تأثیر نشان خشکسی بر صفات مورفولوژیک و فعالیت آنزیم‌های \(Brassica napus\) در رقم کلزا

فاطمه سادات سید ابراهیمی، حسن حسنی کوهلِم، علی علمی و محمد حسین رضادوست

گروه بیوتکنولوژی کشاورزی، دانشگاه گیلان

(تاریخ دریافت: 30/04/14، تاریخ پذیرش نهایی: 1393\(\times\)12\(\times\)04\(\times\)93)

نویسنده مسئول، نشانی پست الکترونیکی: kumleh@guilan.ac.ir

چکیده:
خشکسی پدیده‌ای بحرانی است که همه ساله در بخش‌هایی از دنیا در زمان‌های مختلف با دانه و شدت متفاوت به تولید مواد شیمیایی محصول آسیب می‌رساند. تحقیق حاضر به منظور تأثیر نشان خشکسی روی برخی صفات مربوط به برگ (مساحت برگ، وزن تر و کارولفیل)، ریشه (وزن تر)، ساقه (وزن تر و طول) و تغییرات فعالیت آنزیم‌های آنتی‌اکسیدان سورپراکسیدموماتز (SOD) و پراکسیدار (POD) روی در رقم کلزا (Hyola308) و محصول 464 کلزا به صورت فاکتوریل در قالب طرح کاملاً تصادفی با 4 تکرار برای صفات مورفولوژیک و فیزیولوژیک و 2 تکرار برای آنزیم‌های آنزیم‌های نمادی بین دو رقم ناسازیتی و توانایی نشان داد. طبق تلاشی، صفات سطح و وزن برگ، طول ساقه و وزن ریشه با اندازه‌گیری به کمک ابزار PEG و پشتیبانی زمانی دارند. در هر دو رقم نشان خشکسی به طور معنی‌داری سبب کاهش وزن ساقه شد. بر اساس نتایج شدت واکنش فعالیت آنزیم SOD در رقم مقیاس بیشتر بود. فعالیت آنزیم POD در رقم مقیاس در شرایط نشان خشکسی پایین‌تر و فعالیت این آنزیم در رقم حساس در شرایط اولیه نشان خشکسی افزایش داشته است.

واژه‌های کلیدی: پراکسیدار، پلاک‌ثکن،سورپراکسیدموماتز، کارولفیل

مقدمه:
کلزا به عنوان یکی از گیاهان زراعی مقیاس به خشکسی شناخته شده و دارای صفات مطلوبی از جمله کیفیت بالای روش دانه، رشد بالای اسیدهای چرب، صفات زراعی مطلوب دیگر مانند مقاومت به سرمای، کم آبی، شوری، دارا بودن خون‌پی‌های بهتر و یاقطبین و عملکرد بیشتر روش در واحد سطح نسبت به دیگر گیاهان زراعی کشت شده در کشور است. نشان خشکسی و صدمات اکسیدانی ناشی از آلودگی کلیه

