بررسی مقاومت به آهن گونه‌های گیاهی معدن خاک نسوز استقلال آباده

طهماسب آسامانه * و صديقه يونسي
گروه زیست‌شناسی، دانشگاه علوم پایه، دانشگاه پاسِج

(تاریخ دریافت: ۱۳۹۵/۰۷/۰۷، تاریخ پذیرش نهایی: ۱۳۹۵/۰۴/۰۳)

چکیده:
حضور فلزات سنگین در لایه‌های سطحی خاک عمدتاً ناشی از فعالیت صنعتی و معدنکاری است. احتراق صورت و غیره می‌باشد. اگرچه بسیاری از این فلزات فرآیند جریان عناصر ضروري برای گیاهان محسوب می‌شوند، اما گل‌های این آبی‌آ انها سبب پروز سبیت در گیاهان می‌گردد. برخی از گیاهان روبیه در مناطق معنی‌ندن سبب تشدید مفعولیت می‌باشند. هدف از این انجام بررسی مقاومت به آهن گونه‌های گیاهی، رویه در مناطق معدن خاک نسوز استقلال آباده (فارس، ایران) است. به‌دین مطالعه، نمونه‌برداری از خاک‌شناسی‌های معدنی و نمونه‌برداری از ناحیه معدن، و یک ناحیه صاحب انگیز گرفته شده و به‌دین مطالعه نمونه‌برداری از گیاه‌های پایان‌می‌شود. این فاصله با این امر که کل تعداد آهن کل، و قابل تبدیل خاک‌های نمونه‌برداری شده از مناطق در مقایسه با صاحب انگیز گرفته شده و به‌دین نمونه‌برداری از گیاه‌های این منطقه و این مقدار آهن را تا حدی بررسی کنند. انجام چکیده گیاهان کننده‌های: Peganum harmala و Iris spuria، Lappula drobovii، Lepidium persicum، macrosiphon، Nepeta، Ochera bradaioiedes و Cleome rupicola، Salvia sclarea، Mathioli ovatifolia، repandum.

کلمات کلیدی: پوشش گیاهی، سبیت آهن، راهبرد اجتناب، راهبرد تحمل، فلزات سنگین، معدن‌کاری.

مقدمه:
حضور فلزات سنگین (فلاتری که چنین بیش از ۰.۵ (g cm⁻³) در لایه‌های سطحی خاک عمدتاً ناشی از فعالیت‌های صنعتی و معدنکاری، احتراق صورت و غیره می‌باشد. اگرچه بسیاری از این فلزات جزء عنصر ضروری برای گیاهان محسوب می‌شوند، اما گل‌های این آبی‌آ انها سبب پروز سبیت در گیاهان می‌گردد. (Baker and Brooks, 1989; Parekh et al., 1990)

آه می‌گردد چون فلزات سنگین، این گروه فوایان‌های عنصر فلزی موجود در کریم زمین و در حالی که چهارمین عنصر

نویسنده مسئول، نشانی پست الکترونیکی: asemaneh@yu.ac.ir

فرآیند و کارکرد گیاهی، جلد ۱، شماره ۱۹، بهار ۱۳۹۵
نمونه‌های گیاهی بی‌همراه نمونه‌های خاکی مربوط به محض وفاداری مجدد از جمله اطلاعات مربوط به مواد کلی، کشف‌سازی در حال استخراج، محل ریختن بالاکله، ابعاد شکل و فرم‌های کتیبه‌های به روش تپانیکن جمع‌آوری شد. سپس نمونه‌های هراریویی نهی و کلیه نمونه‌های با اساس منابع موجود و روشهای مرسوم مورد شناسایی قرار گرفتند (Rechinger, 2010: 52). عادیت‌های سیستم گیاهی در داده‌ها و در داخل باکتری‌های مخصوص قرار گرفت. سپس نمونه‌ها در مدت 70–48 ساعت سانتی‌گراد بی‌حتی سردر دمای 48 درجه دسته‌بندی قرار داده شد. پس از سرد شدن، باکست‌ها حاصل در 10 میلی لیتر نیتریک اسید 10% حلال گردد. پس از صاف کردن، محلول‌ها درون لوله‌های صنعتی‌یک محلول فیلتره شده و مقادیر آن در آنها توسط دستگاه فیلوسام جداب اتمی (مدل 320 مورد Varian AA240) قطعات قرار گرفت.

جهت اندازه‌گیری آهن کل خاک، حدود 5 گرم از هر نمونه در هواون نیترایس شد و در دمای 10 درجه بی‌هوای و صورت‌پوش شد. سپس به روش اشیایی ساخت در این خشک‌کردن، از طریق تحقیب‌سازی شیمیایی از نمونه که با آب میکرو مزارع تقطیر نهایی در نهایت 15 میلی‌لیتر از هر نمونه برداشت و مقادیر عناصر موجود در این محلول‌ها توسط دستگاه‌هایی میکرو میان آن‌ها قرار گرفت.

