تأثیر باکتری‌های محیطی بر تولید متاکلیت‌های سازگاری و برخی خصوصیات پونجه همدانی در طی تنش خشکی

مهدی ظفری، علی عبادی، قاسم پرمن و سادات احمدیخس

کروه زراعت و اصلاح نباتات، دانشگاه کشوری، دانشگاه حضارت اردبیلی

(تاریخ دریافت: ۷۸/۳۰۰۴/۳۰، تاریخ پذیرش نهایی: ۱۳۹۴/۲/۳۰)

چکیده:
خشکی یکی از مهم‌ترین تنش‌های محیطی است که رشد گیاه و تولید محصول را به طور نامطلوب تحت تأثیر قرار می‌دهد. به این منظور پژوهش به صورت فاکتوریال در قالب طرح بلوک‌ای کامل تصادفی با سه ثبت در گلخانه دانشگاه حقیق اردبیلی در سال ۱۳۹۴ انجام شد. تیمارهای آزمایش شامل تنش خشکی در سه سطح ۲۵، ۵۰ و ۷۵ درصد غرفه‌بندی و تلفیق بدور با محیط‌های رشد می‌کوریزا و رژیومیون (Gromus mosseae) پرولین، تنها مخلوط و مخلوط کم‌نگاری آزمایشی، پاداری غشا، پناسیل اسمری، طول ساقه، ورن خشک آزاد، و سطح بزرگ پونجه تحت تأثیر تیمارهای آزمایش قرار گرفت. خشکی سپس افزایش تولید پرولین، افزایش مخلوط و مخلوط کم‌نگاری آزمایشی، پاداری غشا، پناسیل اسمری، طول ساقه، ورن خشک آزاد و سطح بزرگ پونجه را به مشابه افزایش در تنوع و درجه تنش خشکی داشت. پروولین، پاداری غشا و مخلوط کم‌نگاری آزمایشی اثر معنی‌ザات زیادی از این زیر‌گروه در مقایسه با دیگر تیمارها تحت تأثیر محیط‌های رشد پونجه و اثر کلی کاربرد توم می‌کوریزا و رژیومیون مهاوره به‌طور میان در جهت کاهش تأثیرات تنش خشکی در گیاه پونجه بود که نشان دهنده وجود رابطه هم‌افزاری بین آنها می‌باشد.

کلمات کلیدی: پرولین، پاداری غشا، میکوریزا و رژیومیون

مقدمه:
شناسی محیطی از فاکتورهای مهم کاشت محصولات کشاورزی در دنیا هستند. خشکی، دماهای بالا و پایین و شرایط خاک به‌طور ناامنی موجب قوشاندن رشد گیاه و در نهایت تولید محصول را تحت تأثیر قرار می‌دهد (Van Den Berg and Zeng, 2006).

