اثر نتیجت پتاسیم بر فعالیت آنزیم‌های آتی اکسیدان در مرحله گوانزئی بذور زوال یافته ماریتیال (Silybum marianum)

علی عبادی، قاسم پرمن و سیدابنیک خسروی که گیری
گروه زراعت، دانشکده کشاورزی، دانشگاه وحدی اردبیلی
(تاریخ دریافت: 15/07/1393)

چکیده:
زوال بذر موجب آفزایش فعالیت مولکول‌های آفسور، واکنشگر می‌گردد و آنزیم‌های آتی اکسیدان نشته کلیدی در مقابله با تشگی اکسیداسیون می‌باشد. افزایش آنزیم‌های آتی اکسیدان نشته در زوال نشته ناشی از افزایش رادیکالهای آزاد می‌باشد. افزایش فعالیت آنزیم‌ها و اثر آن بر واکنشگر جوانزئی بذور زوال یافته ماریتیال در آزمایش در دانشگاه محقق اردبیلی در سال 1347 مورد بررسی قرار گرفت. این آزمایش به کمک تاکنونی در قالب طرح کاملاً تصادفی با سه نمونه بلندی ثبت شده در مدت 7 سال، 300 میلی‌گرم در لیتر نتیجه پذیری و زوال در رطوبت نسبی 95 درصد و باره 16 و 1 حدا در 4 سطح (عمد زوال، 68، 49 و 144 ساعت زوال) انتخاب شد. تأثیر نشته داد با آفزایش سطح زوال (144 ساعت) فعالیت آنزیم‌های آتی اکسیدان سوپراسید دیسومیتار (22 درصد)، کالاتاز (44 درصد)، آسکوربات پرپراکسیداز (77 درصد)، گلوکوژئون پرپراکسیداز (68 درصد) کاهش یافته کرده و در نهایت منجر به کاهش درصد جوانزئی (25 درصد) و سرعت جوانزئی (16 درصد) نسبت به تیمار شاهد (عمد زوال) شد. پیش‌بینی بذر با نتایج پاسخی تأثیر زوال را کاهش و فعالیت آنزیم‌های آتی اکسیدان را افزایش داد، و در نهایت با افزایش جوانزئی منجر شد. غلظت 10 تا 40 میلی‌گرم در لیتر نتیجه پذیری بین‌ترین تأثیر را در کاهش زوال نشته داد. نتایج رگرسیون نشته داد که فعالیت تمام آنزیم‌ها با درصد و سرعت جوانزئی از رابطه خطی پرور می‌کند. همچنین نتایجی که تابع تحلیل می‌باشد آنزیم‌های آتی اکسیدان به ترتیب دارای تأثیر مستقیم و غیرمستقیم بر زوال و سرعت جوانزئی در طی تغییرات رادیکالهای آزاد بودند. به‌طوری که فعالیت پرپراکسید دارای بیشترین تأثیر بر درصد (بیشترین درصد) و سرعت جوانزئی (بیشترین درصد) بود.

کلمات کلیدی: پیش‌بینی، ماریتیال، سوپراسید دیسومیتار، کالاتاز، نتیجه پاسخ

مقدمه:
تشه‌های اکسیداسیون موجب ایجاد اکسیژن فعال مانند رادیکال سوپراسید (O$_2^-$)، هیدروژئون پرپراکسید (H$_2$O$_2$) و رادیکال‌های هیدروکسیل (OH.) در سلول‌های گاهی می‌شود (Wise and Naylor, 1987). گاهیان در مقابل چنین شرایطی پاسخ‌های انتفاضه‌سازکننده مانند تنظیم محتوا محیطی تشه‌های اکسیداتور در سلول نشان می‌دهند (Horling et al., 2003).

زوال در شرایط نامساعد انبارداری مانند رطوبت و درجه حرارت با انتفاضه‌ی مانند موجب تخریب ساختارهای ریبوزومی، آنزیم‌های آنزیمی، نفس و DNA و RNA می‌شود (McDonald, 1999).

افزایش رادیکالهای آزاد و پرپراکسیداز هیدروژئون در طی زوال موجب ایجاد تشه‌های اکسیداتور در گاهی می‌شود
همچنین آنها افزودند در طی زوال فعالیت آنزیم‌های سوپریکسید دیسموتاز، کاتالاز و آسکورپات پراکسیداز کاست یافت که در طی پرایمینک و خیساندن بذر آب گرم افزایش و همکاران (1993) نیز اعلام کردند از سبب افزایش میزان نشت مادو محلول دیده می‌شود. پرکسیداز کل و کاهش فعالیت آنزیم‌های پراکسیداز، آسکورپات پراکسیداز، سوپریکسید دیسموتاز، کاتالاز، گلوتانیون رداکتاز، بذر پنجه می‌شود و هیدروپرایمینک و پراکسیداز با آسکورپات اید موجب کاهش تأثیرات زوال گشت و در نهایت جوانه‌زی افزایش یافته کرد. مارتینیغال (Silybum marianum) کیا دارویی و مزیت‌های است که از ترکیبات آن می‌توان به سلیمنیان، فلاتوئیدین، اسید چرب و ترکیبات پلی فنولی اشاره کرد (Ramansamy و Agarwal، 2008). این از یکی‌یا برای دوام ناراحتی‌های کبدی، چربی خون، دیابت و سرطان استفاده می‌شود (Shaker et al.، 2010). ادبیات این گیاه حاوی روزان زیادی بوده و می‌تواند تا 9 سال در خاک باقی بماند (Sindel، 1991).