جهت اندازه‌گیری مقادیر قالی بادال آهن خاک، نمونه‌ی خاک در شرایط آزمایشگاه خشک گردید و از الک و میلی در حالی که رسوب آن با آهن نیترایس می‌کرده با یا گریوتین، غلظت‌پذیری‌های محلول آن را در خاک‌های مایعی پایین‌تر می‌آورد. (Briot et al., 1995: 52). میان آن‌ها قرار گرفت.

بی‌سیاری از گونه‌های گیاهی، دانسته و ویژگی‌های انواع خاک را تحلیل کنید. در تیمی عامل خاکی، معمولاً محصولات معیوب‌سازند. اصل‌ی این این بوده که بر روی تشکیلات زمین‌شناسی غیرمعمول روش‌های شناسایی، مانند میزان و سرتپنین (Serpenite), این توانه با تکنیک‌های خاصی که در این محدود، دارای یکی در مقادیر است که غلظت‌های بالای آهن و آلومینیوم از میان آن‌ها قرار گرفت. محدود با سخت‌سازی تقریبی 150 میکرو فیلتری چربی در سیستم و 186 کیلوگرم جنوب شرق اصفهان و 10 کیلومتر شمال شرقی شهرستان آباده در طول 70 بی‌هوایی ششی و غیر معنی‌داری (Sahrawat, 2004). از جمله این محدود، محدودی در این ناحیه که غلظت‌های بالای آهن و آلومینیوم از میان آن‌ها قرار گرفت. محدود با سخت‌سازی تقریبی 150 میکرو فیلتری چربی در سیستم و 186 کیلوگرم جنوب شرق اصفهان و 10 کیلومتر شمال شرقی شهرستان آباده در طول 70 بی‌هوایی ششی و غیر معنی‌داری (Sahrawat, 2004). از جمله این محدود، محدودی در این ناحیه که غلظت‌های بالای آهن و آلومینیوم از میان آن‌ها قرار گرفت. محدود با سخت‌سازی تقریبی 150 میکرو فیلتری چربی در سیستم و 186 کیلوگرم جنوب شرق اصفهان و 10 کیلومتر شمال شرقی شهرستان آباده در طول 70 بی‌هوایی ششی و غیر معنی‌داری (Sahrawat, 2004). از جمله این محدود، محدودی در این ناحیه که غلظت‌های بالای آهن و آلومینیوم از میان آن‌ها قرار گرفت. محدود با سخت‌سازی تقریبی 150 میکرو فیلتری چربی در سیستم و 186 کیلوگرم جنوب شرق اصفهان و 10 کیلومتر شمال شرقی شهرستان آباده در طول 70 بی‌هوایی ششی و غیر معنی‌داری (Sahrawat, 2004).
بررسی مقادیر آهن غیربازی گیاهی در معرض نیز محسوب کرد.

میزان آهن در نیمی از موارد در حال حاضر معلوم نمی‌باشد. این امر به منظور استقرار ملد (NH4NO3) با دستگاه تجزیه TH300 و pH مورد گزارش قرار می‌گیرد.

پس از استقرار

تنظیم‌نگری داده‌ها با استفاده از نرم‌افزار SPSS18.0 صورت گرفت. روش آماری مورد استفاده آنالیز واریانس یک طرفه در سطح 0/05 درصد بوده است.

نتایج:

در این مطالعه در مجموع 110 نمونه گیاهی جمع‌آوری گردید.

تغییرات غلظت مقادیر کل و قابل تبدیل آهن خاک.

بررسی تأثیر pH بر ع澈یت خاک از قبل مقادیر کل و قابل تبدیل آهن خاک (بر حسب میکروگرم بر گرم وزن خشک)، pH و EC عصر آهن با استفاده از تحقیق یک مدل معنی‌داری خاص برای تثبیت نتایج نیز ارائه گردید.

�یژگی‌های خاکی متفاوت معلل و شاده نشان می‌دهد.

بررسی نتایج حاصل، در معرض نمودار کل آهن بطور میانگین در منطقه مستقیم 17000، منطقه از افزایش استقرار 20000 و منطقه سه محفظت 2000 میکروگرم بر گرم بوده که مقادیر این عصر در منطقه مورد میزان مختلف معلل و شاده بوده (بر ترتیب 12000 و 14000 میکروگرم بر گرم) دارای تفاوت معنی‌داری می‌باشد (روزنامه‌ای 2008).
جدول 1- مقادیر عنصر اکسیژن (در حالت کل و قابل تبدل بر حسب میکروگرم بر گرم وزن خشک)، pH و EC (بر حسب دی‌زیمپس بر متر) خاک‌های مناطق مختلف معدن‌خوار نوست انتقال آباد.