نویسنده مسئول، نشانی پست الکترونیکی:
ebadi@uma.ac.ir
آماس منوی فاز سازد. (Makersie and Leshem, 1994)
همچنین، کاهش جذب آب از راه ریشه‌ها، با کاهش توزیع سلول همراه بوده و موجب کاهش تحقیم سلول و مهار رشد سلولی می‌شود (Yordanov et al., 2000). کاهش میزان آب در محیط جذب، باعث تغییرات در انتقال مواد غذایی و کاهش رشد را به دنبال دارد. کاهش آب می‌تواند سبب شدن و پیچ خوردن بگرگان، بسته شدن روزنه‌ها، کاهش فتوسنتز، اثر روز نفس، کاهش فاضلای سلولی، تخریب پروتئین‌ها و آنزیم‌ها، تولید مواد سرم و افزایش تولید اکسیژن و اکسیژن گر می‌شود (Shimshi et al., 1992). شیم شکلی موجب کاهش محتوای نسبی آب و باعث تغییر در غشاء و افزایش نشت الإلكترونتی سلول می‌گردد (2004).
گیاهان از سازوکارهای منع‌کننده جهت مقابله با تنش استفاده می‌کنند. تنظیم اسمزی، یک نوع سازگاری به تنش کمبود آب است که از طریق تجمیع مواد محلول درون سلول‌ها، منجر به حفظ توزیع سلول‌ها و فراوانی‌های وابسته به آن در پانسیل‌های پایین آب می‌شود (Vinocur and Altman, 2005) تنظیم اسمزی از طریق تولید انواع مواد آلی متنوع پرولین، باتریاپل و تُن افزایش محلول در خاک ایجاد می‌کند. (Sharma, 2010).
قندهای محلول به عنوان یکی از دهندگان شکل‌دادگی بیشتر و حفظ کندنگ تنظیم گیاهان سلول‌ها عمل می‌کند. در حقیقت، در گیاهانی که قندهای محلول در پاپس به تنش خشکی تجمع می‌پایند، تنظیم اسمزی به‌طور می‌گیرد. اسیدآمین‌های پرولین معمولاً در مقدار زیاد در پاپس به تنش‌های حیاتی، تجمع می‌پاید. شکستن سریع پرولین بعد از پایان واکنش شرایط تنش، ممکن است خود تأمین کندنگ عوامل مورد نیاز برای ATP فسفوریلاسیون اکسیدوژوئیدویاپی تولید ترمیم صدمات ناشی از تنش باشد (Bates et al., 1973). مقدار چندین اسیدآمین‌های کربنی نیز تحت تأثیر تنش‌های مختلف مانند خشکی شوری آنزیم‌های می‌پاید. می‌تواند یکی یکی از اسیدآمین‌های آمین این است که غیر فعال پرولین و به همراه سیستمی جوی دو اسیدآمین
تأثیر باکتری‌های محرک رشد بر تولید ماتابیوت‌های سازگاری...

در اینجا نمونه‌بندی با گیاه‌های میزان در مراحل مختلف رشد می‌باشد
(چوگان 1383). فضایی (وتیاری 1391) نشان داده که تکثیر با باکتری Sinorhizobium meliloti باعث افزایش میزان از وزن خشک ریشه و اندازه هواپیمایی، تعادل گره‌ها، فعل و غلظت نیتروژن بیونچه در شرایط شور می‌شود.

Soliman (2011) در مطالعه‌ای نشان داد که با کاربرد ماتابیوت‌های رشد موجاب‌افراش جدب عناصر به ویژه نیتروژن در افقتگان، رشد و از این طریق موجاب‌افراش گیاه از تولید ماتابیوت‌های سازگاری جهت مقاومت گیاه می‌شود. هدف از این مطالعه بررسی تأثیر ماتابیوت‌های رشد بر تولید ماتابیوت‌های سازگاری و محیط‌های آسمی آنها و تشخیص آنها در حفظ آماده سلول و رشد و توجه به بروز یونجه هدایت می‌باشد.

مواد و روش‌ها:
طرح آزمایشی: این یوزه‌های به صورت فاکتوریال در قالب طرح پلک‌های کاملاً تصادفی در گلخانه تحقیقاتی دانشگاه محقق اردبیلی با مختصات جغرافیایی 38°28' شمالی و 54°30' شرقی در ارتفاع ۱۵۰۰ متری از سطح دریا با سه تکرار در سال اجرای کردی. نیمه‌های آزمایش شامل نشان ده کم‌آی در 3 سطح 55 و 75 درصد ظرفیت زراعی و تلقیح بالا با ماتابیوتی Sherd میکروپرا (Sinorhizobium meliloti) مخلوط هر دو ماتابیوت رشد جهت افزایش نسبت سلول و همچنین سطح برگ، طول ساقه و وزن خشک اندام هواپیام اندازه‌گیری شد. ظرفیت زراعی خاک به روش وزنی تعیین و بذر بذر سالم و یک‌تک ویژه به بی‌شکل هم‌بندی که از موسمه‌های نالد و بذر درجه نهایی برده یوونجه هدایت می‌کند. بر اساس اندازه‌گیری میزان لایه‌ای، خاک به مدت 120 روز به‌طور متوسط برگ استراتی، شستشو داده شدند. سپس به مدت 30 ثانیه در اتاقر یک درصد قرار داده و دوباره به مدت دو ماه وقت مانند استراتی شستشو داده شدند. پس از آن به دوگاه به مدت 32 دقیقه در محلول کریستال ۷۵ گرم نمونه‌بندی از بذر به روش چینی کوبیده و سپس ۳ میلی‌لیتر یکف‌اف.
جدول 1 - نتایج تجزیه خاک مورد استفاده در آزمایش.