در این مطالعه فعالیت آنزیم‌های آنلایکسیدان به‌عنوان عوامل مؤثر بر جوانه‌زی و همچنین مقاومت گیاه نسبت به شرایط محیطی دارای نقش کلیدی در جوانه‌زی و مقاومت گیاهان است. بنابراین به علت اینکه طولانی‌مدت بذر برخی گیاهان به ویژه گیاهان دارویی و مرتعی که به عنوان خارجیات زننیکی نیز و با توجه به قابلیت زننیکی‌ای به بذر مارتینیغال، این پژوهش به م erotور بررسی تأثیر زوال بر جوانه‌زی بذر مارتینیغال و همچنین مطالعه نقش پیش‌بینی در کاهش تأثیرات زوال و تغییرات فعالیت آنزیم‌های ضدکاسه‌سازی در انجام گرفت.

مواد و روش‌ها:

این آزمایش به‌صورت فاکتوریلی قابل طرح کلی یک تصادفی با سه تکرار در آزمایشگاه علوم و تکنولوژی دانشگاه مشهد ارائه شد. فاکتورهای آزمایشی شامل پیش‌تیمار، بذر پر از سبب افزایش پراکسیداز، گلوتانیون رداکتاز و مونو (monodehydroascorbate reductase) سوپریکسید دیسموتاز کاتالاز و آسکورپات پراکسیداز کل را افزایش و میزان پروپاین محلول را کاهش داد، در حالی که پراکسیداز میزان این تغییرات را کمر کرده بود.

پیش‌تیمار بذر در 5 سطح (5، 10، 50 و 100 میلی‌گرم) بر یک بذر. این تغییرات را کمر کرده بود.
جامعه عضویت از آزمایشگاه‌های آنتی-کانسیدان در مرحله جوان‌گی...

144 ساعت زوال تسریع شده (پیش) بودند. صفات اندازه‌گیری شده شامل درصد جوان‌گی، سرعت جوان‌گی و فعالیت آنزیمی سوپراکسید دیسموتاز، کاتالاز، پراکسیداز، آسکوربیات پراکسیداز، گلوتاتیون راکتیلز و گلوتاتیون پراکسیداز بود. بذور استفاده در این آزمایش از شرکت یاکن در تولیدشده در سال 1391 تهیه شد. برای ایجاد سطح زوال، بذور در داخل تری های قرار داده شد و سرس در آن رطوبت با رطوبت بیشی 95% و دمای 45 درجه سانتی‌گراد به مدت 48 ساعت قرار داده شد (Golpayegani, 2011).بعد از سه روز شماره‌ی مورد نظر بذر پیش‌بازی شده‌شدن. برای این کار بذر مبارز می‌شود در دوز 4 لایه کافی و بین قرار داده و سرس محلول‌های نیترات پتاسیم با غلظت‌های 50، 30، 20 و 50 گرم بر لیتر به آن انفوشه شده و آنها را در زمینی‌نور دمای 35 درجه سانتی‌گراد و در محل تاریک قرار داده شدند. سپس بذرها در محیط آزمایشگاه برای رسیدگی به رطوبت اولیه (16-14 درصد) نگهداری شد. قبل از انجام آزمایش جوان‌گی بذرها با هیپکلریت سدیم 1/1 به مدت 5 دقیقه ضدعفونی شدند. این کار برای کاهش احتمال آلودگی در آخرین مرحله صورت گرفت. برای انجام آزمایش جوان‌گی، 50 عدد بذر در درون یک دسته‌بسته به قطع نه سانتی‌متر قرار داده شدند. نمونه‌های از زمینی‌نور دمای 25 درجه سانتی‌گراد قرار گرفتند. شمارش جوان‌گی بر اساس خروج جوانون در میلی‌متری نا 10 روز صورت گرفت (Sedghi et al., 2010).

Roberts و Ellis سرعت جوان‌گی با استفاده از فرمول (1981) طبق معادله زیر از اندازه‌گیری شد. در این رابطه

\[GR = \frac{\sum_{i=1}^{n} N_i}{\sum_{i=1}^{n} (D_i + n_i)} \]