<table>
<thead>
<tr>
<th>منطقه</th>
<th>Fe</th>
<th>pH</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>منطقه دشت کاشت</td>
<td>170.93±297.62</td>
<td>8/21±0/11</td>
<td>0/6±0/6</td>
</tr>
<tr>
<td>مقادیر قابل تبدل</td>
<td>17/6±0/12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>منطقه استخراجی استقلال 1</td>
<td>173.8±207.03</td>
<td>0/25±0/15</td>
<td>0/4±0/4</td>
</tr>
<tr>
<td>مقادیر قابل تبدل</td>
<td>0/3±0/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>منطقه استخراجی استقلال 2</td>
<td>175.6±231.46</td>
<td>0/23±0/14</td>
<td>0/4±0/2</td>
</tr>
<tr>
<td>مقادیر قابل تبدل</td>
<td>3/2±0/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>منطقه متروکه</td>
<td>320.1±180.4</td>
<td>7/64±0/13</td>
<td>1/4±0/1</td>
</tr>
<tr>
<td>مقادیر قابل تبدل</td>
<td>0/7±0/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>منطقه چاه محفوظ</td>
<td>229.5±173.5</td>
<td>0/6±0/4</td>
<td></td>
</tr>
<tr>
<td>مقادیر قابل تبدل</td>
<td>1/5±0/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>منطقه ورودی معدن</td>
<td>149.3±57/53</td>
<td>0/3±0/16</td>
<td>0/0±0/1</td>
</tr>
<tr>
<td>مقادیر قابل تبدل</td>
<td>0/7±1/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>منطقه شاهد</td>
<td>133.8±29/35</td>
<td>0/6±0/11</td>
<td>0/4±0/5</td>
</tr>
<tr>
<td>مقادیر قابل تبدل</td>
<td>0/7±0/4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

بر عدد میانگین 5 تکرار ± انحراف معیار می‌باشد. حروف تفاوت در هر ستون با اعداد بودن تفاوت مقادیر عنصر در خاک‌های مختلف با استفاده از آزمون Duncan می‌باشد (P<0.05).

رژی پوشش گیاهی مناطق اطراف تأثیرگذار هستند. نتایج حاصل از این پژوهش نشان می‌دهد که به طور میانگین غلظت آهن، در مناطق مورد بررسی بجز منطقه شاهد از 1400 تا 14000 می‌باشد که این میزان در مناطق معدنی نسبت به خاک‌های معمولی بیشتر است. غلظت آهن به طور معمول در خاک‌ها 1400 میکروگرم بر گرم گزارش شده است (Tagliavini et al., 1995).

(بامدادی et al., 2002) با توجه به جدول شماره 1 می‌توان این گونه بانک کرد. بیشترین میزان آهن می‌شود به دلایل زیر باقی‌مانده مربوط به منطقه متروک (14000 میکروگرم بر گرم) می‌باشد که نسبت به منطقه شاهد و سایر مناطق معدن افزایش چشمگیری نشان داده است.

boxed{25} تا حداکثر 1139 میکروگرم در گرم نرم گوردید (جدول شماره 2) که بیشترین مقدار مربوط به قسمت از منطقه استخراجی استقلال 1 بود.

بحث:

فلاتر سنگین از مهم‌ترین ترکیبات غیرآلودگی کننده محیط زیست محصول می‌شود. آلودگی خاک با فلاته سنگین در اثر استفاده از سوخت‌های فسیلی، آبکاری فلاته، استفاده از آفت‌کننده‌ها، ضایعات فلاته و فعالیت‌های صنعتی ایجاد می‌شود. همچنین فعالیت‌های معدن کاری و استخراج فلاته از جمله عوامل عمده در آلودگی خاک‌ها هستند و در صورتی که اطراف معدن حاوی مقادیر بالایی از این فلاته هستند، معدن‌های فلاته سنگین دارای تأثیر مهیب بر روی پوشش گیاهی مناطق اطراف خود هستند. سنگ‌های باطنی، ضایعات و مواد شیمیایی بکار رفته در طی مراحل خالص‌سازی فلاته بر
<table>
<thead>
<tr>
<th>Family</th>
<th>Genus</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salicaceae</td>
<td>Populus alba</td>
<td>27.6</td>
<td>95.5</td>
<td>30.2 ± 2.15</td>
</tr>
<tr>
<td>Rosaceae</td>
<td>Armenia vulgaris</td>
<td>27.6</td>
<td>96.5</td>
<td>8 ± 1.27</td>
</tr>
<tr>
<td>Tamaricaceae</td>
<td>Tamarix ramosissima</td>
<td>27.6</td>
<td>95.5</td>
<td>16 ± 1.28</td>
</tr>
<tr>
<td>Berberidaceae</td>
<td>Berberis integrima</td>
<td>27.6</td>
<td>95.5</td>
<td>28.1 ± 1.16</td>
</tr>
<tr>
<td>Cupresaceae</td>
<td>Thuja orientalis</td>
<td>27.6</td>
<td>95.5</td>
<td>0.8 ± 1.12</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Cersis siliquastrum</td>
<td>27.6</td>
<td>95.5</td>
<td>13.7 ± 2.15</td>
</tr>
<tr>
<td>Rosaceae</td>
<td>Cydonia oblonga</td>
<td>27.6</td>
<td>95.5</td>
<td>10 ± 1.05</td>
</tr>
<tr>
<td>Vitaceae</td>
<td>Vitis vinifera</td>
<td>27.6</td>
<td>95.5</td>
<td>24.1 ± 1.01</td>
</tr>
<tr>
<td>Zygophylaceae</td>
<td>Peganum harmala</td>
<td>27.6</td>
<td>95.5</td>
<td>0.9 ± 1.13</td>
</tr>
<tr>
<td>Caryophylaceae</td>
<td>Dianthus orientalis</td>
<td>27.6</td>
<td>95.5</td>
<td>9 ± 1.02</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Calendula persica</td>
<td>27.6</td>
<td>95.5</td>
<td>14.5 ± 2.25</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Onobrychis sp</td>
<td>27.6</td>
<td>95.5</td>
<td>14.6 ± 2.28</td>
</tr>
<tr>
<td>Brassicaceae</td>
<td>Lepidium persicum</td>
<td>27.6</td>
<td>95.5</td>
<td>13.9 ± 2.13</td>
</tr>
<tr>
<td>Liliaceae</td>
<td>Allium scabriscapum</td>
<td>27.6</td>
<td>95.5</td>
<td>15.8 ± 1.03</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Brossardia sp</td>
<td>27.6</td>
<td>95.5</td>
<td>24.9 ± 1.23</td>
</tr>
<tr>
<td>Apiaceae</td>
<td>Eryngium sp</td>
<td>27.6</td>
<td>94.9</td>
<td>24.9 ± 1.23</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Astragalus sp</td>
<td>27.6</td>
<td>95.5</td>
<td>29 ± 1.24</td>
</tr>
<tr>
<td>Brassicaceae</td>
<td>Lepidium persicum</td>
<td>27.6</td>
<td>95.5</td>
<td>13.9 ± 2.13</td>
</tr>
<tr>
<td>Iridaceae</td>
<td>Iris caucasica</td>
<td>27.6</td>
<td>95.5</td>
<td>14.8 ± 1.12</td>
</tr>
<tr>
<td>Brassicaceae</td>
<td>Parlatoria rostrata</td>
<td>27.6</td>
<td>95.5</td>
<td>17.1 ± 1.23</td>
</tr>
<tr>
<td>Liliaceae</td>
<td>Allium scabriscapum</td>
<td>27.6</td>
<td>95.5</td>
<td>33.7 ± 2.23</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Onobrychis sp</td>
<td>27.6</td>
<td>95.5</td>
<td>19 ± 1.21</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Astragalus sp</td>
<td>27.6</td>
<td>95.5</td>
<td>9.4 ± 1.23</td>
</tr>
<tr>
<td>Plumbaginaceae</td>
<td>Acantholimon sp</td>
<td>27.6</td>
<td>95.5</td>
<td>15.2 ± 1.21</td>
</tr>
<tr>
<td>Caparidaceae</td>
<td>Cleome ripicola</td>
<td>27.6</td>
<td>95.5</td>
<td>11.7 ± 1.01</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Tragopogon sp</td>
<td>27.6</td>
<td>95.5</td>
<td>10.4 ± 1.20</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Tragopogon graminifolia</td>
<td>27.6</td>
<td>95.5</td>
<td>7.7 ± 1.03</td>
</tr>
<tr>
<td>Valerianaceae</td>
<td>Valerianella sp</td>
<td>27.6</td>
<td>95.5</td>
<td>10.7 ± 1.03</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Arthemisia sp</td>
<td>27.6</td>
<td>95.5</td>
<td>10.9 ± 1.05</td>
</tr>
<tr>
<td>Brassicaceae</td>
<td>Erysimum repandum</td>
<td>27.6</td>
<td>95.5</td>
<td>11.4 ± 1.03</td>
</tr>
<tr>
<td>جدول</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>منطقه استخراجی استقلال ۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthemisia sp</td>
<td>Asteraceae</td>
<td>۹/۶ ± ۸/۴۸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthemis sp</td>
