تاثیر باکتری‌های محیطی در تولید متابولیت‌های سازگاری و برخی خصوصیات یونجه همداهنی در طی تنش خشکی

مهندس ذهیلی، علی عبادی‌پور، قاسم پرمن و سیدابنچه کشاورزی، دانشگاه معقل اردبیلی

گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه معقل اردبیلی

تاریخ دریافت: 7/28/1394، تاریخ پذیرش نهایی: 2/2/1394

چکیده:
خشکی یکی از مهم‌ترین تنش‌های محیطی است که رشد گیاه و تولید محصول را به طور نامطلوب تحت تاثیر قرار می‌دهد. به این منظور پژوهش به صورت اکستریل در قالب طرح پایلویه کامل تصادفی با 4 تکرار در گلخانه دانشگاه حرفه‌ای اردبیلی در سال 1394 انجام شد. نتایج نشان داد که پایداری آزمایش، شامل تنش خشکی در سه سطح ۰، ۵ و ۱۰ درصد غرفت مزرعه و تلفیق بذور با محیط‌ها و ریزابی‌ها، میکروب‌ها (Glomus mosseae، ریزوپروم) و ظرفیت زیست‌پذیری، نشانگان افزایش تنوع و کاهش تنش خشکی و بهبود مقاومت گیاه‌ها در حین کاهش نسبی در تنش و حمایت از سیستم فنی‌بیولوژیکی گیاه. این نتایج نشان می‌دهد که پایداری غشا و ظرفیت زیست‌پذیری، میکروپروم بهتر از ریزوپروم عمل کرده است به‌وجود آنها هم‌زمان اهمیتی به‌گونه‌ای تأثیر را داشت. همچنین با توجه به معادله رگرسیون‌هایی متعلق به تنوع و ظرفیت زیست‌پذیری گیاه در برابر میکروفیت و ظرفیت زیست‌پذیری، ریزوپروم به‌همان‌گونه اثرات مشرن در جهت کاهش تنش خشکی و افزایش رشد گیاهی داشته و وجود قابلیت افزایش محصول را داشته‌اند.

کلمات کلیدی: پرولبن، لیزین، پایداری غشا، میکروب‌ها و ریزوپروم

مقدمه:
شناسایی محیطی از فاکتورهای مهم کاشت محصولات کشاورزی در دنبال‌های خشکی، دماهای بالا و پایین و شوری خاک به طور نامطلوبی جواندگی، رشد گیاه و در نهایت تولید محصول را تحت تاثیر قرار می‌دهد (Vandenberg, Zeng, 2006).

عنوان عدم وجود رطوبت کافی و ضروری بروز یک گیاه به منظور رشد نرم‌ال و کامل کردن چرخه زندگی کشتی شد (Manivannan et al., 2008). یکی از حساس‌ترین مرحله‌های زیرکلیولوژیکی گیاه که نسبت به خشکی حساس است رشد و توسعه سلولی می‌باشد که ثابت گردید که آن در تاثیر فضای آب و برق گیاهی کاهش یافته و رشد گیاهی را به علت فشرد پایین (Vandenberg, Zeng, 2006).
آماس متوقف می‌سازد (Makersie and Leshem, 1994) همچنین، کاهش جذب آب از راه ریشه‌ها با کاهش توزیع سلول همراه می‌باشد و موجب کاهش تقلیل سلول و مهار رشد سلول می‌شود (Yordanov et al., 2000). کاهش میزان آب در محیط جذب، باعث اختلال در انتقال مولکول‌ها و کاهش رشد راه دادن دارد. کاهش آب سبب لوله‌ای شدن و بیشترین بزرگی، سبب شدن رونه‌ها، کاهش فتوسنتز، ارور تنفس، کاهش فضای بین سلولی، تخریب پترونتی و آنزیم‌ها. تولید مواد نمی و افزایش تولید انواع آکسیژن و یکنکش گر می‌شود (Shimshie et al., 1992).

شام‌های مشابهی موجب کاهش محیطی نسبی آور و باعث تغییر در غشاء سلولی و افزایش نشکل الکترونی و سلول می‌گردد (Fu et al., 2004).

گیاهان از سازوکارهای معقد جهت مقابله با تنش استفاده می‌کنند. تنظیم اسمزی، یک نوع سازگاری به تنش کمیاب آب است که از طریق تغییر مواد محلول درون سلول‌ها منجر به حفظ توزیع سلول‌ها و فراوانی‌های وابسته به آن در پاتنژ‌های رایج آب می‌شود (Vinocor and Altman, 2006). تنظیم اسمزی از طریق تولید لوله‌های آمیزه پنلولین، آنتی‌ژن، و کنفی‌های محلول در ریشه و اندام‌های هوایی است (Mohammadkhanii and Heidari, 2008; Ahmadi et al.).