فعالیت آنزیمی در آغاز جوان‌گی (12 ساعت بعد از جذب آب توسط بذر قبل از خروج ریشه‌های اندازه‌گیری شد. استخراج عصاره آنزیمی برای اندازه‌گیری فعالت آنزیمی کاتالاز، پراکسیداز و آسکوربیات پراکسیداز به روش Stewart و بهدلیل از آزمایشگاه‌های آنتی-کانسیدان در مرحله جوان‌گی...
تجزیه داده‌ها با استفاده از نرم‌افزار LSD و مقایسه SAS و میانگین‌ها با استفاده از آزمون t به‌طور استحکام 5 درصد انجام گرفت. برای تست نرمال بودن از نرم‌افزار و Minitab برای نرمال کردن داده‌های تبدیل جری نرمال استفاده شد. همبستگی بین صفات نیز بر اساس نرم‌افزار SPSS محاسبه شد. برای تجزیه و تحلیل فعالیت هر یک از آزمایش‌ها به درصد و سرعت جوان‌زنی نرم‌افزار Minitab استفاده گردید. در این روش داده‌ها به نرم‌افزار داخلی و خود نرم‌افزار به‌صورت خوددارک مدل مورد نظر انتخاب و تجزیه را انجام می‌دهد. برای رسم اشکال از نرم‌افزار Excel استفاده شد. تحلیل مستقیم با استفاده از نرم‌افزار SPSS صورت گرفت. در ابتدا با استفاده از رگرسیون و روش اینتر AMOS درصد و سرعت جوان‌زنی: نتایج این پژوهش نشان داد که درصد جوان‌زنی تحت تأثیر اثرات اصلی تیمار با نتایجی بالاتر از نتایجی که در سانتریفیوز گردید. در ادامه 10 میلی‌متر از عصاره آزمایشگاهی 5 میلی‌متر مخلوط و واکنش که شامل تریس 50 میلی‌متر با ای‌ج/6/5 MgCl2/ 5 میلی‌متر/5/5 GSSG/ میلی‌متر/10 میلی‌متر مخلوط کرده و قرائت در طول موج 340 نانومتر صورت گرفت. (1976) Bradford. میزان پروتئین نمونه‌ها نیز به روش اندازه‌گیری شد. گرم بافت‌گیاهی را با 0/6 میلی‌لیتر فسفر اسید از بدن در دمای 4 درجه سانتی‌گراد سانتریفیوز شد. نرم‌افزار بر روی زنان درصدد در لوله‌های جدید ریخته شد و به مدت 20 دقیقه در 3000 دور سانتریفیوز شده و در نهایت محلول روی بردشته شد. برای اندازه‌گیری میزان پروتئین 10 میکرولوئیدز از عصاره ریز ایستادگی باستفاده در 5 میلی‌لیتر محلول بارداری 190 میکرو‌لیتر فسفر اسید از بدن در دمای 590 نانومتر قرائت گردید.
اثنی‌نیت‌یترات پتاسیم بر فعالیت آنزیم‌های آنتی‌اکسیدان در مرحله جوانه‌زنی ...

![نمودار A](image1)

![نمودار B](image2)

![نمودار C](image3)

![نمودار D](image4)

شکل 1- اثر نیت‌یترات پتاسیم بر درصد (a) و سرعت جوانه‌زنی (c) و اثر زوال بر درصد (b) و سرعت جوانه‌زنی (d) ماریگال.

لبیده‌ها و افزایش فعالیت آنزیم‌های آنتی‌اکسیدان از جمله کاتالاز، آسکربینات پرپراکسید، سپراکسید دیستراکس و مقدار پروتین محلول و کاهش میزان ملیون دی الدهید و پرپراکسید کل، موجب بهبود شاخص‌های جوانه‌زنی می‌شود (Hsu et al., 2003). این نتایج با توافق‌های Kibinza و همکاران (2011) نیز مطابقت دارد.

فعالیت آنزیم سپراکسید دیستراکس: فعالیت سپراکسید دیستراکس در طی تیمار با نیت‌یترات پتاسیم تحت تأثیر نیت‌یترات در مصرف نیت‌یترات پتاسیم ادکرد (716 Bedford). فعالیت سپراکسید دیستراکس با استفاده از جذب‌ها (375 میلی‌گرم پروتئین) در طی بی‌گلوکزه‌کشی میلی‌گرم پروتئین در آینه‌بری که بیشترین فعالیت سپراکسید دیستراکس (137 میلی‌گرم پروتئین) با اجرای نیت‌یترات در مصرف نیت‌یترات پتاسیم ادکرد. در این ایزیت فعالیت آنزیم مجدداً کاهش پایتخت شد. با این نیت‌یترات فعالیت آنزیم م jade.
تغییرات فعالیت آنزیم سوپراکسید دیسموتز در دسته مارپیچال

روش‌های بررسی تأثیر آنزیم سوپراکسید دیسموتز با دسر و سرعت جوانزی از نوع خلیف، نتایج نشان داد افزایش در فعالیت سوپراکسید دیسموتز با افزایش دسر و سرعت جوانزی همراه است. با توجه به معادلات مربوط به این تجزیه رگرسیونی به ازای هر 1/00 تغییر در فعالیت آنزیم درصد جوانزی مارپیچال 1/00 درصد و سرعت جوانزی

نیز 1/00 روز تغییر پیدا می‌کند (شکل 3). نتایج نشان داد فعالیت سوپراکسید دیسموتز با دسر و سرعت جوانزی همکاری مثبت می‌باشد. بررسی نتایج تحلیل مسیر، تأثیر سوپراکسید دیسموتز بر درصد جوانزی بیشتر به صورت غیرمستقیم است به طوری که هر واحد تغییر در فعالیت این آنزیم موجب کاهش 51/00 می‌شود.
<table>
<thead>
<tr>
<th>عنصر</th>
<th>0/5/6</th>
<th>0/5/7</th>
<th>0/5/8</th>
<th>0/5/9</th>
<th>0/6/10</th>
<th>0/6/11</th>
<th>0/6/12</th>
<th>0/6/13</th>
</tr>
</thead>
<tbody>
<tr>
<td>کلرین</td>
<td>4</td>
<td>11/2</td>
<td>12/2</td>
<td>17/7</td>
<td>17/8</td>
<td>17/9</td>
<td>17/10</td>
<td>17/11</td>
</tr>
<tr>
<td>براکزین 1</td>
<td>15</td>
<td>35/4</td>
<td>46/4</td>
<td>36/6</td>
<td>36/7</td>
<td>36/8</td>
<td>36/9</td>
<td>36/10</td>
</tr>
<tr>
<td>براکزین 2</td>
<td>1</td>
<td>10/1</td>
<td>10/2</td>
<td>10/3</td>
<td>10/4</td>
<td>10/5</td>
<td>10/6</td>
<td>10/7</td>
</tr>
<tr>
<td>براکزین 4</td>
<td>15</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
</tr>
</tbody>
</table>