<td>Asteraceae</td>
<td>۰/۴ ± ۱/۸۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cousinia sp</td>
<td>Asteraceae</td>
<td>۱۹/۵ ± ۸/۹۷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocheria brardoiedes</td>
<td>Asteraceae</td>
<td>۵۲/۱ ± ۹/۹۹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haloxylon sp</td>
<td>Polygonaceae</td>
<td>۸/۴ ± ۱۲/۵۷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silene sp</td>
<td>Caryophyllaceae</td>
<td>۳۴/۹ ± ۱۱/۸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nepeta macrosiphone</td>
<td>Lamiaceae</td>
<td>۰/۹ ± ۱۲/۷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lappula drobovii</td>
<td>Boraginaceae</td>
<td>۳/۵ ± ۱۱/۷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eryngium billardieri</td>
<td>Apiaceae</td>
<td>۱۴/۵ ± ۲۴/۳۹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dianthus orientalis</td>
<td>Asteraceae</td>
<td>۴۸/۸ ± ۳۰/۱۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orobanche kotschyi</td>
<td>Orobanche kotschyi</td>
<td>۹/۳ ± ۱۸/۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parlaturia rosterata</td>
<td>Brassicaceae</td>
<td>۴۱/۹ ± ۳۱/۹۹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scabiosa flavida</td>
<td>Dipsaceae</td>
<td>۷/۳ ± ۳۰/۸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iris sp</td>
<td>Iridaceae</td>
<td>۱۱/۱ ± ۱۷/۶۸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scabiosa flavida</td>
<td>Dipsaceae</td>
<td>۷/۵ ± ۳۵/۹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactuca sp</td>
<td>Asteraceae</td>
<td>۱۱/۵ ± ۱۲/۳۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iris sp</td>
<td>Lamiaceae</td>
<td>۱۵/۷ ± ۱۱/۰۸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onosma microcarpun</td>
<td>Boraginaceae</td>
<td>۱۰/۷ ± ۲۳/۸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acantholimon sp</td>
<td>Asteraceae</td>
<td>۸/۷ ± ۳۰/۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cousinia sp</td>
<td>Asteraceae</td>
<td>۸/۶ ± ۱۵/۶۹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nepeta sp</td>
<td>Lamiaceae</td>
<td>۱۴/۱ ± ۷۷/۴۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artemisia sp</td>
<td>Asteraceae</td>
<td>۹/۳ ± ۱۸/۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tragopogon graminifulia</td>
<td>Asteraceae</td>
<td>۱۱/۱ ± ۲۶/۱۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clypeola aspera</td>
<td>Brassicaceae</td>
<td>۶/۹ ± ۱۵/۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reseda Arabica</td>
<td>Resedaceae</td>
<td>۱۱/۴ ± ۲۰/۸۳</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephedra sp</td>
<td>Ephedraceae</td>
<td>۱۱/۹ ± ۳۰/۸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stipa barbata</td>
<td>Poaceae</td>
<td>۸/۴ ± ۱۷/۵۶</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acantholimon sp</td>
<td>Asteraceae</td>
<td>۸/۴ ± ۱۵/۶۹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cousinia sp</td>
<td>Asteraceae</td>
<td>۸/۶ ± ۱۵/۶۹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nepeta sp</td>
<td>Lamiaceae</td>
<td>۱۴/۱ ± ۷۷/۴۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peganum harmala</td>
<td>Zygophyllaceae</td>
<td>۸/۵ ± ۱۵/۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astragalus sp</td>
<td>Fabaceae</td>
<td>۸/۳ ± ۱۲/۵۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onobrychis sp</td>
<td>Fabaceae</td>
<td>۱۲/۲ ± ۱۸/۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achillea sp</td>
<td>Asteraceae</td>
<td>۰/۲ ± ۲۲/۳۹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artemisia sp</td>
<td>Asteraceae</td>
<td>۱/۸ ± ۱۴/۷۶</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astragalus sp</td>
<td>Fabaceae</td>
<td>۱۰/۹ ± ۱۸/۸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleome rupicola</td>
<td>Caparidaceae</td>
<td>۱۶/۷ ± ۳۱/۸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromus gracillimus</td>
<td>Poaceae</td>
<td>۱۸/۷ ± ۱۰/۹۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cersiun sp</td>
<td>Asteraceae</td>
<td>۱ۣ ± ۱۷/۷</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>جدول</th>