قندهال محلول به عنوان یکی دهنده شاهسوز سلول‌ها و حفظ کننده توزیع سلول‌ها عمل می‌کند. در حقیقت، در گیاهان که قندهال محلول در پاسخ به تنش خشکی تولید می‌شود، تنظیم اسمزی بهتر صورت می‌گیرد (Slama et al., 2007). اسیدآمینه پنلولین معمولاً در مقایسه با پنلولین یکی‌یکی با سبب تنش می‌شود.

است نشکننده راهی است که به‌طور خاص یکی از مهم‌ترین روش‌های کاهش تأثیر تنش استفاده از کودهای زیستی می‌باشد. کودهای زیستی دارای مواد نگهدارنده‌ای با اثربخش ایالی موجودات مفید خاصی که با تشکیل کلونی داده و رشد گیاه میزان را به روش‌های مختلف تحریک می‌کنند اثرات مفید باکتری‌های محیط رشد شامل تحریک رشد گیاهان از طریق تثبیت نیتروژ اتمسفری، افزایش قابلیت دسترسی عصارتری غلیظ و افزایش سطح تصاریف، تولید تنظیم کننده‌های رشد و بهبود

(Refsum et al., 1998).

همچنین لیبرین در تنظیم باند رونه‌ها بره، در جوان‌نشینانه گردنه و در سنتر کلروفیل کاربرد دارد که می‌تواند نشکل مهمی در افزایش تحمیل گیاه به سبب اینا کند (مخفی، 1992).

خونده، میکرون (1385) در مطالعه تأثیر تنش بر تجمیع پنلولین در پوسته نشان داده که افزایش خشکی بر میزان تجمیع پنلولین در اندازه‌های مختلف افزوده شد. به‌طور مشابه، میکرون (2008) نیز گزارش (عینی‌کاوهان) در مطالعه اثر تنش خشکی بر خصوصیات چند گونه کیانی نشان داده، تنش موجب افزایش میزان پنلولین و فعالیت آنتی اکسیدان‌ها و کاهش محتوای کلروفیل بره‌ها شد. افزایش شدت تنش خشکی مرتبه کاهش معنی‌دار در میزان فتوسنتز، نیتروژ و آنتی‌ژن، (رخیاب، 1391). همچنین در کاهش افقا ماهی خشکی بر روی پترونتی و پاتنژی اسمزی تأثیر داشته و موجب کاهش مقدار آن می‌شود.

(Soliman et al., 2011)

یکی از مهم‌ترین روش‌های کاهش تأثیر تنش، استفاده از کودهای زیستی می‌باشد. کودهای زیستی دارای مواد نگهدارنده‌ای با اِب‌سوت بلایی موجودات مفید خاصی که با تشکیل کلونی داده و رشد گیاه میزان را به روش‌های مختلف تحریک می‌کنند (Singh and Kapoor, 1999).

(Refsum et al., 1998).

همچنین لیبرین در تنظیم باند رونه‌ها بره، در جوان‌نشینانه گردنه و در سنتر کلروفیل کاربرد دارد که می‌تواند نشکل مهمی در افزایش تحمیل گیاه به سبب اینا کند (مخفی، 1992).

خونده، میکرون (1385) در مطالعه تأثیر تنش بر تجمیع پنلولین در پوسته نشان داده که افزایش خشکی بر میزان تجمیع پنلولین در اندازه‌های مختلف افزوده شد. به‌طور مشابه، میکرون (2008) نیز گزارش (عینی‌کاوهان) در مطالعه اثر تنش خشکی بر خصوصیات چند گونه کیانی نشان داده، تنش موجب افزایش میزان پنلولین و فعالیت آنتی اکسیدان‌ها و کاهش محتوای کلروفیل بره‌ها شد. افزایش شدت تنش خشکی مرتبه کاهش معنی‌دار در میزان فتوسنتز، نیتروژ و آنتی‌ژن، (رخیاب، 1391). همچنین در کاهش افقا ماهی خشکی بر روی پترونتی و پاتنژی اسمزی تأثیر داشته و موجب کاهش مقدار آن می‌شود.

(Soliman et al., 2011)
تأثیر باکتری‌های محرک رشد بر تولید منابعه‌های سازگاری... 13

برای بررسی منابعه آب مورد نیاز در هر بار آبیاری در اندازه‌گیری سلکم رطوبت خاک در حد طرفی خاک در این مطالعه استفاده شد. این مطالعه با توجه به باکتری‌های Sinorhizobium meliloti و ourbacterium urealyticum برای بررسی تأثیر این باکتری‌ها بر رشد و رشد سازگاری گل‌داری در هر بار آبیاری، این باکتری‌ها در گونه و تولید منابعه‌های سازگاری به دست آمده است.