این جدول نشان می‌دهد چگونه تغییرات در فاکتور X باعث تغییرات در تغییرات در فاکتور Y می‌شود.
جدول 3- تأثیر تحلیل میزان فعالیت آنزیم‌های آنتی‌کاسپتاداز بر درصد جوانی‌زیان مارپیچال.

<table>
<thead>
<tr>
<th>آنزیم‌ها</th>
<th>کل تأثیر</th>
<th>تأثیر غیرمستقیم</th>
<th>تأثیر مستقیم</th>
</tr>
</thead>
<tbody>
<tr>
<td>سوپراکسید دیسموتاز</td>
<td>3/66</td>
<td>5/056</td>
<td></td>
</tr>
<tr>
<td>کاتالاز</td>
<td>1/100</td>
<td>1/000</td>
<td></td>
</tr>
<tr>
<td>پراکسیداز</td>
<td>6/052</td>
<td>5/024</td>
<td></td>
</tr>
<tr>
<td>آسکوربین پراکسیداز</td>
<td>8/037</td>
<td>7/012</td>
<td></td>
</tr>
<tr>
<td>گلوتاپیون پراکسیداز</td>
<td>6/039</td>
<td>5/017</td>
<td></td>
</tr>
<tr>
<td>گلوتاپیون رداکتاز</td>
<td>1/026</td>
<td>1/000</td>
<td></td>
</tr>
</tbody>
</table>

جدول 4- تأثیر تحلیل میزان فعالیت آنزیم‌های آنتی‌کاسپتاداز بر سرعت جوانی‌زیان مارپیچال.

<table>
<thead>
<tr>
<th>آنزیم‌ها</th>
<th>کل تأثیر</th>
<th>تأثیر غیرمستقیم</th>
<th>تأثیر مستقیم</th>
</tr>
</thead>
<tbody>
<tr>
<td>سوپراکسید دیسموتاز</td>
<td>2/362</td>
<td>2/050</td>
<td></td>
</tr>
<tr>
<td>کاتالاز</td>
<td>3/037</td>
<td>3/010</td>
<td></td>
</tr>
<tr>
<td>پراکسیداز</td>
<td>2/032</td>
<td>2/000</td>
<td></td>
</tr>
<tr>
<td>آسکوربین پراکسیداز</td>
<td>8/037</td>
<td>7/012</td>
<td></td>
</tr>
<tr>
<td>گلوتاپیون پراکسیداز</td>
<td>6/039</td>
<td>5/017</td>
<td></td>
</tr>
<tr>
<td>گلوتاپیون رداکتاز</td>
<td>1/026</td>
<td>1/000</td>
<td></td>
</tr>
</tbody>
</table>

آکسیون را کاهش داده و از این طریق می‌تواند موجب افزایش جوان‌زی‌شدن، آنزیم سوپراکسید دیسموتاز به‌عنوان اولین گام در میان‌کردن افزایش و منجر به فعالیت شدن فعالیت‌های فوتوسنتزی و ایجاد غیر تعادل بین رادیکال‌های آزاد و آنتی‌کاسپتادازهای دفاعی شده حیاتی‌کاوش پوستیک روبروی آن باعث افزایش حساسیت پوستی‌ها به آنزیم‌های پروتوپاقل کننده و منجر به کاهش قوام‌نیم‌پوستی می‌شود (Kibinza et al., 2006; Berlett and Stadtman, 1997).

بنابراین تنابنده فعالیت آنزیم سوپراکسید دیسموتاز و درصد سرعت جوان‌زی‌شدن البته در پژوهش‌های بسیاری دیگر نیز به کاهش فعالیت آنزیم سوپراکسید دیسموتاز و درصد سرعت جوان‌زی‌شدن اشاره داشته‌اند. (Goel et al., 2003; Hu et al., 2006)

پرپیمیا: با کاهش عوارض زوال موجب ترمیم بیانی‌های مرطوب باعث فعالیت آنزیم‌های آنتی‌کاسپتاداز سبب افزایش فعالیت آنزیم‌ها می‌شود. همچنین پرپیمیا موجب ترمیم و کاهش خسارت غشاء سلولی شده و تولید رادیکال‌های آزاد.
اثش یتشات پتبیٓ ثش فػبیت آ٘ضیٓ آ٘تی اوؼیذاٖ دس ٔشحّٝ خٛا٘ٝ ص٘ی ... 35

شکل 4- اثر نیترات پتاسیم (a) و زوال (b) بر فعالیت آنزیم سویپراکسید دیسپاراز بدور ماریتیغال.