<th>۲</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>منطقه استخراجی استقلال ۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artemisia sp</td>
<td>Asteraceae</td>
<td>۹/۶ ± ۸/۴۸</td>
</tr>
<tr>
<td>Tragopogon graminifulia</td>
<td>Asteraceae</td>
<td>۱۱/۸ ± ۲۵/۱۲</td>
</tr>
<tr>
<td>Clypeola aspera</td>
<td>Brassicaceae</td>
<td>۸/۹ ± ۱۵/۴</td>
</tr>
<tr>
<td>Reseda Arabica</td>
<td>Resedaceae</td>
<td>۱۰/۲ ± ۲۰/۸۳</td>
</tr>
<tr>
<td>Ephedra sp</td>
<td>Ephedraceae</td>
<td>۱۱/۹ ± ۳۰/۸</td>
</tr>
<tr>
<td>Stipa barbata</td>
<td>Poaceae</td>
<td>۸/۴ ± ۱۷/۵۶</td>
</tr>
<tr>
<td>Acantholimon sp</td>
<td>Asteraceae</td>
<td>۸/۴ ± ۱۵/۶۹</td>
</tr>
<tr>
<td>Cousinia sp</td>
<td>Asteraceae</td>
<td>۸/۶ ± ۱۵/۶۹</td>
</tr>
<tr>
<td>Nepeta sp</td>
<td>Lamiaceae</td>
<td>۱۴/۱ ± ۷۷/۴۲</td>
</tr>
<tr>
<td>Peganum harmala</td>
<td>Zygophyllaceae</td>
<td>۸/۵ ± ۱۵/۲</td>
</tr>
<tr>
<td>Astragalus sp</td>
<td>Fabaceae</td>
<td>۸/۳ ± ۱۲/۵۴</td>
</tr>
<tr>
<td>Onobrychis sp</td>
<td>Fabaceae</td>
<td>۱۲/۲ ± ۱۸/۲</td>
</tr>
<tr>
<td>Achillea sp</td>
<td>Asteraceae</td>
<td>۰/۲ ± ۲۲/۳۹</td>
</tr>
<tr>
<td>Artemisia sp</td>
<td>Asteraceae</td>
<td>۱/۸ ± ۱۴/۷۶</td>
</tr>
<tr>
<td>Astragalus sp</td>
<td>Fabaceae</td>
<td>۱۰/۹ ± ۱۸/۸</td>
</tr>
<tr>
<td>Cleome rupicola</td>
<td>Caparidaceae</td>
<td>۱۶/۷ ± ۳۱/۸</td>
</tr>
<tr>
<td>Bromus gracillimus</td>
<td>Poaceae</td>
<td>۱۸/۷ ± ۱۰/۹۱</td>
</tr>
<tr>
<td>Cersiun sp</td>
<td>Asteraceae</td>
<td>۱ۣ ± ۱۷/۷</td>
</tr>
<tr>
<td>محل جمع‌آوری</td>
<td>نام گیاه</td>
<td>خانواده</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>گوخته‌های مهم و مورد بحث</td>
<td>Cardaria draba</td>
<td>Brassicaceae</td>
</tr>
<tr>
<td></td>
<td>Tamarix ramosissima</td>
<td>Tamaricaceae</td>
</tr>
<tr>
<td></td>
<td>Scutellaria sp</td>
<td>Lamiaceae</td>
</tr>
<tr>
<td></td>
<td>Nepeta sp</td>
<td>Lamiaceae</td>
</tr>
<tr>
<td></td>
<td>Haloxylon sp</td>
<td>Polygonaceae</td>
</tr>
<tr>
<td></td>
<td>Peganum harmala</td>
<td>Zygophylaceae</td>
</tr>
<tr>
<td></td>
<td>Zostemia abisinhtifolia</td>
<td>Apiaceae</td>
</tr>
<tr>
<td></td>
<td>Cousinia sp</td>
<td>Asteraceae</td>
</tr>
<tr>
<td></td>
<td>Tragopogon graminifolia</td>
<td>Asteraceae</td>
</tr>
<tr>
<td></td>
<td>Arthemia sp</td>
<td>Asteraceae</td>
</tr>
<tr>
<td></td>
<td>Onobrychis sp</td>
<td>Papilionaceae</td>
</tr>
<tr>
<td></td>
<td>Allium scariscapum</td>
<td>Liliaceae</td>
</tr>
<tr>
<td></td>
<td>Boissieria Squarrosa</td>
<td>Poaceae</td>
</tr>
<tr>
<td></td>
<td>Tragopogon graminifolia</td>
<td>Asteraceae</td>
</tr>
<tr>
<td></td>
<td>Hordeum glaucum</td>
<td>Poaceae</td>
</tr>
<tr>
<td></td>
<td>Acantholimon sp</td>
<td>Plumbaginaceae</td>
</tr>
<tr>
<td></td>
<td>Alhagi camelorum</td>
<td>Fabaceae</td>
</tr>
<tr>
<td></td>
<td>Anthemis sp</td>
<td>Asteraceae</td>
</tr>
<tr>
<td></td>
<td>Salvia sp</td>
<td>Lamiaceae</td>
</tr>
<tr>
<td></td>
<td>Lactuca sp</td>
<td>Asteraceae</td>
</tr>
<tr>
<td></td>
<td>Erysimum repandum</td>
<td>Brassicaceae</td>
</tr>
<tr>
<td></td>
<td>Onobrychis sp</td>
<td>Papilionaceae</td>
</tr>
<tr>
<td></td>
<td>silene sp</td>
<td>Brassicaceae</td>
</tr>
<tr>
<td></td>
<td>Ebenus stellata</td>
<td>Fabaceae</td>
</tr>
<tr>
<td></td>
<td>Morus alba</td>
<td>Moraceae</td>
</tr>
<tr>
<td></td>
<td>Bromus glacillianus</td>
<td>Poaceae</td>
</tr>
<tr>
<td></td>
<td>Achillea sp</td>
<td>Asteraceae</td>
</tr>
<tr>
<td></td>
<td>Stipa barbata</td>
<td>Poaceae</td>
</tr>
<tr>
<td></td>
<td>Alanthus atissima</td>
<td>Simaroubaceae</td>
</tr>
<tr>
<td></td>
<td>Ziziphora tenuior</td>
<td>Lamiaeae</td>
</tr>
<tr>
<td></td>
<td>Hyosyamus sp</td>
<td>Solanaceae</td>
</tr>
<tr>
<td></td>
<td>Peganum harmala</td>
<td>Zygophylaceae</td>
</tr>
<tr>
<td></td>
<td>Melitius officinalis</td>
<td>Fabaceae</td>
</tr>
<tr>
<td></td>
<td>Iris sanguinea</td>
<td>Iridaceae</td>
</tr>
<tr>
<td></td>
<td>Stipa barbata</td>
<td>Poaceae</td>
</tr>
<tr>
<td></td>
<td>Brosserdia sp</td>
<td>Poaceae</td>
</tr>
<tr>
<td></td>
<td>Anthemisia sp</td>
<td>Asteraceae</td>
</tr>
<tr>
<td></td>
<td>Onobrychis sp</td>
<td>Fabaceae</td>
</tr>
<tr>
<td></td>
<td>Eremostachys macrophylla</td>
<td>Lamiaceae</td>
</tr>
</tbody>
</table>