<table>
<thead>
<tr>
<th>شماره</th>
<th>ترانسیم (نیتریژن فسفر)</th>
<th>pH</th>
<th>شوری (دمائی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.1</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.1</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0.1</td>
<td>0.25</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>0.1</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0.1</td>
<td>0.25</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>0.1</td>
<td>0.25</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>0.1</td>
<td>0.25</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>0.1</td>
<td>0.25</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>0.1</td>
<td>0.25</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>0.1</td>
<td>0.25</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>0.1</td>
<td>0.25</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>0.1</td>
<td>0.25</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>0.1</td>
<td>0.25</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>0.1</td>
<td>0.25</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>0.1</td>
<td>0.25</td>
</tr>
</tbody>
</table>

طول موج 500 نانومتر قرانت شد.

میزان قندهای محلول اندازه‌گیری دانه‌گیری محلول برگ به روش نانومتر سولفوریک (Dubois et al., 1956) با کمی تغییر صورت گرفت. به مقدار 0.1 گرم از نمونه‌های نصد و نصد پودر شده را با دو میلی‌لیتر یافم مایع سیتوپلیژ (pH=7) ساده و با سرعت 10000 دور در دقیقه به مدت 20 دقیقه در دمای 45 درجه سانتی‌گراد سانتریفیوز شدند. از محلول روبه 10 میکرونتری پذیرش شد و آن 99 میکرونتری آب می‌فرزد شد. به 5 میلی‌لیتر محلول حاصل، 5 میلی‌لیتر فنول 5 درصد و 25 میلی‌لیتر اسید سولفوریک (98 درصد) آب می‌فرزد شد. پس از ثب‌تینگ به مدت 10-15 دقیقه در دمای 37-23 درجه سانتی‌گراد قرار گرفت و جذب نمونه‌ها در طول موج 490 نانومتر صورت گرفت.

میزان لیزین و میوتین اندازه‌گیری لیزین و میوتین با روش Feller استفاده از روش و همیاران (1979) صورت گرفت. اکثر اندوزه‌گیری میزان لیزین 0.5 گرم نمونه برگ رد 50 میلی‌لیتر از محلول سولفوریک در حالت آب به حجم 100 میلی‌لیتر رسانده و صاف‌کرده و مسیم تیم فنول (6/2 میلی‌لیتر از آن را گلیسول 50 درصد) در میلی‌لیتر از تیم فنول (6/2 میلی‌لیتر از آن را گلیسول 50 درصد) و یک میلی‌لیتر نبه‌هیدرن حل به مدت 30 دقیقه در آب جوش 100 درجه سانتی‌گراد قرار داده شد و جذب در طول 70 دقیقه قرار داشت. همچنین برای اندوزه‌گیری مقدار میوه‌ای 10 میلی‌لیتر از محلول فنول شده در مرحله سه لیزین را را درمان شد و به کار در کلاسیفیکاپل از حلال نمونه عبور داده شد و با سرعت 10000 دور در دقیقه در دمای 45 درجه سانتی‌گراد به مدت 10 دقیقه سانتریفیوز گردید و مسیم به دو میلی‌لیتر از عصاره حاصل، دو میلی‌لیتر علف نین‌هیدرن که 1/26 گرم مواقع باید برگ 10 میلی‌لیتر اسید سیتوپلیژ (pH=6) و مسیم به دو میلی‌لیتر اسید سانتریفیوز گردید و مسیم به دو میلی‌لیتر از عصاره حاصل، دو میلی‌لیتر علف نین‌هیدرن که 1/26 گرم می‌پذیرد، 80 میلی‌لیتر اسید سانتریفیوز گردید و مسیم به دو میلی‌لیتر اسید سانتریفیوز گردید. لوله‌ها به مدت یک ساعت در حمام آب گرم قرار داده شد و مسیم چاپ میلی‌لیتر لوله به هر یک از لوله‌ها اضافه و به مدت 10 ثانیه ورتنکس گردید. سپس از تشکیل دو فاز جداگانه، فاز بالایی زنگی که چاپ جدا و جذب آن با نسبت اسید (1/120) ساخته می‌شود (شدت ورتنکس) مدل ۱۴۰۰ ساخت کریستال اکسی) با

میزان عناصر قابل جذب (میلی‌گرم در لیتر)
تأثیر باکتری‌های محرک رشد بر تولید محلول‌های سازگاری...