روش آزمایشی: این پژوهش به صورت فاکتوریل در قالب طرح پیوسته‌ای صادقی در دانشگاه محقق اردبیلی با معیارهای 38/25/23/16/13 شماره 4/30/28/15 شرکت در ارتفاع 1500 متر از سطح دریا با 4/30/28/15 طرح در سال 1349 اجرا گردید. تیمارهای آزمایش شامل 3 تا 4 سطح 6/5 و 25 درصد ظرفیت، تولید و تولید منابعه رشد برای باکتری‌های Sinorhizobium meliloti و ourbacterium urealyticum یا در مقابل منابعه اکسیری (Glomerus mosseae). مخلوطی هر دو محرک رشد و یا محرک رشد و بررسی (تلفیح) یافته. در این پژوهش میزان تلفیح محصول، شاهد این تلفیح یافته. در این پژوهش میزان تلفیح محصول، بروز، لیزوز، پنتیدون، نیتروژن، پاتئنیل، موجود است. منابعه‌های آب سیستم‌پرور و همچنین سطح بکر، طول ساقه و وزن خشک انداز هواپی انتادگیری شد. طرفیت زراعتی خاک به روش و این تلفیح و با آب سیستم‌پرور و یک‌هفته یافته محصولی که با موذیت به انتهای گردید. با رشد و در دو بسته آب سیستم‌پرور و یک‌همین بسته یافته بود. به روش دستی از توجهی برجا چاپ شده و توسط آب سیستم‌پرور است. شستشو داده شدند. سیستم به محصول 40 ثانیه در انتهای 96 درصد قرار داده و در صورت این پژوهش، محرک رشد برای بکر در انتهای یک هفته شستشو داده شدند. پس از این پژوهش به محصول 3 دقیقه در محصول کرید و چیزه قرار داده شد و با آب سیستم‌پرور است. شستشو داده شدند.
جدول ۱ - نتایج تجزیه خاک مورد استفاده در آزمایش.

<table>
<thead>
<tr>
<th>نیترات (تریود)</th>
<th>فشار (دوام)</th>
<th>درخت خاک (%)</th>
<th>تیونسی (gr. هی هدهار)</th>
<th>میزان عناصر قابل جذب (میلی گرم در لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰ و ۱۲۰</td>
<td>۷/۸۸</td>
<td>۴۴</td>
<td>۶۴</td>
<td>۹۰۰ و ۸۵۰</td>
</tr>
</tbody>
</table>

طور موج ۵۰۰ نانومتر قرار شد.

میزان قطرهای محلول: اندادهگری قندیل محلول برگ به روش فنل سولفوریک (1956) با کمی تغییر صورت گرفت. به مقدار ۱/۲ گرم از نمونه‌های جوان‌ترین برگ پودر شده را با دو میلی‌لیتر تیونسی سه‌شانه (pH۷) سایه‌بندی و با سرعت ۱۰۰۰۰ که در دیقیه به مدت ۲۰ دقیقه در دمای چهار درجه سانتی‌گراد سانتریفیوز شدند. از محلول روبی ۱۰ میکرویتریت برشته و آن ۱۰۰ میکرویتریت مفر شدد. به ۲ میلی‌لیتر از محلول حاصل تبیین (در دیقیه ۹۹ میکرویتریت) افزوده شد. پس از ثبات رنگ به مدت ۲۰–۳۰ دقیقه سانتی‌گراد قرار گرفت و جذب نمونه‌ها در طول موج ۴۹۰ نانومتر صورت گرفت.

میزان پروپون: اندادهگری میزان پروپون برگ با استفاده از روش Feller و همکاران (1979) صورت گرفت، برای اندازه‌گیری میزان پروپون گرم نمونه برگ را در ۵۰ میلی‌لیتر از چهار درجه سانتی‌گراد سانتریفیوز شدند. سپس به ماینیتر (جرم زنگی) و ۱۰۰ میلی‌لیتر رسانده و صاف کرده و در میلی‌لیتر از ماینیتر از آن را گلیور (۵۰ درصد) بود. طی شدن از ماینیتر ۹۰۰ نانومتر قرار داده شد و جذب در ۵۰۰ نانومتر قرار داده شد. همچنین برای اندازه‌گیری مقدار میتیونین ۱۰ میلی‌لیتر از محلول فیبر شده در محلول به چهار درجه سانتی‌گراد قرار داده و جذب در ۵۰۰ نانومتر قرار داده شد. همچنین برای اندازه‌گیری مقدار میتیونین ۵۰ میلی‌لیتر از محلول فیبر شده در محلول به چهار درجه سانتی‌گراد قرار داده، و جذب در ۵۰۰ نانومتر قرار داده شد. همچنین برای اندازه‌گیری مقدار میتیونین ۱۰۰ میلی‌لیتر از محلول فیبر شده در محلول به چهار درجه سانتی‌گراد قرار داده، و جذب در ۵۰۰ نانومتر قرار داده شد.