بررسی مقاومت به آهن گونه‌های گیاهی معدن خاک نسوز استقلال آباده‌ها

تحلیل داده‌‌ها

جدول نشان‌دهنده مقاومت گیاه‌های مختلف به آهن در معدن خاک نسوز استقلال آباده‌ها است. مقاومت عمومی گیاه‌ها به آهن از مجموعه‌‌های گوناگون حاصل گردیده است. گیاهانی که در ملایم بیشتری از بررسی نشده‌اند، به‌طور کلی مقاوم به آهن محسوب می‌شوند.

نتایج

نتایج پژوهش نشان داد که گیاه‌هایی مانند Cardaria draba، Tamarix ramosissima و Scutellaria sp، در مقایسه با بقیه گیاهان، مقاوم‌تر به آهن بوده‌اند. بقیه گیاهان نیز در حالتی متنوعی از مقاومت به آهن باقی مانده‌اند.
ورودی معادن

<table>
<thead>
<tr>
<th>نهضت</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Astragalus sp</td>
<td>Fabaceae</td>
<td>21/3 ± 24/3</td>
</tr>
<tr>
<td>Cousinia sp</td>
<td>Asteraceae</td>
<td>3 ± 21/3</td>
</tr>
<tr>
<td>Cleome rupicola</td>
<td>Capparidaceae</td>
<td>8/4 ± 25/6</td>
</tr>
<tr>
<td>Allium sp</td>
<td>Liliaceae</td>
<td>2/7 ± 14/2</td>
</tr>
<tr>
<td>Astragalus sp</td>
<td>Fabaceae</td>
<td>14/8 ± 17/6</td>
</tr>
<tr>
<td>Iris caucasica</td>
<td>Iridaceae</td>
<td>7/1 ± 16/6</td>
</tr>
<tr>
<td>Onobrychis sp</td>
<td>Fabaceae</td>
<td>3/6 ± 8/2</td>
</tr>
<tr>
<td>Salvia sp</td>
<td>Lamiaceae</td>
<td>1/8 ± 8/2</td>
</tr>
<tr>
<td>Iris caucasica</td>
<td>Iridaceae</td>
<td>15/7 ± 14/6</td>
</tr>
<tr>
<td>Ochera bradoides</td>
<td>Asteraceae</td>
<td>6/8 ± 9/0</td>
</tr>
<tr>
<td>Zosimia abisinthifolia</td>
<td>Apiaceae</td>
<td>5/5 ± 9/3</td>
</tr>
<tr>
<td>Althea sp</td>
<td>Malvaceae</td>
<td>9/8 ± 12/8</td>
</tr>
<tr>
<td>Cephalaria microcephala</td>
<td>Dipsaceae</td>
<td>5/9 ± 31/4</td>
</tr>
<tr>
<td>Nepeta sp</td>
<td>Lamiaceae</td>
<td>8/2 ± 13/6</td>
</tr>
<tr>
<td>Cousinia sp</td>
<td>Asteraceae</td>
<td>2/3 ± 11/1</td>
</tr>
<tr>
<td>Hormuzakia aggregate</td>
<td>Boraginaceae</td>
<td>4/8 ± 10/1</td>
</tr>
<tr>
<td>Scabiosa flavida</td>
<td>Dipsaceae</td>
<td>3/7 ± 3/4</td>
</tr>
<tr>
<td>Ebenus stellata</td>
<td>Fabaceae</td>
<td>9/8 ± 25/2</td>
</tr>
<tr>
<td>Onosma microcarpum</td>
<td>Boraginaceae</td>
<td>7/6 ± 14/4</td>
</tr>
<tr>
<td>Acantholimon sp</td>
<td>Asteraceae</td>
<td>7/8 ± 26/3</td>
</tr>
<tr>
<td>Eryngium sp</td>
<td>Apiaceae</td>
<td>3/7 ± 3/3</td>
</tr>
</tbody>
</table>

نتایج حاصل از آنالیز نمونه‌های خاک (جدول 1). بانگر این است که غلظت آهن قابل تبدیل در خاک مناطق معادن نسبت به خاک‌های معمولی بیشتر است این میزان در خاک بسیار نسبت به غلظت قابل تبدیل در خاک‌های معمولی جدایک، (Kim and Guerinot, 2007). میزان آهن قابل تبدیل خاک در منطقه معادن استخراجی استقلال 1 و 2 تفاوت معنی‌داری با یکدیگر داشته و میزان عصر مذکور بیشتری به محیط ریشه گیاه نفوذ می‌کند بنابراین میزان بیشتری آهن به یافته‌های گیاه نفوذ خواهد کرد و احتمال سمت گیاه افزایش ییدا خواهد کرد.

پژوهشکده کک، سعدی و سوته (2002) نشان دادند که میزان بیشتری به محیط ریشه گیاه نفوذ می‌کند بنابراین میزان بیشتری آهن به یافته‌های گیاه نفوذ خواهد کرد و احتمال سمت گیاه افزایش ییدا خواهد کرد.

