پرسی خصوصیات رویشی و فیزیولوژیکی گونه قره‌داغ (Nitraria schoberi)

روبات ماسه‌بادی

اصغر مصلح آراًی، عصمت جعفری‌سید علی محمد مرحومدی مبیدی، حمید سودابیزاده

۱ گروه مدیریت بیماران، دانشکده مهندسی، دانشگاه پزشکی، پژوهشگاه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

(تاریخ دریافت: ۲۵/۱۱/۱۳۹۴، تاریخ پذیرش نهایی: ۱۳۹۵/۰۸/۱۲)

چکیده

این آزمایش به منظور بررسی واکنش گیاه قره‌داغ به دفن شدن در روابط ماسه انجام گرفت. برای این منظور نهایی‌های قره‌داغ تحت بی‌پاتری بیمار (شاهره، بام شدن با ماسه‌بردی آتیک‌سوم، یک‌سوم، سه‌سوم ارتقای گیاه (از فستین نقش و دفن کامل) قرار گرفت. پیشتاز مقدار پرولین برگ با مقدار ۱۶ میلی‌گرم بر گرم وزن تر در بیمار دفن دفن یک‌سوم و سه‌سوم و کمتری آن بی‌پاتری قرار گرفت. ورتیکال (پرولین برگ) و بی‌پاتری ۲۷ و ۷۸ میلی‌گرم بر گرم وزن تر در شاهره و بام شدن با ماسه‌بردی دفن کامل و بی‌پاتری قرار گرفت.

کلمات کلیدی: پرولین، بیمار دفن، روابط ماسه‌بادی، قره‌داغ

مقدمه

روند رو به گسترش اراضی بیابانی در اقتیاق نقاط جهان و از جمله کشورمان، از جمله مشکلاتی است که مهار آن از دقت‌های جهانی محور می‌گردد. یکی از فراوان‌ترین موتر...
رنین گونه استکین در عمرتیهای مختلف ماسه با داده نشان دادند که افزایش طبیعی رنین در هواپیمای بیوماس آدامی، بیوماس آدامی دیگر، بیوماس آدامی زیرزمینی، بیوماس آدامی و توپا در افزایش گیاه در گیاه فاگوس داد. نتایج این تحقیق همچنین نشان داد که کمیت دفن دفن در ایستاده نشان روش و رشد روشی و زایش گیاه استکین ایفا می‌کند.

عمده پاک‌سازی شامل بهره‌برداری و گیر در نظر می‌گیرد و معیارهای ویژه فوق‌العاده برای کم‌ترین پایش (Moreno-Casasola, 1996). مهم‌ترین پایش مورفولوژیکی در برابر دفن شدن در مسایلی شامل افزایش تعداد گره در هر ساله و پیوستن، در مطلوب بایل سده، جوان‌ها و ریشه‌های گیاهی که استوار می‌کند (Slavicek et al., 2019) در حالتی که گونه‌های نادردی قدرت به پاک‌سازی جانین تعبیر و در برای تغییراتی که در خاک ایجاد می‌شود، تاکنون Burylo و همکاران (2011) در بررسی پایش پنجم گونه جویی به دفن شدن در رسوبات مارلی نشان دادند که کمیت دفن نشان اساسی در زندگی می‌گیرد به‌طوریکه همه گونه‌ها به‌طور دفن در داخل سالم از بین رفته‌اند.

مطالعات اکثر از دفن شدن در ماسه با داده‌ای بر خصوصیات فیزیولوژیکی گیاهان مورد مطالعه قرار داده است (Maun and Perumal, 2006). برای مثال Qu et al., 2014) در بررسی پایش کیفیت‌های مورفولوژیکی 10 گونه به دفن دفن در رسوبات ماسه نشان داد که تحولی رشد در همه گونه‌ها مشاهده شد. زیست‌نظام، نرخ توانستن و فرسایش کارکردی a در گیاهان دفن شدن در رسوبات ماسه به‌طور معنی‌داری بیشتر از گیاهان شاهد بود. در مطالعات مشابه اثر رسوبات ماسه بر خصوصیات Agriophyllum s macrocarpum, Setaria viridis و Corispermum, Qu et al., 2012.) در بررسی اثر دفن قطعات Yu et al., 2004) از طرف دیگر، رسوبات ماسه‌ای شرایط خاک‌های ویژه‌ای را ایجاد می‌کند که شامل تغییر در دما، رطوبت، اسیدیت خاک، مقدار اکسیژن و مواد غذایی قابل دسترسی ریشه می‌باشد (Poulson, 1999). در مناطق حمل رسوبات ماسه با داده می‌توان مثل یک فیلتر عمل کرده و گونه‌های حساس را حذف و فراوانی نسبی گونه‌ها در مفاوت را کاهش داده و گونه‌های مقاوم و واپسین به ماسه از افزایش می‌دهد و اگر رسوب کامپلو ادامه پاید اغلب گونه‌های واپسی به ماسه نیز حذف می‌شود و مططقه‌ای عاری از بوشش گیاهی بوجود می‌آید (Maun, 1998, Hung and Guttermann, 2000). این حد آستانه در گونه‌ها متفاوت است.

مطالعات نشان دهند که تحت یک آستانه معین از سطح رسوب‌گذاری، رشد و گونه‌های گیاه‌های تحکیمی می‌شود (Brown, 1997). این تحکیمی رشد می‌تواند مربوط به به‌بود میلانی که افزایش عمق خاک، افزایش عمق خاک، تغییر در رطوبت و وضعیت بی‌هدری بوده خاک باشد (Poulson, 1999). گیاهان در برای رسوب ماسه و باکشت‌های متفاوتی از خود نشان می‌دهند. هنگامی که گونه‌های گیاهی به طور جزئی یا کامل دفن شده باشند ممکن است باکشت‌های زیرا را از خود نشان می‌دهند: 1- گیاه پاک‌سازی پهناز می‌دهد و پس از دفن شدن از بین می‌رود که به گونه‌ها گونه‌ها ناسازگاری با کویرن 2- گیاه در اینداپن می‌خورد به خود نشان می‌دهد و به طور نرمال رشد می‌کند اما با افزایش رسوبات ماسه از یک سطح معین عکس، عمل منفی از خود نشان می‌دهد از بین می‌رود. 3- رشد به‌طور اکثر از گونه‌های گیاهی با رسوب تحکیمی می‌شود و به گونه‌ها گونه‌های پیشرو در می‌گردد (Maun, 1998).

می‌کند که ایمان با افزایش ذخایر گیاهی با رسوبات ماسه ایکس است. (Yu et al., 2004) فصل دفن شدن، تعداد و عمق دفن شدن (Liu et al., 2011) مقدار ماده کاهشی به‌همراه و در همه مهم‌ترین پایش مورفولوژیک و فیزیولوژیک گیاهان (Qu et al., a,b,c, 2012) پیشنهاد دارد. برای مثال Zhao et al., 2015) در بررسی اثر دفن قطعات
بزرسی خصصیات ریتی فیشیلَصینی گًَِ قزُداؽ (Qu et al., 2012) ٗ Caragana microphylla … 331

Caragana و (Qu et al., 2012) squarrosum (Zhao et al., 2013) microphylla

مطالعات انجام شده در این خصوص بیشتر شامل گیاهان شنودست در سواحل دریا است و کمتر به وانتشیتی موروفولوژیکی و فیزیولوژیکی گیاهان مناطق خشکی توجه شده است. در این تحقیق، سه گونه از بررسی این واکنش‌ها در کیه‌های میوه‌های از گیاه که باهت سیادات این گیاه تحت شرایط سخت دفع شدند در ریویات ماسیبادی شده است، معرفی نشده است.

میوه‌های Caragana (Bates et al., 1973) نیاز به تحقیق و حداقل تحقیق در این گونه‌ها وجود دارد.

بزرسی خصصیات ریتی فیشیلَصینی گًَِ قزُداؽ (Qu et al., 2012) ٗ Caragana microphylla … 331

Caragana و (Qu et al., 2012) squarrosum (Zhao et al., 2013) microphylla

مطالعات انجام شده در این خصوص بیشتر شامل گیاهان شنودست در سواحل دریا است و کمتر به وانتشیتی موروفولوژیکی و فیزیولوژیکی گیاهان مناطق خشکی توجه شده است. در این تحقیق، سه گونه از بررسی این واکنش‌ها در کیه‌های میوه‌های از گیاه که باهت سیادات این گیاه تحت شرایط سخت دفع شدند در ریویات ماسیبادی شده است، معرفی نشده است.

میوه‌های Caragana (Bates et al., 1973) نیاز به تحقیق و حداقل تحقیق در این گونه‌ها وجود دارد.
به منظور اندکاره میزان افسیس یک گرم گراف برک از برگ‌های تنسیزی به راس ساقه در 10 میلی‌لیتر الکل 50 درصد جوشانده شد و سپس از سانی‌نگی در گاز کافی صافی عبور و سپس مقدار یک میلی‌لیتر از عصاره به دست آمد را درون لوله آزمایش جداگانه برخی و دو میلی‌لیتر متغیر سالکوفسکی به هر لوله آزمایش اضافه شد. نهایت معروف سالکوفسکی اینا مخلوط کرده شد/5 میلی‌لیتر کرکی اس یک میلی‌لیتر از این محلول با 50 میلی‌لیتر پرکلریک اسید 35 درصد مخلوط و پس از هم ذوب مخلوط، معروف سالکوفسکی آماده گردید. سپس لوله به مدت 15 دقیقه بن ماری 50 تا 60 درجه سانتی‌گراد قرار گرفت تا واکنش کامل و حضور افسیس در عصاره را رنگ صورتی آتشک کرد. در پایان میزان جذب در نمونه در طول موج 230 نانومتر دستگاه اسپکتروفوتوگرافی تیتراژ. مقدار افسیس موجب در نمونه‌ها با استفاده از برنامه نمایش دهنده SH (2002). (He et al., 1999)

برای اندکاره‌گری میزان سدیم و پتاسیم برگ از روش هضم، سوزاندن نمونه بخش گیاهی در کوره با دمای 550 درجه سانتی‌گراد به مدت 8 ساعت و واکنش با آب کلرید کروم دو مولار استفاده. سپس به کمک روش فیل مرفت افسیس آنها محاسبه و گردید.

به منظور تجزیه و تحلیل داده‌های حاصل از پارامترهای مختلف اندکاره‌گری شده از نرم‌افزار SPSS16 استفاده شد. داده‌ها به روش تجزیه واریانس و مقایسه میانگینی به روش دانکن با احتمال 5 درصد به دست آمد.

نتایج
نتایج تجزیه واریانس نشان داد که اثر تیمارهای دفن در ماسه بادی بر میزان پرولین برگ و ریشه، اکسین برگ، قند برگ و ریشه، سدیم ریشه، فسفر ریشه و بر و پتاسیم صفات رویش اندکاره‌گری شده معنی‌دار بود. از میزان صفات اندکاره‌گری کرک شده اثر تیمارهای دفن در مقدار سدیم برگ و پتاسیم برگ و ریشه معنی‌دار یک میلی‌لیتر پرکلریک 1 و 2 (جدول) به 29 و 36. Namen مقایسه میانگینی نشان داد که مقدار پرولین برگ به ماسه بادی بر میزان پرولین برگ و ریشه، اکسین برگ، قند برگ و ریشه، سدیم ریشه، فسفر ریشه و بر و پتاسیم صفات رویش اندکاره‌گری شده معنی‌دار بود. از میزان صفات اندکاره‌گری کرک شده اثر تیمارهای دفن در مقدار سدیم برگ و پتاسیم برگ و ریشه معنی‌دار. مقدار پرولین برگ به ماسه بادی بر میزان پرولین برگ و ریشه، اکسین برگ، قند برگ و ریشه، سدیم ریشه، فسفر ریشه و بر و پتاسیم صفات رویش اندکاره‌گری شده معنی‌دار بود. از میزان صفات اندکاره‌گری کرک شده اثر تیمارهای دفن در مقدار سدیم برگ و پتاسیم برگ و ریشه معنی‌دار.
جدول 1- تجزیه واریانس اثر تیمارهای دفن در ماسه بادی بر روی صفات فیزیولوژیکی گونه قره داغ

| متغیر | تعداد تیمارهای | دفن | سطح | هندسه | بیشینه | گوشت | بیشینه | گوشت | بیشینه | گوشت | متوسط | هندسه | بیشینه | گوشت | بیشینه | گوشت | متوسط | هندسه | بیشینه | گوشت |
|-------|----------------|-----|------|-------|--------|-------|--------|-------|--------|-------|-------|-------|--------|-------|--------|-------|-------|--------|-------|
| وزن خشک | 3 | B | A | 1/3 | شاهد | بیشینه | گوشت | بیشینه | گوشت | بیشینه | گوشت | متوسط | هندسه | بیشینه | گوشت | بیشینه | گوشت | متوسط | هندسه | بیشینه |
| وزن نتر | 4 | C | B | 1/3 | شاهد | بیشینه | گوشت | بیشینه | گوشت | بیشینه | گوشت | متوسط | هندسه | بیشینه | گوشت | بیشینه | گوشت | متوسط | هندسه | بیشینه |
| ریشه | 5 | C | B | 1/3 | شاهد | بیشینه | گوشت | بیشینه | گوشت | بیشینه | گوشت | متوسط | هندسه | بیشینه | گوشت | بیشینه | گوشت | متوسط | هندسه | بیشینه |

جدول 3- مقایسه میانگین اثر تیمارهای دفن در ماسه بادی بر روی صفات فیزیولوژیکی گونه قره داغ

جدول 4- تفسیر دلیل‌های مختلف در مدل‌های کلاسیک و غیرکلاسیک

جدول 5- مقایسه میانگین اثر تیمارهای دفن در ماسه بادی بر روی صفات فیزیولوژیکی گونه قره داغ

پیشینی تعداد شاخه در تیمار شاهد (2/8 عدد) مشاهده شد و تفاوت مقدار وزن خشک ساقه در تیمار سچهارمن مشاهده شد و تفاوت معنی‌داری بین پیش‌بینی تیمارهای مشابه مشاهده شد (جدول 4). وزن تر ریشه در سه تیمار دفن یکسوم، یکسوم و سچهارمن برابر با 25 گرم بود که به طور معنی‌داری بین شاهد و دفن کامل

بیشینی تعداد شاخه در تیمار شاهد (2/8 عدد) مشاهده شد و تفاوت مقدار وزن خشک ساقه در تیمار سچهارمن مشاهده شد و تفاوت

طول ساقه در دو تیمار یکسوم و سچهارمن حدود در بلای آن در شاهد بود. وزن تر ساقه در تیمار دفن یکسوم برابر با 30 گرم بود که این مقدار بیش از 1/5 برابر شاهد بود. کمترین
جدول 4- مقایسه میانگین اثر تیمارها‌ی دفن در ماسه‌باید بر روی صفات رویشی گونه قره داغ

<table>
<thead>
<tr>
<th>تیمارها‌ی دفن</th>
<th>شاهرخ</th>
<th>1/3</th>
<th>1/2</th>
<th>3/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>کامل</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 ± 0/1</td>
<td>1 ± 0/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 ± 0/1</td>
<td>25 ± 0/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 ± 0/1</td>
<td>4 ± 0/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 ± 0/1</td>
<td>24 ± 0/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 ± 0/1</td>
<td>12 ± 0/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 ± 0/1</td>
<td>10 ± 0/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 ± 0/1</td>
<td>3 ± 0/1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

تعداد رشد و جانبه

طول ساقه (سانتی‌متر)

وزن نر ساقه (گرم)

وزن خشک ساقه (گرم)

تعداد شاهد

در رویشی ماسه‌باید. یکی از مهم‌ترین دلایل ایجاد ریشه‌های نابجا این است که رویشی ماسه بار به کاهش مقدار بنکه گذشته به گیاه می‌شود. کاهش بنکه گذشته به تحقیق زنگ و ترشح هورمون ریشه‌ای اکسین می‌شود (Liu, 2014).

در گیاه قره‌داغ مقدار اکسین با دفن شدن در ماسه‌باید افزایش یافته و بنابراین افزایش اکسین ریشه‌های Dech و با عایق در گیاه قره‌داغ شد. نمایش با تحقیق حاضر با Maun Pinus درختی به دفن شدن در ماسه نشان دادند در دو گونه زیتون دکه شامل باقی است سه گونه Picea glauca و strobus Juniperus virginiana, thujaica, Picea با ایجاد ریشه‌های نابجا به شرایط جدید برداری mariana نشان دادند و تحقیق در رشد و زیست در آنها مشاهده نشد.