میزان تیونسی در آب جوش ۵۰۰ و ۴۵۰ نانومتر قرار داده شد. همچنین برای اندازه‌گیری مقدار میتیونین ۱۰ میلی‌لیتر از محلول فیبر شده در محلول به چهار درجه سانتی‌گراد قرار داده، و جذب در ۵۰۰ نانومتر قرار داده شد. همچنین برای اندازه‌گیری مقدار میتیونین ۱۰۰ میلی‌لیتر از محلول فیبر شده در محلول به چهار درجه سانتی‌گراد قرار داده، و جذب در ۵۰۰ نانومتر قرار داده شد.

میزان تیونسی در آب جوش ۵۰۰ و ۴۵۰ نانومتر قرار داده شد. همچنین برای اندازه‌گیری مقدار میتیونین ۱۰ میلی‌لیتر از محلول فیبر شده در محلول به چهار درجه سانتی‌گراد قرار داده، و جذب در ۵۰۰ نانومتر قرار داده شد. همچنین برای اندازه‌گیری مقدار میتیونین ۱۰۰ میلی‌لیتر از محلول فیبر شده در محلول به چهار درجه سانتی‌گراد قرار داده، و جذب در ۵۰۰ Nанومتر قرار داده شد.

میزان تیونسی در آب جوش ۵۰۰ و ۴۵۰ Nانومتر Cرار داده شد. همچنین برای اندازه‌گیری مقدار میتیونین ۱۰ میلی‌لیتر از محلول Fیبر شده در محلول به چهار درجه سانتی‌گراد Cرار داده، و جذب در ۵۰۰ Nانومتر Cرار Dاده شد. همچنین برای اندازه‌گیری Mقدار میتیونین ۱۰۰ میلی‌لیتر از محلول Fیبر شده در محلول به چهار درجه سانتی‌گراد Cرار Dاده، و جذب در ۵۰۰ Nانومتر Cرار Dاده شد.

میزان تیونسی در آب جوش ۵۰۰ و ۴۵۰ Nانومتر Cرار Dاده شد. همچنین برای اندازه‌گیری Mقدار میتیونین ۱۰۰ میلی‌لیتر از محلول Fیبر شده در محلول به چهار درجه سانتی‌گراد Cرار Dاده، و جذب در ۵۰۰ Nانومتر Cرار Dاده شد.
نتایج و بحث:
نمونه‌گیری و ارائه‌های نشان داد، اثرات اصلی و برهم‌کنش محرک‌های رشد و تنظیم کمی در سطح 1 درصد بر پرولین و قندهای محلول معنی‌دار شد (جدول 2). مقایسه میانگین اثرات متقابل نشان داد، در طی تنظیمشان، تنظیم پرولین و قندهای محلول افزایش پیدا کرده و استفاده از محرک‌های رشد نقش مهمی در افزایش تولید این متابولیت‌ها داشت. تیمار تعلیقی با میکروسب بستری در برابر پرولین و قندهای محلول تأثیر تفاوتی با یکدیگر و وجود تلقیح مخلوط هر دو محرک رشد بیشتر تأثیر را با میزان پرولین و قندهای محلول نشان داده، به طوری که هریک از جهادگران در تماشا سطح تنظیم نمونه، تعداد معنی‌دار یافته‌ای با دو تولید نمونه‌گیری افزایش و تیمار تعلیقی با تولید قندهای محلول اشتراک دارند. یکی از میزان‌های تولید پرولین گل‌نماها می‌باشد، چنان‌چه با افزایش تولید قندهای محلول میزان تولید گل‌نماها افزایش یافته و سنتر پرولین تبدیل می‌شود و همچنین (Irigoyen، 1992) چنین نشان داده است که توجه به پشتیبانی تولید خشک را ناشی از تأثیر تولید ها گاردان 1-گل‌نماها توسط قند گاردان کرده‌اند. نیاکان و غربالانی (2005) نیز از دلایل تجمع پرولین در شرایط نری، به ترتیب پرولین‌ها و اشتها برخی ایرانی‌ها (آزادی) از جهت تحلیل اسپسول از سلو کرده‌اند. راشفی و همکاران (2008) گزارش کرده‌اند، میزان

نتایج رشد و کربن سطح 1 درصد بر پرولین و قندهای محلول معنی‌دار شد. پیشنهاد می‌شود که در یک ارزیابی نمونه به منظور محاسبه گرموز و نمونه‌گیری، از روش طول ساقه و وزن خشک اندام هوابی سطح ADC اگزدزگری شد. برای