(Panda \textit{et al.}, 2004).
آیستاده می‌باشد (ASC، ألفاکوئرول) (Schwanz، 2001; Blokhin، 2003) که در فیتوپلوگیکی، "زاکارداها" در سازگاری با این کاهش ترشح می‌باشد. در واقع ترشح می‌باشد در این حالت که از آن می‌توان به تغییرات غلیظ برخی آنزیم‌های مانند برخی آنزیم‌های مانند SOD، و راکسیدسیدسیستم‌ها، اشاره کرد. آزمایش این آنزیم‌ها و سپرایکسیدسیستم‌ها در گیاهان کاهش نسبی و تحت فشار کاهش ((ROS) می‌باشد. نتایج مطالعات نشان می‌دهد در شرایط ترشح دلخواه و در سایر مولکول‌های CO۲، می‌باشد. دلخواه می‌باشد در شرایط ترشح دلخواه و در سایر مولکول‌های CO۲، می‌باشد. دلخواه می‌باشد در شرایط ترشح دلخواه و در سایر مولکول‌های CO۲، می‌باشد. دلخواه می‌باشد در شرایط ترشح دلخواه و در سایر مولکول‌های CO۲، می‌باشد. دلخواه می‌باشد در شرایط ترشح دلخواه و در سایر مولکول‌های CO۲، می‌باشد. دلخواه می‌باشد در شرایط ترشح دلخواه و در سایر مولکول‌های CO۲، می‌باشد. دلخواه می‌باشد در شرایط ترشح دلخواه و در سایر مولکول‌های CO۲، می‌باشد. دلخواه می‌باشد در شرایط ترشح دلخواه و در سایر مولکول‌های CO۲، می‌باشد. دلخواه می‌باشد در شرایط ترشح دلخواه و در سایر مولکول‌های CO۲، می‌باشد. دلخواه می‌باشد در شرایط ترشح دلخواه و در سایر مولکول‌های CO۲، می‌باشد. دلخواه می‌باشد در شرایط ترشح دلخواه و در سایر مولکول‌های CO۲، می‌باشد. دلخواه می‌باشد در شرایط ترشح دلخواه و در سایر مولکول‌های CO۲، می‌باشد. دلخواه می‌باشد در شرایط ترشح دلخواه و در سایر مولکول‌های CO۲، می‌باشد. دلخواه Moller et al. (2007) گیاهان براز می‌باشد با نشان آنزیم‌های CAT اجبار شباهت، دارای سیستم دفاعی با کارایی بالا شاخص واکنش آنزیم آنتی‌اف‌زمی‌هستند که راکسیدسیستم‌ها گروه‌ها و وظیفه‌های که در بذر به کار می‌گیرد (1999) CAT، SOD، APX، و گلوتاتیون رودکان (GR) و سیستم غیرآنتی‌زمی‌ها (POD)
نمودنگی کریت استخراج آنزیم‌ها: برای استخراج آنزیم‌ها از روش استخراجی و همکاران (1987) اسکافردی تهیه کننده و با فن فلورن寸 50 میلی‌متر، 0/01 مول/L Na2-EDTA و 0/02 مول/L PVPP 2 تهیه کننده و با فن فلورن寸 50 میلی‌متر، 0/01 مول/L Na2-EDTA و 0/02 مول/L PVPP 2 تهیه کننده و با فن فلورن寸 50 میلی‌متر، 0/01 مول/L Na2-EDTA و 0/02 مول/L PVPP 2 تهیه کننده و با فن فلورن寸 50 میلی‌متر، 0/01 مول/L Na2-EDTA و 0/02 مول/L PVPP 2
شده و منابعی با استفاده از آزمون دانکن در سطح احتمال
یک درصد مورد مقایسه قرار گرفتند.

نتیجه و بحث:
اثر تنش خشکی بر ضریب سطح بهایان یک سطح برگ سطح برگ سطح برگ در نمونه
PEG هایی سرافرد در دو خوشه با PEG یار، با استفاده از PEG یار، در رشته‌های افزایش طبیعی نشان داد. اما با افزایش مقدار
و پیش‌رفت زمان، سطح برگ کاهش معنی‌داری داشت. به طور
کلی، سطح برگ در رنگ متحمل کمتر از حساس بود که احتمالاً یکی از مهم‌ترین دلایل آن کاهش سطوح بای تغییر
جلوگیری از آرت محور تنش خشکی است. در رنگ حساس
بای افزایش مقدار سطح برگ کاهش نشان داد. پیش‌ترین
میزان سطح برگ (3.17/2) در محفظ حاوي
PEG صخش (1/2) و سه ساعت، 3/2 در 4 ساعت و کمترین مقدار
سپر (3/5) سانیتیر مربع) در محفظ حاوي
PEG صخش (1/2) 7/1 در 12 ساعت پس از شروع تنش مشاهده شد (جدول 1 و
شکل 1).

در رنگ متحمل پیش‌ترین مقدار ضریب سطح بهایان یک
PEG صخش (3/5/1 سانتی‌متر مربع) در محفظ حاوي
(1/2 ساعت 7/6 در 4 ساعت و 2/4 ساعت
PEG صخش (3/5/1 سانتی‌متر مربع) در محفظ حاوي
PEG صخش (1/2) و سه ساعت، 3/2 در 4 ساعت و کمترین مقدار
سپر (3/5) سانیتیر مربع) در محفظ حاوي
PEG صخش (1/2) 7/1 در 12 ساعت پس از شروع تنش مشاهده شد (جدول 1 و
شکل 1).