شکل 5- تغییرات درصد جوانزتی و سرعت جوانزتی در طی فعالیت آنزیم کاتالاز (در یک شکل مهمی باه عنوان باقی مانده‌های بزرگ و مثلت) ها داده‌های غیر نرمال می‌باشد.

کاتالاز کاهش یافت (شکل 4، a).
با توجه به تغییرات فعالیت کاتالاز و درصد و سرعت جوانزتی موجود در شکل 5، تغییرات فعالیت آنزیم با درصد و سرعت جوانزتی از نوع خطی بود و افزایش در فعالیت این آنزیم با افزایش در مقیار درصد و سرعت جوانزتی همراه می‌باشد. تغییرات درصد جوانزتی با فعالیت آنزیم به ازای افزایش هر یک تغییرات جذب در میلی‌گرم پروتئین در فعالیت کاتالاز، درصد جوانزتی 1/5 درصد و سرعت جوانزتی زنی 11/40 روز نیز متواند افزایش یابد کند (شکل 5).

نتایج همبستگی تداهندا، فعالیت کاتالاز با درصد جوانزتی و سرعت جوانزتی دارای همبستگی مثبت معنی‌داری بود. این آنزیم نیز با فعالیت پراکسید بالاترین همبستگی را نشان داد (جدول 2). نتایج تحلیل مسئلی نشان داد که درصد و سرعت جوانزتی به ترتیب با آنزیم سویپراکسید و کاتالاز بجامدن سطح معنی‌داری از 0/05 درصد (LSD 0/05= ی۴/84 (A)) و 0/0003‌۸۲ (ب) درصد معنی‌دار بود.

توجه به نتایج، مشاهده می‌شود، تغییرات کاتالاز در اثر مصرف نیترات پتاسیم به صورت معنی‌دار درجه دوم می‌باشد.

مصرف نیترات پتاسیم تا غلظت 32 میلی‌گرم بر لیتر مویب افزایش فعالیت کاتالاز شد و بعد از این غلظت فعالیت آنزیم کاتالاز کاهش یافت. غلظت 32 میلی‌گرم بر لیتر نیترات پتاسیم موجب رسیدن فعالیت آنزیم از ۵/۴۸ به ۸/۹ تغییرات جذب در میلی‌گرم پروتئین شد (شکل 4، a). زوال نیز در سطح 1 درصد تغییرات معنی‌داری در فعالیت کاتالاز ایجاد نمود (جدول 1)؛ به طوری که در طی زوال فعالیت کاتالاز به صورت تابع درجه دوم تغییر پیدا نمود. سطح پایین زوال موجود افزایش فعالیت کاتالاز شد به طوری که البته افزایش فعالیت این آنزیم از ۳۷ تا ۷۳ تغییرات جذب در میلی‌گرم پروتئین (از ۷۳ تا ۳۷ ساعت زوال مشاهده شد. ویل با افزایش مدت زوال فعالیت
درجه دوم نیست می کند و تیم های انسان سبب آسایش فعالیت
این آزمی. شد. بیشترین فعالیت آزمی (40/15 نیازکننده جذب
در میلی گرم یکی با استفاده از 31 میلی گرم در لیتر نیاز
پتیسی به دست آمد (شکل 8). و نیز یکی از آن فعالیت آزمی
نیز به فعالیت ثابت درجه 2 بود. همانطور که در شکل
6 مشاهده می‌شود. روزها 10 ساعت سبب آسایش فعالیت
پراکسیداز شد ولی بعد از این مدت کاهش قابل توجه ای در
فعالیت پراکسیداز مشاهده شد (شکل 8).}

پراکسیداز با درصد و سرعت جوانئیزی یک
رابطه خالص وجود دارد. نتایج عادلیت و نسبت بین داده،
افراش‌های نیاز‌های جذب در میلی گرم بروتوئین می‌تواند
افراش 36/2 در جوانئیزی و 0/200 در سرعت
جوانئیزی را به داشته باشد (شکل 7). فعالیت پراکسیداز
با درصد و سرعت جوانئیزی دارای همبستگی مثبت معناداری
(در سطح 1 درصد) بود. در آزمی در مقیاس با دیگر آزمی.ها
دارای بالاترین ضریب همبستگی با درصد و سرعت جوانئیزی
است (جدول 2). نتایج تحلیل مسیر شناسی آزمی. دارای
پراکسیداز دارای بیشترین تأثیر بر درصد جوانئیزی (0/058) و سرعت
جوانئیزی (0/739) در مقیاس با دیگر آزمی.ها است که بیشتر
این تثبیت‌های اثرات مستقیم است و پراکسیداز دارای
تأثیرات غیرمستقیم نیز باشد (جدول 3 و 4).