گرگسونی با استفاده از SPSS و رسم نمودارها با استفاده از Excel.

نتایج و بحث:

نتایج تجزیه واریانس‌ها نشان داد، اثرات اصلی و برهم
کنش محرک‌های رشد و نش در سطح 1 درصد بر
پرولین و قندیهای محلول معنی‌دار شد (جدول ۱). مقایسه
میانگین اثرات متقابل نشان داد. در میان نش، تولید پرولین و
قندیهای محلول آفزایش پیدا کرده و استفاده از محرک‌های رشد
نفک مهمی در افزایش تولید این محلول‌ها داشت. تیمار
تلقوی‌یابی با مکروپزی‌بینش در دوز پرولین و
قندیهای محلول تأثیر داشت ولی با این وجود تلفیق مخلوط
هردو محرک رشد بیشتر تأثیر را بر میزان پرولین و قندیهای
محلول نش داد. به طوری که این تیمار در تمام سطوح نش
پالاترین مقدار را به خود اختصاص داد (شکل ۱).

افراش پرولین و قندیهای محلول در شرایط خشکی در
دونه‌خازندane (۲۰۰۸) نیز دیده شده است. آن‌ها در اثر خشکی
هوری آفرارآوری پرولین در
یونجه در اثر خشکی را گزارش نمودند. تولید پرولین با تولید
قندیهای محلول ارتقاء داد. یکی از موردی‌های تولید پرولین
گلوتاتم‌ها بود. چنانچه با افزایش تولید قندیهای محلول
میزان تولید گلوتاتم‌ها به‌طور پرولین و سنتر پرولین تشدید می-
شد (Irigoyen et al., 1992). رابطه بین پرولین
ر اشاره نشان داد که تأثیر محلول
۰-گلوتاتم‌ها کارزار
ر الن است از نظر مولکولی بر روی
Niakan and Ghorbanli (2005) نیز در دلایل تجمع
پرولین در شرایط نش، به تخییر پرولین‌ها و انتشار برخی
عواملی شامل آزاد در حالت نکات حرارتی سلول اشام کردن. 
مهمین (2008) کارزار کردن. میزان
قندیهای محلول با اعمال نش کمی در ذرت افرارآوری یافت.
افراش پرولین و قندیهای محلول در تیمارها تلفیق ممکن
است با افزایش جذب نور عاملی به خصوص نیتروژن
مرتب و بود که در لزیچ دوگانه به دلیل دیل هم افزایش میزان
سنت نسبت به حالت افراری بین‌بود. پرولین دارای ساختار
تگه‌داری شد. پنجم میلی‌لیتر هیدروکلریکسید (۱۱) را اضافه
کرده و خوب مخلوط نموده و سپس به مدت ۳-۲ دقیقه خنک
کرده و از صافی به داده شد. سپس میزان جذب در
نمونه قرارت و میزان لیزین و میتوئین بر حسب میلی‌گرم بر
گرم وزن محاسبه گردید.

پایداری خشک: پایداری غشاء با استفاده از روش زیر تعیین
شد (Saneke et al., 2004)؛ که در آن ⃗ι و ⃗n شکل ۱ درصد بقیه ناهنجاریق از اتکاکان و ⃗C و ⃗c شاگرد بقیه و بعد از اتکاکان می‌باشد.