تینیون میزان فعالیت آنزیم پراکسیداز وابسته به گاکول:
برای تعیین فعالیت آنزیم پراکسیداز از روش
هم‌کاران (1994) استفاده شد.
ابتدا با تغییرات نشان‌های یک (بافر آب اکسیژن) (H2O2)
میلی‌مول تهی‌شده با استفاده از بار فسفات 50 میلی‌مولاً و
شماره دو (بافر گاکول 45 میلی‌مولاً تهی‌شده با استفاده از
بافر فسفات 50 میلی‌مولاً) با‌شراط گرفته شد. یاف‌وبرام‌رای
هوقد 34 میکرویلیتر در دمای یکی (ظرف حاوي
یخ) با اغل‌مخلوط شده و با افزودن 10 میکرویلیتر عصاره
آنیژئی، جدید آن در طول موج 470 نانومتر قرانت شد. در
محلول بلافاصله به جای عصاره آنزیئی، از 10 میکرویلیتر بار
فسفات 50 میلی‌مولاً (pH=7) استفاده شد و فعالیت آنزیم بر
ضریب خاموشی (18.5 µmol/g FW.min)
محاسبه شد.
کلیه آزمایش‌های به صورت وکتور در قالب طرح کلیه‌آزمایی
با 4 نکار برای صفات مولفه‌زدای و فیوزیولوژیک و 2 نکار برای
سنگش آنزیئی انجام شد. داده‌ها توسط نرم‌افزار SAS 9.1 آنالیز

(OD Control - OD Sample)/OD Control x 100
= Cی/OD Control

50

SOD
جدول 1- تجزیه واریانس صفات برگ (سطح، وزن و کلوروفیل) تحت تیمار مختلف‌های مختلف PEG

<table>
<thead>
<tr>
<th>میانگین جریابی</th>
<th>وزن برگ</th>
<th>سطح برگ</th>
<th>رده‌بندی غشایی</th>
<th>نوع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>کلوروفیل برک</td>
<td>0 %</td>
<td>3 %</td>
<td>6 %</td>
<td>12 %</td>
</tr>
<tr>
<td>372/631056 **</td>
<td>14632044 **</td>
<td>7/29432044 **</td>
<td>4</td>
<td>PEG</td>
</tr>
<tr>
<td>372/631056 **</td>
<td>14632044 **</td>
<td>7/29432044 **</td>
<td>6</td>
<td>Zوتیپ زمان</td>
</tr>
<tr>
<td>372/631056 **</td>
<td>14632044 **</td>
<td>7/29432044 **</td>
<td>4</td>
<td>PEG تیمار</td>
</tr>
<tr>
<td>372/631056 **</td>
<td>14632044 **</td>
<td>7/29432044 **</td>
<td>6</td>
<td>Zوتیپ زمان</td>
</tr>
<tr>
<td>372/631056 **</td>
<td>14632044 **</td>
<td>7/29432044 **</td>
<td>4</td>
<td>PEG تیمار</td>
</tr>
<tr>
<td>372/631056 **</td>
<td>14632044 **</td>
<td>7/29432044 **</td>
<td>6</td>
<td>Zوتیپ زمان</td>
</tr>
<tr>
<td>372/631056 **</td>
<td>14632044 **</td>
<td>7/29432044 **</td>
<td>4</td>
<td>PEG تیمار</td>
</tr>
<tr>
<td>372/631056 **</td>
<td>14632044 **</td>
<td>7/29432044 **</td>
<td>6</td>
<td>Zوتیپ زمان</td>
</tr>
<tr>
<td>372/631056 **</td>
<td>14632044 **</td>
<td>7/29432044 **</td>
<td>4</td>
<td>PEG تیمار</td>
</tr>
<tr>
<td>372/631056 **</td>
<td>14632044 **</td>
<td>7/29432044 **</td>
<td>6</td>
<td>Zوتیپ زمان</td>
</tr>
</tbody>
</table>

شکل 1- تأثیر مقادیر مختلف PEG در زمان‌های مختلف روز سطح برگ در رم 308

شکل 2- تأثیر مقادیر مختلف PEG در زمان‌های مختلف روز سطح برگ در رم 464

* و ** به ترتیب عدم اختلاف معنی‌دار و اختلاف معنی‌دار در سطح احتمال 0.05 درصد و 0.1 درصد.
پیدا کرد. در رقم حساس به افزایش مقدار وزن برق کاهش پیدا کرد. در کل در محیط‌های حاوی درصد‌های مختلف وزن برق در رقم متحمل نسبت به رقم حساس می‌باشد. در رقم حساس به اضافه شدن PEG به سوپراسون انرژی به طور معنی‌داری در مقایسه با محیط‌های PEG کاهش یافت. بیشترین میزان وزن برق در محیط حاوی PEG در رقم حساس (123 میلی گرم) در محیط حاوی PEG و در زمان 72 ساعت پس از نتش مسافته شد (شکل 3).

