پیوندی در تراوش پویه یک درجه سانتی‌گراد به میزان 20 درجه سانتی‌گراد حاضر نبود با کاهش از آمیزی‌های گیاه که در دمای 3 درجه سانتی‌گراد میزان فعالیت آنزیم کاتالاز در تیمار
 بيانی توجه به نتایج حاصل از این پژوهش برای اینکه به آن توجه نشان دهیم از طریق افزایش غلیظ حلال‌های آنزیمی مؤثرات سیسیلی و تیزیت زیستی، نیرویی از یک اب و نیتروژن از طریق \(\text{NO}_3 \) و \(K^+ \) تأمین عناصر غذایی مورد نیاز باید رشد جنین (1) موجب افزایش فعالیت‌های بوتیلیزای و بعینال ان آنزیمی میزان هالوپروپیلات آنزیمی \(\text{H}_2\text{O}_2 \) تولیدی می‌گردد. بنابراین، میزان فعالیت آنزیمی گوناگونی به پاکیش یافته یافته‌ای از کل میزان تغییر آنزیم گابایکول پراکسیداز در منابعی ساینگری که تحت تیمار هالوپروپیلات بستری از آن‌ها کالی‌کره و احتمالاً آنزیم گابایکول پراکسیداز نقش بیشتری را در کاهش سطح هالوپروپیلات در نظر خواهیم داشت که گونه‌کاری گونه از مقایسه با پراکسیداز در زوده را که پراکسیداز هیدروژن دارد.

نتایج کلی:

متون:

اکرم قادی‌ی، ف.، کامکار، ب.، و سلطانی، ا. (1387) علوم و تکنولوژی بذر (طرحه). انتشارات جهاد دانشگاهی مشهد.

جویدی، م.، و شریفزاده، ف. (1388) بررسی اثر هیدروپروسیلات در ارتفاع مختلف جو رای علی.

عیدی، س.، اتیبی، س.، و سیفانو، ح.، مسجدی، م.، و عیادی، ع. (1391) بررسی تأثیر گونه‌های مختلف ریز در سیب بر میزان ماده آلی و نیتروژن خاک در شرایط نیاز.

کرامان، و.، و زبان‌دار، م. (1392) مطالعه اثر تنش شوری بر ترشح نیتروژنی از خاصیت‌های رشد در سه گونه از جنس (Onobrychis) اسپرس (1975-86).

میر مهدی مهدی، س.، و ترکان، اصفهانی، م. (1393) گونه‌های فیبرولیزیک و بسازی نشان دهنده ویژه‌ای گیاهان زراعی. انتشارات کلینیک.

نیازی، و.، و میر، ع.، و جهانی، غ. (1394) اثرات نشان دهنده ویژه‌ای گیاهان زراعی (Cicer arietinum) در تنش نیتروژنی از خاصیت‌های رشد در گونه (1975-86).

یوسفی تهران، ا. (1395) پایان نامه کارشناسی ارشد علوم و تکنولوژی بذر، دانشگاه تهران، دانشگاه شهرکرد.

Ansari, O. and Sharif zadeh, F. (2012) Osmo and hydro priming mediated germination improvement under cold stress conditions in mountain rye (Secale