محتواي آب نسبی باث: برای اندازه‌گیری میزان محتوای
آب نسبی باث برگ با استفاده از روش Weatherley (1995) مقدار ۰.۵ گرم از نمونه‌ها برک چندان. با یک‌شش وزن نرم
آنها تعیین شد. سپس نمونه‌ها در داخل لوپها آزمایش در
بدار محتوای ۱۰۰ میلی‌لیتر آب مقطع گیرنده شدند و به مدت
۴ ساعت در محیط نسبتاً خشک و بدون نور نگهداری شدند. پس
از گذشت این مدت برگ‌ها را از داخل لوپها آزمایش در
آورده و سپسی با کاغذ خشکین کن. آب روي برگ‌ها زده شد
و وزن آنها تعیین شد. سپس نمونه‌ها به داخل آن‌کتریکی با
دمای ۷۰ درجه سانتی‌گراد می‌شدند و بعد از ۴۸ ساعت وزن
خشک برگ‌ها تعیین گردید و با استفاده از رابطه زیر محاسبه
محتوای آب نسبی تعیین شد.

رگه‌ی نسبی وزن - وزن خشک

RWC = (100 × وزن نرم - وزن خشک)

وزن نرم - وزن آدمی

سطح برگ و طول ساقه و وزن خشک اتانم ویوی: سطح
برگ با دستگاه بسته سنج مدل ADC ادازه‌گیری شد. برای
تعیین طول ساقه و وزن خشک اتانم ویوی نرم بوده‌ها
یه طول کامل برداشتند و سپس به آزمایشگاه منتقل شدند و
بعد از جدا شدن نمونه شاخص‌ها جانبه طول ساقه اصلی و وزن
خشک اتانم ویوی محاسبه و متوسط دو در گلدان تعیین شد.
تجریب آماری داده‌ها توسط نرم‌افزار SAS و مقایسه میانگین
متوسط و روزن‌تویت از آزمون LSD در سطح ۵ درصد انجام شد. تجزیه

Downloaded from jispp.iut.ac.ir at 8:21 IRDT on Tuesday July 13th 2021
جدول ۲- تجزیه و تحلیل اثر کاربرد محکمه‌های ردش و نش خشکی بر صفات یونجه همدانی.

<table>
<thead>
<tr>
<th>میانگین مربوط</th>
<th>پنالتل اسمز</th>
<th>بیئنوین</th>
<th>لیزین</th>
<th>پروتئین</th>
<th>قندهای محلول</th>
<th>پروپیون</th>
<th>درجه آزادی</th>
<th>منابع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>تکرار</td>
<td>تکرار</td>
<td>تکرار</td>
<td>تکرار</td>
<td>تکرار</td>
<td>تکرار</td>
<td>تکرار</td>
<td>تکرار</td>
<td>تکرار</td>
</tr>
<tr>
<td>محکمک ردش (M)</td>
</tr>
<tr>
<td>دشخش (D)</td>
<td>دشخش</td>
<td>دشخش</td>
<td>دشخش</td>
<td>دشخش</td>
<td>دشخش</td>
<td>دشخش</td>
<td>دشخش</td>
<td>دشخش</td>
</tr>
<tr>
<td>M x D</td>
</tr>
</tbody>
</table>

**بِه ترتیب غیر معنی‌دار، معنی‌دار در سطح ۱ و ۵ دارد.**

اگرام جدول ۲- تجزیه و تحلیل اثر کاربرد محکمه‌های ردش و نش خشکی بر صفات یونجه همدانی.

<table>
<thead>
<tr>
<th>میانگین مربوط</th>
<th>وزن خشک اندام هاوی</th>
<th>سطح بزرگ</th>
<th>ارتفاع سطح</th>
<th>محتوای آب نسبی</th>
<th>پایداری غشا</th>
<th>درجه آزادی</th>
<th>منابع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>تکرار</td>
<td>تکرار</td>
<td>تکرار</td>
<td>تکرار</td>
<td>تکرار</td>
<td>تکرار</td>
<td>تکرار</td>
<td>تکرار</td>
</tr>
<tr>
<td>محکمک ردش (M)</td>
</tr>
<tr>
<td>دشخش (D)</td>
<td>دشخش</td>
<td>دشخش</td>
<td>دشخش</td>
<td>دشخش</td>
<td>دشخش</td>
<td>دشخش</td>
<td>دشخش</td>
</tr>
<tr>
<td>M x D</td>
</tr>
</tbody>
</table>