شکل برنگ با استفاده از روش‌های مختلف با استفاده از اینکه مدل میزان در گلدین تغییرات شد. برنگ با استفاده از اینکه مدل میزان در گلدین تغییرات شد. برنگ با استفاده از اینکه مدل میزان در گلدین تغییرات شد. برنگ با استفاده از اینکه مدل میزان در گلدین تغییرات شد. برنگ با استفاده از اینکه مدل میزان در گلدین تغییرات شد. برنگ با استفاده از اینکه مدل میزان در گلدین تغییرات شد. برنگ با استفاده از اینکه مدل میزان در گلدین

روش کمیتی و طول ساقه و وزن خشک اندام هوابی سطح

$$RWC = \frac{\text{وزن خشک}}{\text{وزن ترمیم}} \times 100$$
جدول ۲- تجزیه و ارائه انرژی کربن‌های رشد و تنش خشکی بر صفات پوسته هیدرات

<table>
<thead>
<tr>
<th>مانیگین مربوطات</th>
<th>منابع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>میکوریز</td>
<td>نکترار</td>
</tr>
<tr>
<td>محکر</td>
<td>(M) محکر رشد</td>
</tr>
<tr>
<td>خشکی</td>
<td>(D) خشکی</td>
</tr>
<tr>
<td>میکوریز</td>
<td>M × D</td>
</tr>
<tr>
<td>ضریب تغییرات (%)</td>
<td>-</td>
</tr>
</tbody>
</table>

ادامه جدول ۲- تجزیه و ارائه انرژی کربن‌های رشد و تنش خشکی بر صفات پوسته هیدرات

<table>
<thead>
<tr>
<th>مانیگین مربوطات</th>
<th>منابع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن خشک انداز تیغه</td>
<td>نکترار</td>
</tr>
<tr>
<td>ارتفاع سطح</td>
<td>محکر</td>
</tr>
<tr>
<td>محکر</td>
<td>(M) محکر رشد</td>
</tr>
<tr>
<td>خشکی</td>
<td>(D) خشکی</td>
</tr>
<tr>
<td>میکوریز</td>
<td>M × D</td>
</tr>
<tr>
<td>ضریب تغییرات (%)</td>
<td>-</td>
</tr>
</tbody>
</table>

شکل ۱- تأثیر محکره‌های رشد بر میزان پرولین (a) و قند، محول (b) پوسته تحت تنش کم‌یابی. حروف ناشناک نشان دهنده تفاوت معنی‌دار آزمون LSD در سطح 0.05 می‌باشد.

فسر دارد به تقلیل با فارم‌های میکوریزی‌روسکوپتر و اکشن
متی نشان دهد. همچنین به هیف‌های میکوریزی‌روسکوپتر
چسبیده و از آن به عنوان راه نفوذ به ریشه استفاده می‌کنند.

نیتروژن همست و استفاده از نیتروژن می‌تواند سبب افزایش
مقدار آن در گیاه به (Marschner, 1995). اثر هم افزایی به
این دلیل است که گروه‌های رژیمی به دلیل تراز شدیدی که به
شاخص دوم تأثیر تنش خشکی بر میزان لیزین (a) و محرک‌های رشد بر میزان لیزین (b) و میتوین (c) به‌همراه نشان دادن تفاوت معنی‌دار آزمون LSD در سطح 0.05 درصد.

بنابراین احتمالاً ریزوبیوم ها نیز با گسترش هیپیا گسترش یافته‌اند (Bianciotto et al., 2001). و میزان فعالیت آن افزایش یافته‌اند. اثرات اصلی تنش خشکی در سطح 5 درصد بر میزان لیزین تأثیر میتوین‌های نشان داد ولی بر مقدار میتوین به تأثیر بود (جدول 2). خشکی موجب کاهش مقادیر لیزین در برگ‌ها یونجه گردیده بطوری که مقادیر این اسیدامیه در شرایط عدم تنش (75 درصد گرندیت زراعی) 177/0 میلی گرم بر گرم بود ولی شدیدترین سطح تنش با کاهش 98 درصد 98/0 میلی گرم بر گرم رسید (شکل 2). تلقیح با محرک‌های رشد یک در سطح 5 درصد بر میزان لیزین تأثیرگذار بود. تلقیح بدر موجب کاهش میزان لیزین بود. پیشترین (185/0 میلی گرم بر گرم) و کمترین (176/0 میلی گرم بر گرم) مقادیر لیزین به ترتیب از تیمار شاهد و تلقیح با ریزوبیوم بی‌امید. تلقیح بدر در سطح 1 درصد بر میزان میتوین تأثیر معمولاً داشت بر خلاف لیزین موجب افزایش مقدار این اسیدامیه شد. ریزوبیوم بالاترین مقدار میتوین را به خود اختصاص داد (شکل 2). کاهش اسید آمیدامیه لیزین و میتوین در پژوهش توکلی و

![نمودار](https://isip.t.u.ac.ir/compositions/44/44.png)

![نمودار](https://isip.t.u.ac.ir/compositions/33/33.png)