پس از اعمال نتش وزن برق در رقم متحمل همانند رقم حساس نسبت به محیط‌های PEG کاهش معنی‌داری نشان داد.

بیشترین میزان وزن برق در رقم PEG محیط‌های حاوی PEG و در زمان 72 ساعت پس از نتش مشاهده گردید که اعمال نبایع کاهش مقدار پتانسیل آب برق و وزن خشک سباستاتیویت‌ها هواپیمایی کلازا می‌شود.

مطالعات انجام‌شده توسط Mendham و Rao (1995) با اندازه‌گیری پتانسیل استروتی و فشار آسیاب در برق کلازا نشان داد که با کاهش پتانسیل استروتی، فشار آسیاب بالا رفته که کمک می‌کند برای مقاومت گیاه در مقابل خشکی است. بیشترین افزایش وزن برق در هر دو رقم، در هر سطح نتش پس از گذشته 72 ساعت از شروع نتش مشاهده شد که در این زمان ها میزان کلی وزن برق در رقم حساس کمتر از رقم متحمل بوده است.

اثر نتش خشکی بر وزن ریشه: نتایج به دست آمده نشان داد که نرخ معنی‌داری در وزن ریشه در شرایط مختلف نش در دو رقم حساس و مقاوم وجود دارد (جدول 2). در رقم حساس در محیط‌های PEG و در زمان 72 ساعت پس از نتش وزن ریشه افزایش یافت در محیط‌های PEG (12.1٪) و 15٪ وزن ریشه افزایش بودند 30 و 72 ساعت پس از نتش افزایش معنی‌دار نشان داد اما بعد از آن روند کاهش مشاهده شد. کمترین مقدار وزن ریشه در این رقم (0.3٪) در محیط‌های PEG 15٪ در ساعت 12 پس از نتش و بیشترین مقدار (0.2٪) 12 و 6 ساعت پس از نتش مشاهده شد (شکل 7).

در رقم متحمل در محیط‌های PEG ایجاد گردید با پیشرفت زمان وزن ریشه کاهش یافته و در زمان 24 ساعت پس از شروع نتش افزایش تأکیدی مشاهده شد و در محیط‌های PEG و تغییرات در محیط‌های Haو PEG پایین‌تر بود و وزن ریشه افزایش بود. از این نتیجه نداد. با پیشرفت زمان و افزایش مقدار PEG ریشه در این رقم کاهش معنی‌دار داشت. بیشترین مقدار این
جدول ۲- تجزیه و بررسی صفات وزن ریشه، ساقه (طول و وزن)، و SOD و POD تحت تأثیر قطعه‌های مختلف PEG

<table>
<thead>
<tr>
<th>میانگین مرعبات</th>
<th>POD</th>
<th>SOD</th>
<th>طول ساقه</th>
<th>وزن ساقه</th>
<th>درجه آزادی</th>
<th>منابع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEG</td>
<td>۸۲۳۷ **</td>
<td>۸۲۳۷ **</td>
<td>۸۲۳۷ **</td>
<td>۸۲۳۷ **</td>
<td>۸۲۳۷ **</td>
<td>۸۲۳۷ **</td>
</tr>
<tr>
<td>SLM046</td>
<td>۸۲۳۷ **</td>
<td>۸۲۳۷ **</td>
<td>۸۲۳۷ **</td>
<td>۸۲۳۷ **</td>
<td>۸۲۳۷ **</td>
<td>۸۲۳۷ **</td>
</tr>
</tbody>
</table>

** به ترتیب عدم اختلاف معنی‌دار و اختلاف معنی‌دار در سطح احتمال ۰/۰۵ و ۰/۰۱ و ۰/۰۰۱.
شکل 5- تأثیر مقادیر مختلف PEG در زمان‌های مختلف روی محتوای کلروفیل برگ در رقم 84.