**بِه ترتیب غیر معنی‌دار، معنی‌دار در سطح ۱ و ۵ دارد.**

فَنیوروتی، هست و استفاده از نیتروژن می‌تواند سبب افزایش 
مقدار آن‌ها در گیاه شود (Marschner، 1995). اثر هم افزایی به 
این دلیل است که گروه‌های رژیوبوم به دلیل تیاز شدیدی که به 
نیتروژن‌ها به تلفیق با فلج‌های میکوریازیوبسکولار و اکتش 
میت نشان دهد. همچنین به هفته‌های میکوریازیوبسکولار 
جبیده و آن به عنوان راه نفوذ به بیش‌المعنی استفاده می‌کنند;

![تلغیق بذر](image)

**تشکل ۱- تأثیر محکمکهای ردش بر میزان پروپیون (a) و قندهای محلول (b) یونجه تحت بذر کمپی. حروف Nامش (ح) نشان دهنده تفاوت معنی‌دار آزمون LSD در سطح ۵ درصد است.**
تأثیر باکتری‌های محیطی رشد بر تولید متیولیت‌های سازگاری...

همکاران (1993) در طی نشانه‌های باکتری در زنوتیپ‌های کندم نیز گزارش شده است. پژوهشگران مقاومت که افزایش اکسیدان آمپنیت یافتند، هسته‌های و تریپتوفان می‌شود (2001) همچنین لیزر و میکروسن بیش ماده سنتی بیلی آمینه دیگر بوده که به عنوان تقویت کننده سیستم دفاعی عمل کرده و در

شرایط نشانه‌های اسیدسازی اکسیدان افزایش تولید بیلی آمینه و آنزیم مقاومت یافته در مقابل نشان می‌شود (Pang et al., 2007). همچنین مختلف سیستم‌های آمین و

و ترکیبات نیتروژن دار تحت تأثیر کود نیتروژن قرار می‌گیرد (Pavlik et al., 2010). محیطی که رشد از میان‌بین نیتروژن برای گیاهان بوده و فراهم نیتروژن برای گیاهان اغلب باعث افزایش قارچ آمینواسیده می‌شود (2008). Eppendorfer از آزمایش‌های خود بر روی گیاهان مختلف با این نتیجه رسیدند که با افزایش نیتروژن از میزان اکثر اسیدهای آمینه (مانند لیزر، میکروسن و...) کاسه شد (Mengel and Kirkby, 2001).

برق‌دانیهای بارگ نیز در سطح 1 درصد تحت تأثیر

بنابراین احتمالاً رزیبویوم ها نیز با کاسترش هیفه‌ها گسترش یابند (Bianciotto et al., 2011). اثرات اصلی نشان خشکی در سطح 5 درصد بر میزان لیزر

تأثیر معنی‌داری نشان داد و لیزر بر مقدار میکروسن بی تأثیر بود (جدول 2). خشکی موجب کاهش مقدار لیزر در گیاه‌های

بونجه گردیده، به طوری که مقدار این اسیدامینه در شرایط عدم

تنش (75 درصد ظرفیت زراعی) 177/0 میلی‌گرم بر گرم بود، ولی شدت‌ترین سطح تنش با کاهش 98 درصد به 1/85 میلی‌گرم بر گرم رسید (شکل 2). تلقیح با میکروسن رشد نیز در سطح 5 درصد بر میزان لیزر تأثیری دارد. تلقیح یک میکروسن بر گرم کاهش میزان لیزر شد. پوشش 185/0 میلی‌گرم بر گرم) و کمترین (176/0 میلی‌گرم بر گرم) مقدار لیزر با

ترتیب از تیمار نشان و تلقیح با فرق رزیبویوم بست. آمد. تلقیح به دار در سطح 1 درصد بر میزان میکروسن نیز تأثیر معنی‌داری داشت بر خلاف لیزر موجب افزایش مقدار این