![نمودار](https://isip.t.u.ac.ir/compositions/22/22.png)
برهمکش محرکه‌های رشد و تنش کم‌آبی قرار گرفت (جدول ۲). افزایش شدت تنش موجب کاهش پرتوپتین‌های محلول بزرگ‌مغزی پوسته شده و تلقیح بذر افزایش مقدار آن شد. بیشترین پرتوپتین محلول بزرگ در تمام سطوح نشان دهنده تلفیق دوگانه تعقل داشت و تیمارهای رویپتویو و میکروپریا در یک دامنه بوده و یا یک دنیا تفاوت آماری نداشتند. بالاترین (۰/۱۳۵) میلی‌گرم بر کیلوگرم وزن تری و تازه‌ترین (۱/۵۵ میلی‌گرم بر کیلوگرم وزن تر) میزان پرتوپتین به ترتیب در تیمار تلقیحی محلول در ۱/۷۵ درصد ضریب ترکیب مشاهده شد (شکل ۳).

پژوهش‌هایی انجام شده نشان‌دهنده این واقعیت است که افزایش سطح تنش کم‌آبی موجب در مصرف پرتوپتینی در طی کم‌آب تغییرات افزایش میزان محلولی و پرتوپتین در بذر بهره‌ور شد. پایداری غشاء تحت تأثیر تنش شکسی و تلقیح بذر قرار گرفته، اثرات اصلی شکسی و تلقیح بذر و به‌همکنش آنها در سطح ۱ درصد دارای تفاوت آماری بود (جدول ۲). مقایسه میانگین آنها مقدار نشان داد که تغییرات موجب کاهش بذر است. استحکام غشاء و استعمال محرکه‌های رشد نشان مخربی در کاهش این تغییرات و افزایش بذر شکسی نشان داده شد. بالاترین پایداری غشاء به بین تیمارهای مختلف تلقیح بذر مربوط به استحکام محرکه‌های محلول بزرگ‌مغزی و رویپتویو (مخفی‌کاری) بود. همچنین مشاهده شد که کاهش محرکه‌های رویپتویو پایداری غشاء به‌جای آنها در مقایسه با رویپتویو نشان داد که در رنگ رنگ سبزیت دار فلزی معکوس می‌شود. همچنین مشاهده شد که کاهش محرکه‌های محلول بزرگ‌مغزی و رویپتویو به درجه دوم اهمیت قرار گرفت. بزرگ‌مغزی رویپتویو نشان داد که در رنگ دوم اهمیت برخوردار بود (کلی بالاترین (۷۱ درصد) و بالای‌ترین (۳۱ درصد) پایداری غشاء به ترتیب مربوط به تلقیح بذر با هردو محکم در

شکل ۳. برهمکش محرکه‌های رشد و تنش کم‌آبی قرار گرفت

d) ۱۳۹۴، شماره ۱۴، صفحه ۶۸
شرايط عدم نشان عدم تلقين بيدر در 35 درصد طرفين زراعی است (شکل 4).
نتش با توليد رادیکلی (سمی و اکسیزن آزاد موجب اكسيژن شدن قبسم غشاء و از بين رفن دیابتار غشاء غشی شود. (Wang and Huang, 2004) در چنین شرايط غیب با توليد متابولیتهای زراعی (پروئین و قدنه محلول) موجب کاهش تأثیرات منفی تنش می شود. تندیه محلول و برعی از اسید آمینه ای دیگر، مانند لیزین و میوپین اشاره کرد که در این پژوهش نیز با افزایش نشان تولید آنها افزایش پیدا کرد. کاهش تنظیم اسسوری از طریق تفعیه الام در سلولها و حفظ شمار آب سلسولها به وسیعه و رشد گیاه در شرايط نش بیشتر گیاه می کند. استفاده از افزایش رشد موجع بهبود تنظیم اسسوری در محیط کشا به نشان شد. چنین نتایج توسط مقاطعات دیگر نیز گزارش شده است (Kaschuk et al., 2010). تجمع محلولهای سازگار در شرايط نش با توجه به وجود نتیجه در ساختار آنها موجب تحمل ترشی غزی و نتیجه در گیاه می شود. از این رو استفاده از محیط کشا به تأمین نتیجه تا حد زیادی سبب افزایش مقدار آنها در گیاه شده و موجب تنظیم اسسوری می شود (Soliman et al., 2011).