نه نه تولید Salix cordata و Populus balsamifera در گونه ویژهنامه‌ی نابجا نمودند باعث نیز تحقیق شد و این باعث افزایش زیتون‌های در گیاهان شد. مثال گیاه قره‌داغ در Cakile بررسی اثر دفن در رویشی ماسه بار روی گیاه نشان داده شد که بعد از هفته‌های نابجا ظاهر شدند (Zhang و Maun, 1992). در مورد دلیل دوره‌ی معنی‌دار انتقال مواد کربوهیدراتی و معدن‌ناحیه یا ریشه به آدامه‌های هویابی می‌توان اشاره کرد که قصد در تعیین دفن کامل و پاسخ به نحوی یک نشان مکمل در همه تیمارها دفن از ریشه به آدامه‌های هویابی در گیاه قره‌داغ متقابل شده‌اند. این

بحث

نتایج این آزمایش نشان داده که دفن شدن در رویشی ماسه بار عامل مورد تحقیق، تعداد رشد و جانبه، طول و وزن نر و خشک ساقه و وزن نر ریشه را در گیاه قره‌داغ افزایش داد. دفن شدن در رویشی ماسه‌باید باعث افزایش مقدار پرولئین و برک و ریشه، اکسین برک، قند، فسفر و سدیم برک و ریشه و پتاسیم برک‌ها در این گیاه شد. درختن و درختچه‌ها پاسخ‌های متفاوتی در برای دفن شدن در ماسه من دهد اما عمده پاسخ‌ها به صورت بهبود ویژگی‌های رشد از نظر

فیزیولوژیکی و اکولوژیکی در گیاه‌پرستی (Perumal, 1994)

نتایج دفن شدن قره‌داغ در رویشی ماسه باعث بهبود شاخصی در مورد مطالعه شد. بهبود ویژگی‌های رشدی می‌تواند به دلایل زیر باشد: 1- افزایش حجم خاک و به تبع آن قربانی رطوبت و مواد غذایی قابل دسترس گیاه و جدید آنها از طریق

ریشه‌های نابجا ایجاد شد. 2- انتقال مواد کربوهیدراتی و معدن‌ناحیه یا ریشه به آدامه‌های هویابی. 3- افزایش کلروفیل برک‌ها از طریق افزایش ضخامت و سطح برگ‌ها. 4- افزایش فعالیت میکروبا‌های خاک (maun, 1998). در مورد

دلیل اول می‌توان اشاره کرد که گیاه قره‌داغ با ایجاد ریشه‌های نابجا می‌تواند باعث جذب مواد غذایی و رطوبت خشک‌شده شده.

تیمارها‌ی که در هر روشی در دابلاریک حرف مشترک هستند در سطح 5 درصد آزمون دانک اختلاف معنی‌داری ندارند.

Investigation of some vegetative and physiological characteristic of *Nitraria schoberi* under sand burial

Asghar Mosleh Arani¹, Esmat Jafari², Seid Ali Mohamad Mirmohamadi Meibodi³, Hamid Sovdaezadeh¹

¹Department of Environment, Faculty of Natural Resources. Yazd University, Yazd.
²Department of Desert Management, Faculty of Natural Resources., Yazd University, Yazd.
³Department of Agriculture, Technical University of Esfahan.
(Received: 14/02/2016, Accepted: 02/11/2016)

Abstract

This study was conducted to evaluate the response of *Nitraria schoberi* under sand burial. Experiment conducted with two years old saplings with four treatments (control, 33%, 50%, 66% burial and complete burial). Results showed that the highest concentration of proline (29 mg/gfw) observed in 50% and 66% burial treatment. The lowest concentration of proline (16 mg/gfw) was observed in the control. The highest concentration of Oxine (0.91 mg/gfw) was measured in 50% burial treatment and the lowest concentration of proline (0.43 mg/gfw) was observed in the control. The heighest concentration of stem sugar (20 mg/gdw) was measured in complete burial and the heighest concentration of root sugar (40 mg/gdw) was measured in 33% burial treatment. Stem sodium content in all burial treatment was higher than control. There was not significant differences in root potassium between treatments but leaves potassium (0.83 Meq/L) significantly increased in 75% burial treatment compared to the control. Increasing burial depth decreased potassium in root and leaves. The heighest concentration of leaves and root phosphorus content were measured in 33% burial treatment equal to 0.75 and 0.68 Meq/L respectively. Adventitious roots was observed in all burial treatment but no adventitious root observed in control. Stem wet weight were 1.5 times more than control in 33% burial treatment. Root fresh weight significantly increased in 33%, 50% and 75% burial treatments compared to the control and complete burial treatments. It is concluded that *Nitraria schoberi* had vegetative and physiological adaptive responses to different burial treatments.

Key words: Burial treatment, *Nitraria schoberi*, Proline, Sand burial.

amosleh@yazd.ac.ir