میکروسن شد. رزیبویوم بالاترین مقدار میکروسن را به خود

اختصاص داد (شکل 2). کاهش اسید آمینه‌های لیزر و میکروسن در پژوهش تولکی و
شکل ۳- برهمکش محرک‌های رشد و تنش کم‌آبی قرار گرفت (جدول ۲). افزایش شدت نش نمود که موجب کاهش پروتئین‌های محلول بکر شده و تلقیح بذر افزایش مقدار آن شد. بیشترین پروتئین محلول بکر در تأمین سطوح نش به تلقوی دوگانه عملیات نش و تیمارهای ریزپوست و میکروپوست در یک دامنه بوده و یک دیگر نمود آماری نداشتند. بالاترین (۷۴٪) میلی‌گرم بکر و یک در ۱/۱۸ میلی‌گرم بکر (وزن نر) میزان پروتئین به ترتیب در تیمار تلقوی مخلوط در ۵۵ درصد طرفت زراعی مشاهده شد (شکل ۳).

پژوهش‌های آزمایشگری کاهش پتانسیل آبی خاک بر روی پروتئین و رنگ‌هایی که می‌تواند در کل ویلیم‌سی با گزارش نمود، به روش‌هایی ملاحظه و مورد بهره برده شد. در مطالعه Movludi et al., (2014) نشان دادند مصرف نیترژوژن در طی کم‌آب کاهش افزایش میزان نهادی محلول و پروتئین در بذر‌های جو بهره‌یار شد.

پایداری گشایش نش از تأثیر افزایش کاهش و تلقیح بذر می‌تواند کاهش نش و افزایش کاهش و تلقیح بذر رشد است. ارزش‌های کاهش به سطح ۱ درصد دارای تفاوت آماری بود (جدول ۲). مقدار میانگین اثرات متقابل نش دادند نش موجب کاهش پایداری غشاء جریان است و استعمال محرک‌های کاهش نش محرک در کاهش این تأثیرات و افزایش پایداری غشاء نش دادند. بالاترین پایداری غشاء در بین تیمارهای مختلف تلقیح می‌توانست کاهش نش محرک در خاک رشد کاهش نش محرک در با ریزوپوست نش داده‌ها و در دو اعضای ابهری قرار گرفت. به طور کلی بالاترین (۷۱ درصد) و پایین‌ترین (۳۳ درصد) پایداری غشاء به ترتیب می‌توانست کاهش نش محرک در افزایش مقدار پروتئین‌های محلول بکر گل‌نگر در تنش
شکل ۴- برهم کنش محورهای رشد و تنش خشکی بر پایداری غشاء بروگ‌های پرونجه. حروف تاشابه نشان دهنده تفاوت معنی‌دار آزمون LSD در سطح ۵ درصد.

شکل ۵- برهم کنش محورهای رشد و تنش خشکی بر پتانسیل اسمری بروگ‌های پرونجه. حروف تاشابه نشان دهنده تفاوت معنی‌دار آزمون LSD در سطح ۵ درصد.

شکل ۶- برهم کنش محورهای رشد و تنش خشکی بر میزان آب نسبی بروگ‌های پرونجه. حروف تاشابه نشان دهنده تفاوت معنی‌دار آزمون LSD در سطح ۵ درصد.

محلول با افزایش جذب عناصر غذایی و افزایش جذب آب و همچنین کنش محورهای رشد و تنش خشکی بر پایداری غشاء بروگ‌ها تأثیر نشان می‌دهد که افزایش محتوای آب نسبی باعث کاهش رشد و تعاقب رشد و توانایی افزایش محورهای رشد و تنش خشکی بر پایداری غشاء بروگ‌ها می‌شود. (Tarumingkeng و Coto, 2003).

محلول با افزایش جذب عناصر غذایی و افزایش جذب آب و همچنین کنش محورهای رشد و تنش خشکی بر پایداری غشاء بروگ‌ها تأثیر نشان می‌دهد که افزایش محتوای آب نسبی باعث کاهش رشد و تعاقب رشد و توانایی افزایش محورهای رشد و تنش خشکی بر پایداری غشاء بروگ‌ها می‌شود. (Tarumingkeng و Coto, 2003).