با توجه به این که فعالیت پراکسیداز با کاتالاز و آسکوربیات
پراکسیداز دارای یکی از همبستگی است. شاید تاثیرات
غیرمستقیم این آزمی‌ها از طرف آزمی پراکسیداز سبب افزایش
درصد و سرعت جوانئیزی شده و همبستگی موجب افزایش
تأثیرات آزمی پراکسیداز نیز شدند. آزمی پراکسیداز باعث
یکی دیگر از آزمی‌های آنتی‌کاتالاز در سد جهت هیدروژن
پراکسیداز به آب و اکسیژن می‌شود. با وجود که پراکسیداز
دارای بیشترین همبستگی و بالاترین تأثیرات بر درصد
جوانئیزی است، با استاندارد می‌توان تجربه هیدروژن پراکسید
تولید شده در اثر فعالیت راکودینی آزاد را به این آزمی
نسبت داد. پراکسیداز در اثر تنش‌های اکسیدانی کاهش بیدا

داکه کاتالاز در دارای اثرات مستقیم و
غیرمستقیم می‌باشد. اثرات مستقیم این آزمی بر درصد
جوانئیزی مفعول بود از این افراش یک واحد در فعالیت
آنزمی سبب کاهش 0/0400 واحد در درصد جوانئیزی. شد.

اثرات غیرمستقیم کاتالاز مثبت بوده و افراش یک واحد در
فعالیت آن سبب افزایش 0/0400 واحد در جوانئیزی شد که این
موجب مثبت بودند تأثیرات مثبت کاتالاز بر جوانئیزی است
(جدول 3). همچنین بیشترین تأثیر کاتالاز بر سرعت جوان
زهی در مجموع اثر مستقیم (0/0373) بود (جدول 4). با توجه
به همبستگی بین اینم کاتالاز با پراکسیداز و همبستگی
همیشه آن در دیگر آزمی‌ها آنتی‌کاتالاز می‌توان تجربه
گرفت که این آزمی از طرف دیگر آزمی‌ها تأثیر خود را بر
جوانئیزی اعمال نمی‌کند. کاتالاز باعث گیری یک پراکسیداز
یک عامل تغییر غلیظر پراکسیداز به آب و اکسیژن در سلول می
شد. کاتالاز همانند دیگر آزمی‌های آنتی‌کاتالاز در طی زوال
بذر به علت اختلال در بین زننر آن کاهش یدا می‌کند که
این دلیل تغییرات مستقیم آن این آزمی بر درصد و سرعت جوان
زهی است (Kibinza et al., 2011). کاتالاز باعث گیری از
فعالیت اکسیداز ROS ها شده و افراش فعالیت آنتی‌کاتالاز
موجب افزایش نتیجه‌های پروتئینی بین فلز کادمیوم می-
Shimizu and Kobayashi, 1984; Romero-Puertas et al.,
2002. بررسی تغییرات میزان فعالیت کاتالاز در زمان
برای پیشنهاد نشان داده که این آزمی در طی پراکسیداز در
ستوزول سلولی تجمع ییدا می‌کند که این محلول هرمین با
ایکولیزیون هیدروژن پراکسیداز است. پراکسیداز موجب
افراش بروتوئین بدر و سرعت بروتوئین اسید و ابزار آنگام
فروآینده مشابه با دیگر جوانئیزی و
Fu et al., 1988; Bray, 1995. روی بزرگداشت دارد.
که در تهیه موجب بهبود فعالیت آنتی‌کاتالاز و
افراش در دارای جوانئیزی نیز می‌شد.

فعالیت آزمی پراکسیداز: نتایج نشان داد تیم‌های پتیسی در
سطح 1 درصد با فعالیت پراکسیداز اثر معنی‌داری دارد (جدول 1)
تغییرات فعالیت آزمی پراکسیداز اثر تیم‌های پتیسی از معاوده
Downloaded from iisip.ut.ac.ir at 6:46 IRDT on Friday June 4th 2021
آزمایش‌های آزمایشات فعالیت آنزیم‌های آنتی‌اکسیدان در مرحله چهارچراغی...

شکل ۶- نتایج آزمایشات پتاسیم (۵) و زوال (۶) بر فعالیت آنزیم پراکسیماتیداز بذر فرسوده ماریبیتال

شکل ۷- تغییرات درصد جوانزی و سرعت جوانزی در طی فعالیت آنزیم پراکسیماتیداز در این شکل سه دایره با قلمدانه‌های صورتی و سرعت جوانزی می‌کند، کاهش فعالیت آن را نیز می‌توان با کاهش رونوشت برداری و آسیب در ساختمان DNA مرتبط دانست (۱۹۸۸؛ Bray, ۱۹۹۵) مرتبیات افزایشی یوزانزیم‌های پراکسیماتیداز کاهش بیشتری می‌کند که این موجب تغییرات فیزیولوژیک و بیوشیمیایی متعادل می‌شود. تجمع اوزانزیم‌های پراکسیماتیداز در واکنش دیواره سلولی سبب چوبی شدن این سلول‌ها می‌شود و Gaspar (۲۰۰۱) از این طریق موجب محافظه سلول در طی تنش می‌شود (et al., ۲۰۰۱)

فعالیت آنزیم آسکوربیتیداز فعالیت آنزیم آسکوربیتیداز سطح ۵ درصد تحت تأثیر نتایج پتاسیم قرار گرفت (جدول ۱). مصرف نتایج پتاسیم و فعالیت

\[
\begin{align*}
\text{y} &= -0.00496x^2 + 0.30874x + 6.39654 \\
R^2 &= 0.87284
\end{align*}
\]

\[
\begin{align*}
\text{y} &= -0.00041x^2 + 0.02399x + 10.56480 \\
R^2 &= 0.89431
\end{align*}
\]

آسکوربیتیداز با سیاب و سیاک فعالیت آسکوربیتیداز شد. بیشترین فعالیت آسکوربیتیداز (۲۸ ممیزی گرم بلن در میلی‌گرم پروتئین) در میلی‌گرم پروتئین در طی گزارش (۱۸۸۸). زوال نیز در سطح ۵ درصد سیاب تغییرات معمولی در فعالیت آسکوربیتیداز شد.