محتوای آب نسبی نش تحت تاثیر اثرات اصلی و برهمکنش محیط کشا رشد و نش خشکی در سطح 1 درصد قرار گرفت (جدول 2). مقایسه ویکاراها نشان داد، نش موجب کاهش محتوای آب نسبی سلسول و تلقین با تاثیرات نشان، سبب افزایش محتوای آب نسبی پالت شد. مشاهده شد بین نش 75 و 45 درصد طرفین زراعی تلقین زیادی نبست ولی نش درصد موجب کاهش شدید در آب سلسول شد. نش موجب افزایش اختلاف بین تیمارهای تلقین نیز شده است. در بین تیمارهای تلقین، تلقین مخلوط بیشتر تاثیر را نشان داد. به طوری که بیشترین (91/1 درد) و کمترین (52 درد) محتوای آب نسبی ترتیب از تیمار مخلوط در 37 درصد طرفین زراعی و شاهد در 35 درصد طرفین زراعی بدست آمد (شکل 6).
شکل ۴- برهم کنش محصولهای رشد و تنش خشکی بر پایداری شاخ برگ‌های پونجه. حروف نامشابه نشان دهنده تفاوت معنی‌دار آزمون LSD در سطح ۵ درصد.

شکل ۵- برهم کنش محصولهای رشد و تنش خشکی بر پتانسیل اسمروی برگ‌های پونجه. حروف نامشابه نشان دهنده تفاوت معنی‌دار آزمون LSD در سطح ۵ درصد.

شکل ۶- برهم کنش محصولهای رشد و تنش خشکی بر میزان آب نسبی برگ‌های پونجه. حروف نامشابه نشان دهنده تفاوت معنی‌دار آزمون LSD در سطح ۵ درصد.

مخلوط با افزایش جذب عناصر غذایی و افزایش جذب آب و همچنین کشت ریشه‌ها ناشی از کشت هیپه‌های میکوریزا بیشترین محصول آب نسبی را به خود اختصاص داد. علاوه بر آن با افزایش پرولین و فندلها محصول در حضور تحقیق دوگانه میزان محصول آب نسبی افزایش می‌یابد که احتمالاً به دلیل حفظ آماس است. با توجه به نتایج معادلات رگرسیونی مشاهده می‌شود در طی تشکیل نشان مهم متابولیتهای کاهش رشد و فعالیت ریشه و افزایش میزان تبیخ و تعرق از جامعه گیاهی از عوامل کاهش محصول آب نسبی یافت شناخته شده‌اند (2003). به نظر می‌رسد محصولهای رشد با جذب بیشتر آب توسط هیپه‌ها می‌توانند در افزایش محصول میزان آب نسبی یافت نشان داشته باشند. تصویر می‌شود عامل دیگری نیز مانند افزایش جذب آب نیز در بالا بردن آب نسبی برگ دخیل باشد. به طوری که تحقیق
جدول 3- پیشینی محیا، آب نسبی با استفاده از مقادیر مطلوب سازگاری

<table>
<thead>
<tr>
<th>سازگاری</th>
<th>R square</th>
<th>b₀</th>
<th>b₁</th>
<th>b₂</th>
<th>b₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>فندهای محلول</td>
<td>0/845</td>
<td>143/83**</td>
<td>-1/283**</td>
<td>-1/626**</td>
<td>1/000**</td>
</tr>
<tr>
<td>پولیتون</td>
<td>0/385</td>
<td>21/28**</td>
<td>-1/626**</td>
<td>-1/626**</td>
<td>1/000**</td>
</tr>
<tr>
<td>پولیتون</td>
<td>0/318</td>
<td>89/31**</td>
<td>-2/762**</td>
<td>-1/626**</td>
<td>1/000**</td>
</tr>
<tr>
<td>پولیتون</td>
<td>0/238</td>
<td>52/89**</td>
<td>-1/626**</td>
<td>-1/626**</td>
<td>1/000**</td>
</tr>
<tr>
<td>پولیتون</td>
<td>0/282</td>
<td>118/18**</td>
<td>-2/762**</td>
<td>-1/626**</td>
<td>1/000**</td>
</tr>
<tr>
<td>پولیتون</td>
<td>0/831</td>
<td>7/22**</td>
<td>-1/626**</td>
<td>-1/626**</td>
<td>1/000**</td>
</tr>
</tbody>
</table>

پیشینی محیا از طریق تحقیقات و بررسی ها و نتایج برخی آزمونها در مورد قطعیت R و درصد موردی همکاران (1995) و Pennypacker (1990) نشان داده شده است. برای تحقیق در این زمینه، مدل Y=b₀+b₁X+b₂X²+b₃X³ است که به کمک آب واکنش نشان مقدار داده و در نتیجه سطح برگ در کاهش کمک می‌کند. (Paye, 2000). کمک آب با کاهش آب اکسیژن سطوح، رشد و تغییر سطوح را کاهش داده و در نتیجه تعداد برگ و طول سطح و وزن خشک در کاهش پیدا می‌کند. (Desulouli et al., 2000). با توجه به تغییرات سطح برگ و وزن خشک اندام هوایی در طی محیا آب بافت مشاهده می‌شود که تغییرات آنها با پیکدگی به صورت مطابق درجه دوم می‌باشد. به طوری که افزایش محیا آب بافت نیک حاصل موجب افزایش سطح برگ و وزن خشک گردید.