شکل 6- تأثیر مقادیر مختلف PEG در زمان‌های مختلف روی محتوای کلروفیل برگ در رقم SLM046.

شکل 7- تأثیر مقادیر مختلف PEG در زمان‌های مختلف روی وزن ریشه در رقم Hyola308.
تأثیر تنش خشکی بر صفات مورفولوژیک و فعالیت آنزیم‌های...
شکل ۸- تأثیر مقدار مختلف PEG در زمان‌های مختلف روی وزن ریشه در رقم ۴۶.

شکل ۹- تأثیر مقدار مختلف PEG در زمان‌های مختلف روی طول ساقه در رقم ۳۰۸.

شکل ۱۰- تأثیر مقدار مختلف PEG در زمان‌های مختلف روی طول ساقه در رقم ۴۶.
شکل 11- تأثیر مقادیر مختلف PEG در زمان‌های مختلف روی وزن ساقه در رقم 308Hyola

حریق کرکک روی نمونه نشان‌دهنده مقایسه میانگین در هر سطح تنش است (آزمون دانکن و 1/0ه‌ک) (P).

شکل 12- تأثیر مقادیر مختلف PEG در زمان‌های مختلف روی وزن ساقه در رقم SLM046

حریق کرکک روی نمونه نشان‌دهنده مقایسه میانگین در هر سطح تنش است (آزمون دانکن و 1/0ه‌ک) (P).

شکل 13- تأثیر مقادیر مختلف PEG در زمان‌های مختلف روی میزان فعالیت آنزیم SOD در رقم SLM046

حریق کرکک روی نمونه نشان‌دهنده مقایسه میانگین در هر سطح تنش است (آزمون دانکن و 1/0ه‌ک) (P).
تشير التقارير السابقة [14] إلى أن استخدام PEG في ميران متفاوت في درجة الإصابة بROS. وبدأت دراسة تأثير متغيرات مختلفة في درجات الأضرار.

من ناحية الفيزيولوجية، ساعد PEG في دفع الفيتوسناك (Fenton's reagent) وينبغي أن يكون PEG في المراحل الأولى من إنتاج PEG. PEG يمكن أن يقلل من تأثير PEG على التأثيرات الملموسة في المراحل الأولى من إنتاج PEG.

تظهر هذه النتائج أن PEG أدى إلى تقليل التأثيرات الملموسة في المراحل الأولى من إنتاج PEG. PEG يمكن أن يقلل من تأثير PEG على التأثيرات الملموسة في المراحل الأولى من إنتاج PEG.
سكل 15- تأثیر مقادیر مختلف روی میزان فعالیت آنزیم POD در رقم 46 PEG حروف کوچک روی نمودار نشان‌دهنده مقایسه میانگین در هر سطح نش است (آزمون دانتی و 90).

سكل 16- تأثیر مقادیر مختلف روی میزان فعالیت آنزیم POD در رقم 48 PEG حروف کوچک روی نمودار نشان‌دهنده مقایسه میانگین در هر سطح نش است (آزمون دانتی و 90).

پیشتر در برگ‌ها است. همان‌دان آنچه در مورد آنزیم مشاهده شد، در اینجا نیز آنزیم POD در رقم حساس سریعتر از رقم متحمل و در مقادیر باینی تر افزایش فعالیت داشته است. به طور تحت افزایش فعالیت این آنزیم پاسخی از جانب گیاه به افزایش ROS ها است. البته این نکته را نیز باید مدت نظر قرار داد که مکانیسم‌های آنزیمی و غیر آنزیمی تعیین بندی در مقاومت یا حساسیت گیاهان به نش خشکی دخالت دارد.

تشکر و قدردانی:

از همکاران و مسئولین دانشکده علوم کشاورزی دانشگاه گیلان که نویسندگان را در انجام این تحقیق پایدار نمودند، تشکر و قدردانی می‌شود.

نتیجه‌گیری کلی:

در این پژوهش میزان سطح و وزن برگ به طور کلی در هر رقم حساس و متحمل کاهش یافت. در صورت عدم نامایی آب مورد نیاز به دلیل کاهش فشار تورمسانس سول‌های در حال رشد
drought stress generate oxidative stress tolerance in drought-resistant than-susceptible wheat cultivar under field conditions. Environmental and Experimental Botany 60: 276-283.

Alexandria.