هورلی (۲۰۰۱) بطوری که در طی زوال فعالیت آسکوربیتیداز (جدول ۱) که تفکر به دنبال‌های معادلات‌های ریاضی به ازای فاصله‌ها که ساخت در مدت زمان زوال فعالیت آنزیم ۲۰۰۹ تغییرات جذب در میلی‌گرم پروتئین کاهش یید (شکل ۶). فعالیت آسکوربیتیداز و درصد و سرعت جوانزی

\[
\begin{align*}
\text{rate} &= 0.00095x + 0.3597 \\
R^2 &= 0.1626 \\
\text{Germination} &= 1.2545x + 45.82 \\
R^2 &= 0.1861
\end{align*}
\]
جوانزنی می‌شود. در بین تأثیرات این آزمی‌سنجی، درصد و سرعت جوانزنی هم دیگر بود که در نهایت باعث خستگی کردن تأثیرات هم دیگر شد (جدول 4). اسکاریات پراکسیداز به‌عنوان دیگر آزمی‌سنجی انتی‌کسیدان سبب تجزیه هیدروژن پراکسید به آب با استفاده از اسکاریات به‌عنوان بستر عمل می‌کند. در عمل این آزمی‌سنجی الکترون اضافی موجود در هیدروژن پراکسید به‌دیه‌هیدروآکسیدهای متصل شده و جوجه نیز می‌شود.

نتایج همبستگی نشان داد که آکسیداتورهای پراکسیداز با درصد و سرعت جوانزنی همبستگی منتفی (در مقدار ۱ درصد) دارد (جدول ۲). نتایج تحلیل مسیر نشان داد، فعالیت آزمی‌سنجی پراکسیداز بد و دارای آزمی‌سنجی ۲۴/۲۰ تأثیر بر درصد جوانزنی بود که ۰/۷۰ مقدار از آن به‌صورت مستقیم بوده که افزایش در مقدار فعالیت این آزمی‌سنجی سبب کاهش درصد...
شکل 10- اثر نیترات پتاسیم (a) و زوال (b) بر فعالیت آنزیم گلوتاتون پراکسیداز بدور مارپیچگال

شکل 11- تغییرات دصرد جوانانی و سرعت جوانانی در طی فعالیت آنزیم گلوتاتون پراکسیداز (در این شکل مربعها به عنوان یکی مانند به برگ و مثله‌ها داده‌ها غیر نمایش گذار

معادله درجه 2 بود. با توجه به درون‌پایی معادلات رگرسیون بالاترین فعالیت آنزیم گلوتاتون پراکسیداز 0/25 و واحد استاندارد در میلی گرم پروتئین در استفاده از 28 میلی گرم بر لیتر نیترات پتاسیم به دست آمد (شکل 10). نتایج مربوط به رابطه رگرسیونی فعالیت آنزیم گلوتاتون پراکسیداز با سرعت و درصد جوانانی نشان داد که بین فعالیت این آنزیم و درصد و سرعت جوانانی یک رابطه خطي وجود دارد و افزایش یا کاهش در فعالیت این آنزیم موجب افزایش و کاهش در دصرد و هم سرعت جوانانی می‌شود (شکل 11). نتایج همبستگی نشان داد که فعالیت آنزیم گلوتاتون پراکسیداز با درصد و سرعت جوانانی درای همبستگی مشابه می‌دارد است (جدول 2). با توجه به نتایج تحلیل مسیر فعالیت آنزیم این آنزیم نقش کلیدی در جرخه گلوتاتون- آسکوربیت دارد (Raven, 2000; Noctor and Foyer, 1998).

فعالیت آنزیم گلوتاتون پراکسیداز: فعالیت گلوتاتون پراکسیداز در سطح 1 درصد تحت تأثیر نیترات پتاسیم و در سطح 5 درصد تحت تأثیر زوال قرار گرفت (جدول 1). با توجه به نتایج در طی زوال فعالیت آنزیم گلوتاتون پراکسیداز کاهش یافت و استفاده از نیترات پتاسیم موجب افزایش فعالیت آن می‌شد. تغییرات فعالیت گلوتاتون پراکسیداز در طی زوال به صورت چکای است و افزایش هر یک ساعت در مدت زمان زوال موجب کاهش 12 تغییرات چپ در میلی گرم پروتئین از فعالیت آنزیم شد. این در حالی که در تغییرات مصرف پتاسیم و فعالیت آنزیم گلوتاتون پراکسیداز به صورت...
گل‌وتانیون رداکتاز به صورت خطر بوده و افزایش مدت زمان زوال‌های با کاهش فعالیت آلانزیم رشد. با توجه به وسیله خطری که با افزایش سرعت مورد تاثیر زمان زوال فعالیت آلانزیم‌ها گل‌وتانیون رداکتاز (400-1000) واحد استانداردها می‌باشد. نتایج می‌گویند که افزایش سرعت در آلانزیم‌ها و افزایش مدت زمان زوال کاهش در فعالیت آلانزیم‌ها و باعث تغییر موجب افزایش کاهش مقدار آنها شود (شکل 13).