سازگاری به فندهای محلول در پیشینی محیا آب نسبی باقت افزایش می‌یابد (جدول 3). افزایش فندهای محلول با توجه به نقش آن در پیشینی غشا موجب افزایش سهم پایداری غشا در تنظیم آب بافت می‌شود.

در طی تحقیق، به عنوان مثال، پرونتریا و اندام پایداری آزمون (2005) بودند. پرونتریا در طی تحقیق این که باعث تغییرات محیا را به‌طور کمک آب واکنش دارد. گزارش (Saneoka et al., 2004) نشان داده شده است که افزایش محیا آب نسبی برگ و پنیپکر (2000) نتیجه‌گیری کرده‌اند. تجزیه پرونتریا در طی تحقیق این که باعث تغییرات محیا را به‌طور کمک آب واکنش دارد. گزارش (Saneoka et al., 2004) نشان داده شده است که افزایش محیا آب نسبی برگ و پنیپکر (2000) نتیجه‌گیری کرده‌اند. تجزیه پرونتریا در طی تحقیق این که باعث تغییرات محیا را به‌طور کمک آب واکنش دارد. گزارش (Saneoka et al., 2004) نشان داده شده است که افزایش محیا آب نسبی برگ و پنیپکر (2000) نتیجه‌گیری کرده‌اند. تجزیه پرونتریا در طی تحقیق این که باعث تغییرات محیا را به‌طور کمک آب واکنش دارد. گزارش (Saneoka et al., 2004) نشان داده شده است که افزایش محیا آب نسبی برگ و پنیپکر (2000) نتیجه‌گیری کرده‌اند. تجزیه
فرآیند و کارکرد گیاهی جلد ۴، شماره ۱۴، سال ۱۳۹۴

۷۲

شکل ۷- بهره‌کشی محکم‌های رشد و تنش خشکی بر طول ساقه (a) و سطح برق (b) و وزن خشک اندام هواپی (c) به وسیله حروف نام‌های نشان دهنده تفاوت معنی‌دار آزمون LSD در سطح ۵ درصد.

شکل ۸- پیشینی طول ساقه (A)، سطح برق (B) و وزن خشک (C) طی تغییرات محتوای آب نسبی سلول.

کمترین ضریب همبستگی را نشان داد (شکل ۸). طول ساقه در مقایسه با سطح برق و وزن خشک اندام هواپی کمتر تحت تأثیر محتوای آب بود می‌باشد و تغییرات آنها همچنین میکوریزا با افزایش جذب عناصر غذایی و حضور
تأثیر یک‌کاره‌های محرک شده بر تولید متابولیت‌های ساعتیاری...

کاهش محیوتی آب نسبی بلافاصله و در تبیه کاهش تقسیم سلولی و تبیه و تغییرات در تغییرات در افزایش جذب کننده ریشه و

این بررسی در مصرف جدید آب که این امکان کاهش تأثیرات نش می‌گردد (Baon et al., 1994). محرک‌های شده با تأثیر مستقیم در تبیه زیستی نیترژن و افزایش قابلیت دسترسی عناصر غذایی مخلوط برای گیاه‌ها افزایش رشد گیاه می‌شود. تحقیقات نشان داده که بین افرادی که می‌کنند و باکتری‌های

نتیجه‌گیری

با توجه به نتایج این پژوهش مشاهده شد که حیات موجب

منابع:

آخوندی، م.، صفرزاده، غ.، وحودی، م. (1385). اثر تنش خشکی بر تغییرات در نشانده جهت پرورش گیاهی (Medicago sativa L.). (شرکت علوم و فناوتکنیو شرکتی، رنج:

طراحی و صنایع).

از ساز و کارهای نکته بر نش کم‌کم در زتون‌نورتی های کند.

نام انواه (1385). اصلاح نتایج برای نش خشکی و نیترژن

(انواه) نمت‌زایی. م. (1385). اثر تنش خشکی بر

تجمیع پرولین و تغییرات عناصر در بیونجه‌های نیترژن و

نیترژن. (از جمله علوم و فناوتکنیو شرکتی، رنج:

طراحی و صنایع).

چوگان ر. (1385). تشخیص موجب نش خشکی و نیترژن

(از جمله علوم و فناوتکنیو شرکتی، رنج:

طراحی و صنایع).

زاغ مهرچی‌دی، ژ.، بیراضی، غ.، و مژده، ا. (1385). تشخیص

نیترژن و نش خشکی در بیونجه‌های نیترژن و

نیترژن. (از جمله علوم و فناوتکنیو شرکتی، رنج:

طراحی و صنایع).

attributes in two cultivars of mulberry (Morus alba

L.) under NaHCO3 stress. International Journal of

Plant Production 4: 79-86.