محلول با افزایش جذب عناصر غذایی و افزایش جذب آب و همچنین کنش محورهای رشد و تنش خشکی بر پایداری غشاء بروگ‌ها تأثیر نشان می‌دهد که افزایش محتوای آب نسبی باعث کاهش رشد و تعاقب رشد و توانایی افزایش محورهای رشد و تنش خشکی بر پایداری غشاء بروگ‌ها می‌شود. (Tarumingkeng و Coto, 2003).

محلول با افزایش جذب عناصر غذایی و افزایش جذب آب و همچنین کنش محورهای رشد و تنش خشکی بر پایداری غشاء بروگ‌ها تأثیر نشان می‌دهد که افزایش محتوای آب نسبی باعث کاهش رشد و تعاقب رشد و توانایی افزایش محورهای رشد و تنش خشکی بر پایداری غشاء بروگ‌ها می‌شود. (Tarumingkeng و Coto, 2003).
جدول ۳- چیپ‌پیایی محیطی آب نسبی با استفاده از عناصر اندازه‌گیری شده در طی تنش

<table>
<thead>
<tr>
<th>صفات مستقل</th>
<th>همیشه</th>
<th>شرایط رگرسیون معادله</th>
<th>مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۰/۹۴</td>
<td>b۱, b۲, b۳</td>
<td>Y = b۱X۱ + b۲X۲ + b۳X۳</td>
</tr>
<tr>
<td>قندهای محلول</td>
<td>۵/۳۲</td>
<td>-۰/۴۲۴, ۰/۶۹۲</td>
<td>Y = b۱X۱ + b۲X۲ + b۳X۳</td>
</tr>
<tr>
<td>پروتئین</td>
<td>۰/۲۸۰</td>
<td>-۰/۴۲۴, ۰/۸۲۰</td>
<td>Y = b۱X۱ + b۲X۲ + b۳X۳</td>
</tr>
<tr>
<td>لیزین</td>
<td>۰/۲۶۲</td>
<td>-۰/۴۲۴, ۰/۸۲۰</td>
<td>Y = b۱X۱ + b۲X۲ + b۳X۳</td>
</tr>
<tr>
<td>میکروین</td>
<td>۰/۳۵۵</td>
<td>-۰/۴۲۴, ۰/۸۲۰</td>
<td>Y = b۱X۱ + b۲X۲ + b۳X۳</td>
</tr>
<tr>
<td>پروتئین</td>
<td>۰/۳۸۰</td>
<td>-۰/۴۲۴, ۰/۸۲۰</td>
<td>Y = b۱X۱ + b۲X۲ + b۳X۳</td>
</tr>
<tr>
<td>پاتسانس اسپری</td>
<td>۰/۳۳۲</td>
<td>-۰/۴۲۴, ۰/۸۲۰</td>
<td>Y = b۱X۱ + b۲X۲ + b۳X۳</td>
</tr>
<tr>
<td>پیاداری عضلانی</td>
<td>۰/۹۷۴</td>
<td>-۰/۴۲۴, ۰/۸۲۰</td>
<td>Y = b۱X۱ + b۲X۲ + b۳X۳</td>
</tr>
</tbody>
</table>

شکل افزایش مقدار آنها شد. با توجه به نتایج مشاهده می‌باشد که افزایش مقدار داده شده در طبیعت در واقع افزایش مقدار مصرف چربی در این محیطی می‌باشد که افزایش مقدار تغییر محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باعث افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب نسبی باید افزایش طبیعت و افزایش مقدار محیطی آب Ns
شکل ۷- پرهمکش محکم‌های رشد و تنش خشکی بر طول ساقه (a) و سطح پرگ (b) و وزن خشک اندام هواپی (c) برنج. حروف نامه‌های نشان دهنده تفاوت معنی‌دار آزمون LSD در سطح ۵ درصد.

شکل ۸- پیش‌بینی طول ساقه (A)، سطح پرگ (B) و وزن خشک (C) طی تغییرات محتوای آب نسبی سلول‌ها.
Morus alba


development (new approaches). Plant Growth Regulation 34: 135-148