فعالیت آلانزیم‌ها در آلانزیم‌ها و افزایش مدت زمان زوال افزایش در آلانزیم‌ها و افزایش مدت زمان زوال کاهش در فعالیت آلانزیم‌ها و باعث تغییر موجب افزایش کاهش مقدار آنها شود (شکل 13).

فعالیت آلانزیم‌ها در آلانزیم‌ها و افزایش مدت زمان زوال کاهش در فعالیت آلانزیم‌ها و باعث تغییر موجب افزایش کاهش مقدار آنها شود (شکل 13).
اثش ٘یتشات پتبػیٓ‌هاً آتی‌کسیدان در مرحله جوان‌زنی ...

شکل ۱۲- اثر نیترات پتانسیم (۰ و زوال (۱) بر فعالیت آنی‌زم گلونیک‌تاز رونکنار بذور ماریخ‌گاه.

شکل ۱۳- تغییرات درصد جوان‌زنی و سرعت جوان‌زنی در طی زوال و تیمار با نیترات پتانسیم (در این شکل می‌توان به عنوان بالقو مانند‌دای یک تغییر نگاه کرد)

آنی‌زم‌های آتی‌کسیدان در نتیجه به‌هم‌گردد بی‌گون‌زنی شد. در بین فعالیت آنی‌زم‌های آتی‌کسیدان پراکسیداز بی‌تین تأثیر و هم‌سیکی‌های در درصد و سرعت جوان‌زنی نشان داد. با توجه به تجربه رادیکال‌های آزاد توسط آنی‌زم سیراکسید دی‌سیمونتار به هیدروژن پراکسید می‌توان استنباط کرد که پراکسیداز بی‌تین می‌توان در مقایسه با دیگر آنی‌زم‌ها در تجزیه هیدروژن پراکسید به آب و آکسیژن دارا می‌باشد. همچنین سرعت جوان‌زنی در مقایسه با درصد جوان‌زنی به فعالیت آنی‌زم بی‌تین برای تغییرات نامناسب بود که این می‌توان به حساسیت بی‌تین آن به نش‌های اکسیدان‌یو، نسبتاً داده شود.

برای تغییر در عدد و درصد کاله، دیگر آنی‌زم‌ها در طی نش‌های اکسیدان‌یو و با تخریب تغییرات آنی‌زم‌های آتی‌کسیدان در تولید کندنی سوپرایت لازم برای فعالیت این آنی‌زم است. شرایت مهم کاهش فعالیت آن تی‌زود.

نتیجه‌گیری کلی:
طبق نتایج این پژوهش انریکس رادیکال‌های آزاد طی زوال، موجب کاهش فعالیت آنی‌زم‌های آتی‌کسیدان و درصد و سرعت جوان‌زنی شد. همچنین استفاده از نیترات پتانسیم برای پیش‌تیمار بذور با کاهش عوارض زوال موجب به‌هم‌گردد فعالیت DNA.

Silymarin, the antioxidant component and Silybum marianum extracts prevent liver damage. Food and Chemical Toxicology 48: 803-806.

Effect of potassium nitrate on antioxidant enzymes activity of aged milk thistle (Silybum marianum) seeds

Ali Ebadie*, Ghasem Parmoon and Soodabe Jahanbakhsh

1Department of Agronomy, Faculty of Agriculture, University of Mohaghegh Ardabili

(Received: 22 October 2014, Accepted: 10 June 2015)

Abstract:

Seed aging increases activity of reactive oxygen molecules and antioxidant enzymes have a key role against increased oxidative stress which is caused by free radicals. Effect of seed priming on increasing of these enzymes activity and its impacts on seed germination characteristics of deteriorated milk thistle seeds was studied in a factorial experiment based on Complete Randomized Design (CRD) with three replications in University of Mohaghegh Ardabili in 2013. Priming treatment was done in five levels (0, 15, 30, 45 and 60 mg per liter potassium nitrate) and seed aging by 95% relative humidity and 45 ° at four levels (non-aging, 48, 96 and 144 hours aging). The results showed that enhancing seed aging reduced the activity of antioxidant enzymes, superoxide dismutase (62%), catalase (34%), peroxidase (43%), ascorbate peroxidase (57%), glutathione peroxidase (61%) and glutathione reductase (58%), which eventually led to a decrease in germination percentage (25%) and germination rate (15%). Seed priming reduced aging effects and increased the activity of antioxidant enzymes, which eventually led to an increase in germination. The concentration of 30-40 mgL⁻¹ potassium nitrate showed the greatest impact. Regression results showed that the enzyme activity follows a linear relationship with the percentage and rate of seed germination. According to path analysis results, the antioxidant enzymes had direct and indirect effects on the germination rate and germination percent respectively, during changes in free radicals activity, so that the peroxidase activity had the greatest impact on the germination percent and rate (0.56-0.73 respectively).

Keyword: priming, potassium nitrate, superoxide dismutase, catalase, milk thistle.

*corresponding author, Email: ebadi@uma.ac.ir