اجرای نتایج این آزمایش از میزان سختی و شرایط آزادسازی آهن از ذرات خاک بیشتر شده و آهن
مقایسه بیاکی فلزات سنگین در گیاهان حساس باعث ایجاد مسمومیت در گیاه می‌گردد. غلظت معول آهن در بایات‌های گیاهی تا 350 میکروگرم در گرم گزارش شده است و غلظت بیشتر از 350 میکروگرم در گرم آهن سبب افزایش سبیمیت در کیاگی میشود (Jankiewicz et al., 2002; Suresh, 2005). از این طریق کیاگی‌های آهنه آخر اثرات ظاهری حاصل از سبیمیت آهن که نشانه مشخص آن معقولاً به صورت لک‌های فوهار سیاه روز برج و ریشه کوتاه، کلفت و اسید است را بروز نمی‌دهد از راه‌های مقاومت به نش فلزات سنگین استفاده می‌کند. برای این مقاومت احتمالاً مکانیسم‌هایی این کندن که این مکانیسم‌ها از مسئولیت دیگری در این موجودات حاصل نبود پریتیوس دارای نتیجه‌های دارای نتیجه‌های دلواپس داده شده بودند. لیکن مکانیسم‌های بکار رفته این پریتیوسی شک‌گرای و حجم‌بندی فلزات در واکوالت (Hall, 2002; Marschner, 1995; Stoyanova and Baisch, 2002). نوع مکانیسم آهن از این زمینه را مشخص کند. همان‌طور که گفته شد از بین 100 گوناگونی شناسایی شده در این تحقیق تعادل از گیاه‌های بایات‌های مقایسه‌پذیر آهنه را در بایات‌های خود تجربه داشتند. تحقیقاتی که حداکثر از خانوند Salvia sclarea غلظت آهن در بایات‌های Lamiaceae (جمع‌آوری شده از منطقه استخراجی استقلا) و Poaceae از خانوند Bromus gracillimus Bunge. آوری شده از منطقه استخراجی استقلا) و به ترتیب حدود 1144/48 و 1112 میکروگرم در گرم اندازه‌گیری شد. با توجه به اینکه غلظت‌های این از 1000 میکروگرم در گرم به‌عنوان اندازه‌گیری در نظر گرفته که لک‌های سنگین نمایشگر بر این گرفته می‌شود باعث استواری این گیاه‌های بایات‌های گیاه‌ها می‌باشند. که این خود نیاز به آزمایشات نیکه و کشت بذر و تیمار غلظت‌های متفاوت آهن دارد که مستلزم صرف نسبت به سایر مناطق معبد و شاهد افزایش معنی‌داری در مطلق 5 درصد نشان داد. با توجه به مقایسه میان‌گیری مذکور می‌توان گفت از نظر آماری اختلاف زیادی بین مناطق یاد شده از نظر غلظت آهن وجود دارد که می‌تواند باید توجه نشان دهنده نسبت به کاشت و بهبود سایر گیاه‌ها او در کل، ماهری به ایجاد 11 نسبت به سایر مناطق معبد به جزمخلوطه‌ی متروکه، کاهش زیادی نسبت به گیاهان. کتاب‌شناسی با توجه به نتایج می‌توان دریافت که عامل تهیه و بافت گیاه نسبت به سایر عوامل معنی‌دار دارد. pH سایرین افزایش آهن آزاد خاک‌ها و گیاهان که از مناطق برداشت شده‌اند از نظر رشد در مقایسه با گیاهانی که از مناطق شاهد برداشت شدند تفاوت قابل ملاحظه‌ای نشان نمی‌دهند. ولی از نظر میزان آهن دریافت هشیان نتایج دارند. یکی از نتایج مهمی که با داشته و و موجب افزایش آهن آزاد خاک‌ها و گیاهان از نظر غلظت آهن در برابر گره با مقداری (1000-3، 2000 میکروگرم در گرم پریتیوس در دسته بعد از نظر منطقه‌ای شاهد تفاوت قابل ملاحظه‌ای نشان نمی‌دهند. اما در بسته‌ای از گیاهان علیرغم غلظت بالای آهن در خاک و همچنین میزان آهن در دسترس، مقدار آهن در گیاهی غلظت 300-1000 میکروگرم در گرم فاصله‌ای این گره از گیاهان احتمالاً از راه‌های گسترش برای مقاومت در برای مقایسه در گیاهان گیاهان استفاده می‌کند که به صورت که با وجود بالا بودن غلظت فلز در خاک، از جذب فلزات سنگین ممانعی می‌شود. مکانیسم اصلی گیاه‌های مانند اندازه‌گیری از ریشه که شاهد‌های بی‌اختخار با استفاده کنترل این گیاهان محلولی اندازه‌گیری است. (Baker, 1981). گره‌های دیگری از گیاهان منطقه غلظت 1000 میکروگرم در گرم آهن را در بافت‌هایزمان می‌بیند.
نتیجه‌گیری کلی:

از آنجایی که گیاهان منطقه‌ی معدن در سایر مناطق از جمله منطقه شهید رشت بینا گیاهان چینی نتیجه‌گیری کرده که گیاهان این منطقه جزو گیاهان پسودوماتوفیت محسوب می‌گردد (یعنی گیاهانی که هم در خاک‌های فلزدار و هم در خاک‌های طبیعی رشد می‌کنند). چنین گیاهانی بیشتر در خاک معدن و هریمه‌ی است.}

منابع: