بررسی فعالیت ایزوژایی‌های سوپرکاسی کسید دیسموتاز تحت Aloe vera

شرایط تغذیه با منابع مختلف آهن در گیاه

رسول قاسمی‌اکرمی، پرستو ناصری و حسین نوروزی

گروه زبست شناسی، دانشکده علوم، دانشگاه پایتخت، تهران، ایران. گروه زیست شناسی، دانشکده علوم، دانشگاه پایتخت، تهران، ایران

(تاریخ دریافت: 1394/03/03، تاریخ پذیرش نهایی: 1394/03/22)

چکیده

اگاهی‌اتی است که با توجه به سازگاری‌هایی که روز آن به شرایط اقلیمی ایران می‌ورود به‌توام‌داری صنعتی قرار گرفته است. بررسی بیشتر خصوصیات فیزیولوژیکی و پیش‌بینی‌ای آن در بافت‌هایی که مرد استفاده مستقیم قرار می‌گیرد، مهم‌ترین این‌که به‌همین‌هیه شود. این مطالعه اثر تغذیه آهن بر غلظت آهن در بافت‌های برق و فعالیت آنزیم سوپرکاسیکسی دیسموتاز مورد بررسی قرار گرفت. گیاهان تک‌کشت از یک پایه مادری تحت تاثیر غلظت‌های مختلف آهن در محیط کشت (0، 5، 10 و 20 میکرو‌گرم/لیتر) از دو منبع فاکتوری کامل تصادفی قرار گرفتند. تابی تشان داد که سه منبع آهن متفاوت در تحمیل آن در گیاه وجود نداشت. با افزایش غلظت در محیط کشت، بیشترین تاثیر در افزایش غلظت آهن در بافت‌های سطحی برق دیده شد. فعالیت آنزیم سوپرکاسیکسی دیسموتاز کل در بافت‌های مختلف FeSOD تحت تاثیر آهن قرار گرفت. بررسی ایزوژایی‌های شناز داد که افزایش غلظت Cu/ZnSOD در همه غلظت‌ها در بافت‌های سطحی برق دیده شد و در همچندان از شرایط در بافت‌های دیده نشد. بر اساس نتایج استدلال شد می‌تواند باعث کاهش غلظت آهن می‌شود و باعث افزایش مصرف آهن در گیاه خشک گیاهان به‌دلیل آن باعث است و باعث افزایش می‌شود.

القای فعالیت ایزوژایی Aloe vera با افزایش غلظت مس و روی قابل بررسی است.

کلمات کلیدی: آهن، ایزوژایی، پالت، سوپرکاسیکسی دیسموتاز

مقدمه

از گیاه‌هایی که در جنگل هستند است، مایه‌ای از Aloe vera گونه‌های خالدار از آن گفته می‌شود و آن را به عنوان یکی از آب‌خاکی‌های می‌شناسند (Reynolds, 2004). اما به نظر می‌رسد مسئول نشان دهنده‌ی اکثریتی که این گونه‌ها می‌شود.

References

VanWyk and Smith, 1996, فاکتوری کامل تصادفی قرار گرفتند. تابی تشان داد که سه منبع آهن متفاوت در تحمیل آن در گیاه وجود نداشت. با افزایش غلظت در محیط کشت، بیشترین تاثیر در افزایش غلظت آهن در بافت‌های سطحی برق دیده شد. فعالیت آنزیم سوپرکاسیکسی دیسموتاز کل در بافت‌های مختلف FeSOD تحت تاثیر آهن قرار گرفت. بررسی ایزوژایی‌های شناز داد که افزایش غلظت Cu/ZnSOD در همه غلظت‌ها در بافت‌های سطحی برق دیده شد و در همچندان از شرایط در بافت‌های دیده نشد. بر اساس نتایج استدلال شد می‌توانند باعث کاهش غلظت آهن می‌شود و باعث افزایش مصرف آهن در گیاه خشک گیاهان به‌دلیل آن باعث است و باعث افزایش می‌شود.

alaca یکی از شرایط ریسه‌ای است که با توجه به سازگاری‌هایی که روز آن به شرایط اقلیمی ایران می‌ورود به‌توام‌داری صنعتی قرار گرفته است. بررسی بیشتر خصوصیات فیزیولوژیکی و پیش‌بینی‌ای آن در بافت‌هایی که مرد استفاده مستقیم قرار می‌گیرد، مهم‌ترین این‌که به‌همین‌هیه شود. این مطالعه اثر تغذیه آهن بر غلظت آهن در بافت‌های برق و فعالیت آنزیم سوپرکاسیکسی دیسموتاز مورد بررسی قرار گرفت. گیاهان تک‌کشت از یک پایه مادری تحت تاثیر غلظت‌های مختلف آهن در محیط کشت (0، 5، 10 و 20 میکرو‌گرم/لیتر) از دو منبع فاکتوری کامل تصادفی قرار گرفتند. تابی تشان داد که سه منبع آهن متفاوت در تحمیل آن در گیاه وجود نداشت. با افزایش غلظت در محیط کشت، بیشترین تاثیر در افزایش غلظت آهن در بافت‌های سطحی برق دیده شد. فعالیت آنزیم سوپرکاسیکسی دیسموتاز کل در بافت‌های مختلف FeSOD تحت تاثیر آهن قرار گرفت. بررسی ایزوژایی‌های شناز داد که افزایش غلظت Cu/ZnSOD در همه غلظت‌ها در بافت‌های سطحی برق دیده شد و در همچندان از شرایط در بافت‌های دیده نشد. بر اساس نتایج استدلال شد می‌توانند باعث کاهش غلظت آهن می‌شود و باعث افزایش مصرف آهن در گیاه خشک گیاهان به‌دلیل آن باعث است و باعث افزایش می‌شود.

References

VanWyk and Smith, 1996, فاکتوری کامل تصادفی قرار گرفتند. تابی تشان داد که سه منبع آهن متفاوت در تحمیل آن در گیاه وجود نداشت. با افزایش غلظت در محیط کشت، بیشترین تاثیر در افزایش غلظت آهن در بافت‌های سطحی برق دیده شد. فعالیت آنزیم سوپرکاسیکسی دیسموتاز کل در بافت‌های مختلف FeSOD تحت تاثیر آهن قرار گرفت. بررسی ایزوژایی‌های شناز داد که افزایش غلظت Cu/ZnSOD در همه غلظت‌ها در بافت‌های سطحی برق دیده شد و در همچندان از شرایط در بافت‌های دیده نشد. بر اساس نتایج استدلال شد می‌توانند باعث کاهش غلظت آهن می‌شود و باعث افزایش مصرف آهن در گیاه خشک گیاهان به‌دلیل آن باعث است و باعث افزایش می‌شود.
درصد برایی در توان مقابلی گیاه با شرایط نشان‌آوری محیطی
دشت‌ها. میزان فعالیت این سیستم با طور قابل توجهی
تحت تاثیر مرطوب‌های سطحی و سطحی فعالیت با رنگ از آنی‌های آنتی آسیدان در گیاه خاصی برای
تغییرات زیادی و خاصیتی کاهش. بنابراین مواردی
مقدار بالعی بیماری‌ها که کننده است در شیبی
آلوئ vera و اسپرکسید دیسموتزار اولین
شاخ‌ها این است که در گیاه یک در شرایط کمبود اهن قابل

(Marschner, 1995). آلوئ vera و اسپرکسید دیسموتزار با
SOD و FeSOD روند هم گوناگونی و حاصل کردن
در موجودات زندگی معنی‌داری از نظر
در بودن در پوکاریژی‌ها تکامل یافته است. نوع سوم، Cu/ZnSOD
در پوکاریژی‌ها تکامل یافته است. در هر حالت قابلیت موجودات زندگی در
SOD افزایش از آن آنی‌های سلولار. در پوکاریژی‌ها نوع
عمدتاً در سینکرکوزی وجود دارد (Wang et al., 2007)؛ نوع
Cu/ZnSOD در کلروبات‌ها و نوع FeSOD در سیتوپلاسم و
(Kliebstein et al., 1998; Cu/ZnSOD وجود دارد. آلوئ vera
MnSOD وجود دارد. آلوئ vera به ترتیب بروئین‌ها تورا مای
FeSOD و MnSOD به ترتیب بروئین‌ها تورا مای
وزن مولکولی 81 کیلو دالون و دیب با وزن مولکولی 61 کیلو
دالون هستند. (Messerschmidt et al., 2001) از 31
سیستم می‌تواند در کننده قابلیت زیادی است که در
آلوئ vera که در کننده قابلیت زیادی است که در
مانند قابلیت با سببیت فلزات گسیل و نور شدید و همچنین
شروع اهمیت زیادی دارد. این عصر در طویل و در
ارتباط با آنتی آسیدان‌ها و آنتی آسیدان‌ها
متانوپاسی‌ها، اندازه‌گیری‌ها و تنفسی،
آنتی آسیدان‌ها و آنتی آسیدان‌ها
شروع اهمیت زیادی دارد. این عصر در طویل و در
ارتباط با آنتی آسیدان‌ها و آنتی آسیدان‌ها
متانوپاسی‌ها، اندازه‌گیری‌ها و تنفسی،
آنتی آسیدان‌ها و آنتی آسیدان‌ها
شروع اهمیت زیادی دارد. این عصر در طویل و در
ارتباط با آنتی آسیدان‌ها و آنتی آسیدان‌ها
متانوپاسی‌ها، اندازه‌گیری‌ها و تنفسی،
آنتی آسیدان‌ها و آنتی آسیدان‌ها
شروع اهمیت زیادی دارد. این عصر در طویل و در
ارتباط با آنتی آسیدان‌ها و آنتی آسیدان‌ها
متانوپاسی‌ها، اندازه‌گیری‌ها و تنفسی،
آنتی آسیدان‌ها و آنتی آسیدان‌ها
شروع اهمیت زیادی دارد. این عصر در طویل و در
ارتباط با آنتی آسیدان‌ها و آنتی آسیدان‌ها
متانوپاسی‌ها، اندازه‌گیری‌ها و تنفسی.
کیاسه هوان خبری رو به فونوی گلشانه این از نظر اینهی، تولید محصول بهتر و همتیجن را شامل به بیان تولید و بهبود توان مقاله گیاه به شرایط نامناسب و با غیر بهینه، از نیازهای توانرسی این محصول به علاوه اینک به تغییر در

ترکیب عناصر معدنی در این محصول به جنگ خوارگان تیز

در دادهای اهمیت زیادی است. در این مطالعه بر اساس اثر

تغییر اهمیت در این گیاه پرداخته شد و برای بررسی وضعیت از

شناخت های مانند غلظت اهم در بافت، هاوهای نمکین و همچنین

وضعیت عملکرد اروپاییهای مختلف آنیم سیرپاسکسید

دیسموتاز اسفاده، برسی امکان استفاده از غلظت های

پالتوی آهن برای افزایش غلظت اهم در پیش های خواراتی

مانند بال و همچنین نحوه پاس گیاه با کمپ معنی آهن نیز از

اهداف پژوهش حاضر بود.

مواد و روش‌ها:

رشد گیاهان: گیاهانی که از یک پایه مادری تکنیک شده بودند و

سن حدود 4 ماه داشتند، در گلشانه پلاستیکی یک لیر در

حوای پرلیت و در شرایط گلخانه در سه بست کامل تغذیه،

در سه تکرار کاشته شدند و با محلول هرکم به مدت 3 ماه

tغذیه شدند. ترکیب محلول غذایی مورد استفاده شامل نیترات

کلسیم (1 میلی‌مولار)، فسفات دی‌هیدروژن پتاسیم (0/1 میلی‌مولار)، سولفات‌های مشترک (5 میلی‌مولار)، نیترات پتاسیم (0/5 میلی‌مولار)، کلسیم و سدیم (2 میکرو‌مولار)، سولفات مواد

میکرو‌مولار، سولفات‌های (2/2 میکرو‌مولار) و سولفات‌های

میکرو‌مولار، اسید بوریک (10 میکرو‌مولار) و

موجودات سدیم (1 میکرو‌مولار) بود. pH محلول با استفاده

از اسید کلرید 9/8 نظیم شد. شرایط رشد گیاهان شامل

دوره نور 16:8 ساعت نور-دیکه بود که علاوه بر نور

خورشید با استفاده از نور لامپ‌های فلورسنت با دقت حداد

100 میکرو‌مول فوتون در متر مربع در ثانیه تکمیل می‌شد.

شرایط دما در محدوده 27-25 درجه سانتی‌گراد بود. محلول

غذایی در طرف زیر گلخانی برخی شد و در تمام مدت

ازمایشات، تغییر آب و افزودن آب مقطع جبران می‌شد.

محلول غذایی به طور کامل به تغییر تعریف می‌شد.

(فیک ایلین

FeEDDHA

دی آمین دی-7-هیدروکسی فنیل استس) غلظت

FeEDTA

(فیک ایلین

FeEDTA

نیترول 4 و 8 میلی‌مولار گرفتند. غلظت این محلول به محلول

غذایی اضافه شد. تیمارها به مدت 45 روز ادامه داشت. در این

فاصله زمانی در گیاهان حداکثر یک برگ جدید رشد کرد. با

استفاده از قسمت‌های یکسانتی از برگ کامل طعمور، بافت‌های

سفنجی برگ و پال آمیزواسیون یز انجام شد. بافت‌ها

اندازه ای استفاده از تیتروزون مایع منجمد شدند و با استفاده از

هالن چینی بافت منجمد شده کامل ساده شد. سپس به آن

بافت سفید 50 میلی‌مولار با pH 7/5 سرد شد بر روی یک

نیتریل پهن ملد و مظاهر ساده یافت. محلول حاصل

در نهایت در دمای 4 درجه سانتی‌گراد با دقت

10000 گرفت. در همین مدت، انجام آزمایش و نا قابل از انتزاع‌گیری

فعالیت آنزیم کلی محلول‌ها بر روش‌های گاهداری شدند.

اندازه‌گیری فعالیت آنزیم سیرپاسکسید دیسموتاز

بر اساس روش SOD

کل: فعالیت SOD

Ries و Giannopolities

1977) انداده‌گیری شد. محلول واکنش شامل بفرس سفید (50 میلی‌مولار) و

NBT، pH مثبتان (40 میلی‌مولار)، pH 7/8

5/75 (p-nitroblue tetrazolium chloride)

میکرو‌مولار، تکمیل شد و تغییر

20/1 EDTA

SOD گیاهانی بک رپه مادری تکنیک شده بودند. و

سن حدود 4 ماه داشتند، در گلخانه پلاستیکی یک لیر در

حوای پرلیت و در شرایط گلخانه در سه بست کامل تغذیه،

در سه تکرار کاشته شدند و با محلول هرکم به مدت 3 ماه

tغذیه شدند. ترکیب محلول غذایی مورد استفاده شامل نیترات

کلسیم (1 میلی‌مولار)، فسفات دی‌هیدروژن پتاسیم (0/1 میلی‌مولار)، سولفات‌های مشترک (5 میلی‌مولار)، نیترات پتاسیم (0/5 میلی‌مولار)، کلسیم و سدیم (2 میکرو‌مولار)، سولفات مواد

میکرو‌مولار، سولفات‌های (2/2 میکرو‌مولار) و سولفات‌های

میکرو‌مولار، چسبی کردن (2/2 میکرو‌مولار) هوا به

میکرو‌مولار، چسبی کردن (2/2 میکرو‌مولار) هوا به

دوسری سوالات استفاده نشان داده می‌شود. ضخامت زل مورد استفاده به ترتیب 1 میلیمتر از این سوالات بود.

آماده‌سازی عصاره‌ها: پرونده‌های جهت الکتروفورز

عصاره‌های با دسته آمده از یافتگان سطحی بشر و پاپیپ، گیاهان تیمار شده با گل‌های مختلف آهن، جهت لیدینگ پروتئین استفاده شد. از اتاق‌گردینی که در مقایسه به نیمه کمی با یک‌پله گل‌های پروتئین نمونه‌ها در هر چاکه معنی و یکسان باشد، در ابتدا سنجش کمی پروتئین‌های استخراج شده طبق pH 5.0 تا 8.0 (گلیسرول، آب مقطور و رنگ برموئیزل) انجم شد و به هر چاکه ترکیب مقدار 20 میکروگرم پروتئین اضافه شد. انجم شد و به مقدار 200 ولت انجم شد و به مقدار 100 ولت با عضوی سطحی و در غلظت یمیل‌ها در مدت انجم الکتروفورز، با استفاده از دستگاه خنک کننده، در مدت 5 دقیقه نگهداری شد.

1. انجم الکتروفورز

2. نتانومتر اندازه‌گیری شده. طبق تعیین تکنیک Bradford، یک واحد انریکی سوپراکسید دیسموتلیزر مقدار آن را مشخص می‌نماید. درصد از انجم با کشش جلوگیری کند. هر چه میزان فعالیت آزمی پیشرانش محلول واکنش روشی تر باقی می‌ماند. در حضور رادیکال سوپراکسید (که در حضور NBT، یک واحد انریکی نشان بی‌شک باشد سوپراکسید کمتری در محیط باقی خواهد ماند و در نتیجه مقدار کمتری فورمیزان تشکیل می‌شود که بر این اساس محدود روشنی باقی می‌ماند.

3. روش آزمی پیشرانش محلول واکنش روشی تر باقی می‌ماند.

4. برای تعیین مقدار فعالیت آزمی نیز بر حسب "واحد در میلی‌گرم پروتئین" استخراج شده از هر نمونه، غلظت پروتئین کل نیز با استفاده از روش Bradford (Bradford, 1976) به مدت 20 دقیقه در تاریکی قرار داده شد. در مدت 15 دقیقه زیر نوار فولنتاسن قرار داده شد.

5. نیروی باندهای شفاف در زمینه معرفی تهیه ترین نشان دهنده حضور از بین آزمی‌ها مختلف آزمی نشان دهنده روشی می‌باشد. برای یکدست آوردن الکتروفورز در محل پذیرشی می‌باشد. برای با تهیه تهیه گونه می‌باشد. الکتروفورز پیش از جهت بار نکرار شد و تصویر مناسبه که بین‌گر می‌باشد.
شرايط عدم افزودن آهن در محيط كشت در غلظت 20 ميكرومولر آهن عنصر آهن در حدود 3 برای افزایش مشاهده گرديد. در تمام افزودن آهن در محيط كشت اختلاف معنی‌دار مشاهده شد (P<0.05). در این غلظت در ميان عنصر آهن در حدود 3 برای افزایش مشاهده شد. بين دو مياني عنصر آهن در هر تيمار غلظت كشي اختلاف معنی‌دار شنده (شکل 1). بر اساس تجربه واريانس دو راه مشخص شد در اين طرح آزمایش، عنصر آهن بر غلظت آهن تأثیر معنی‌دار نداشت. اين بحث به علت ناشتي معنی‌دار (P<0.05) داشت (جدول 1).

در آناليز عنصر آهن نمونه‌هاي بالب تام تيمارها، در تيمار غلظت 20 ميكرومولر با شرايط عدم آهن در FeEDDHA غلظت كشي اختلاف معنی‌دار مشاهده شد (P<0.05). در اين غلظت غلظت ميان عنصر آهن در حدود 3 برای افزایش ديدن شد.

غلظت 20 ميكرومولر با شرايط عدم آهن در FeEDDHA غلظت كشي اختلاف معنی‌دار آهن در حدود 2/5 برای افزایش داشت. بين دو مياني عنصر آهن در هر تيمار غلظت كشي اختلاف معنی‌دار مشاهده شنده (شکل 2). بر اساس تجربه واريانس دو راه مشخص شد در اين طرح آزمایش، عنصر آهن مورد استفاده بر غلظت آهن تأثیر معنی‌دار نداشت. اين بحث به علت ناشتي معنی‌دار (P<0.05) داشت (جدول 1).

غلظت آنزيم سيروكسيدي ديسموتاز: در پرسي فعاليت آنزيم سيروكسيدي ديسموتاز نمونه‌هاي تهيه شده از برگ كامل، در تيمار 20 ميكرومولر با غلظت 10 ميكرومولر تفاوت معنی‌دار مشاهده شد (P<0.05). غلظت 10 ميكرومولر نسبت به غلظت صفر، در حدود 30 درصد كاهش در وثاليت آنزيم مشاهده گرديد. بين دو مياني عنصر آهن تفاوت معنی‌دار مشاهده نشد (شکل 3). بر اساس تجربه واريانس دو راه مشخص شد در اين طرح آزمایش، عنصر آهن بر غلظت آنزيم در برگ كامل تأثیر نداشت. اين بحث به علت ناشتي معنی‌دار (P<0.05) داشت (جدول 1).

نتيجه: اندازه گيري غلظت عنصر آهن: بررسی آماري غلظت عنصر آهن در FeEDDHA نمونه‌هاي برگ كامل نبات داک در تيمار غلظت 10 ميكرومولر با شرايط عدم آهن در محيط كشت اختلاف معنی‌دار وجود دارد (P<0.05). در غلظت 10 ميكرومولر دو برای افزایش نسبت به شرايط عدم آهن در محيط كشت مشاهده شد. در غلظت 20 ميكرومولر نسبت به غلظت 10 ميكرومولر در حدود 40 درصد افزایش در غلظت آهن مشاهده مي‌شود و نسبت به ب.
جدول 1 - تجزیه و تحلیل اثر غلظت آمِن در محیط کشت، منع آمِن و برهمکنش آنها بر غلظت آمِن و فعالیت آنزیم سوپراکسید دیسموتاز در بانوان گیاه Aloe vera. ضریب میانگین سه تغییرات مشاهده شده هرکدام از عوامل تأثیر گذار بر اساس دسته است.

<table>
<thead>
<tr>
<th>غلظت آمِن</th>
<th>منع تغییرات</th>
<th>SOD</th>
<th>غلظت آمِن</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>17/6000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21/6000</td>
<td>0/001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9/078</td>
<td>0/001</td>
</tr>
<tr>
<td>افزایش</td>
<td></td>
<td>35/015</td>
<td>0/001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/072</td>
<td>0/001</td>
</tr>
</tbody>
</table>

شکل 1 - غلظت آمِن در نمونه‌های برك کامل گیاه Aloe vera تحت تیمارهای مختلف غلظت و منع آمِن. مقادیر میانگین ± تکرار معیاری بین غلظت‌های مختلف آمِن و حروف کوچک ایتالیک برای مینج آمِن FeEDDHDA و حروف فاصله ایتالیک برای منع آمِن FeEDTA (P < 0.05) می‌باشد.

شکل 2 - غلظت عنصر آمِن در نمونه‌های پالپ گیاه Aloe vera تحت تیمارهای مختلف غلظت و منع آمِن. مقادیر میانگین ± تکرار معیاری بین غلظت‌های مختلف آمِن و حروف کوچک ایتالیک برای منع آمِن FeEDDHDA و حروف فاصله ایتالیک برای منع آمِن FeEDTA (P < 0.05) می‌باشد.
شکل ۳- فعالیت آنزیم سوپراکسید دیسموتاز کل در نمونه‌های بره کامل گیاه تحت تیمار‌های مختلف غلظت و منابع آمر. مقادیر شماره مقایسه‌ای ۳ نکتار ± انحراف میانگین. عدم حروف مشترک در هر ستار (حرف معامل برای منابع مختلف آهن و حروف FeEDDHA ایتالیک) برای منابع آهن آهن، استفاده براساس آزمون تکیک (P<0.05) می‌باشد.

شکل ۴- فعالیت آنزیم سوپراکسید دیسموتاز کل در نمونه‌های پالپ گیاه تحت تیمار‌های مختلف غلظت و منابع آمر. مقادیر شماره مقایسه‌ای ۳ نکتار ± انحراف میانگین. تفاوت معنی‌داری بین غلظت‌های مختلف آهن در هر ستار از منابع آهن وجود ندارد.

فعالیت آنزیم مشاهده شد. در هر چکام از غلظت‌ها تفاوت معنی‌دار مشاهده نشد. بین دو منابع آهن در غلظت ۲۰ و ۵ میکرومولار تفاوت معنی‌دار مشاهده گردید FeEDDTA (P<0.05). در غلظت ۲۰ میکرومولار در فرم FeEDDHA افزایش ۵ درصد و در فرم FeEDDHA افزایش ۱۰ درصد در فعالیت آنزیم مشاهده شد (شکل ۵). بر اساس آنالیز واریانس دوره‌های مشخص شد که در این طرح آزمایش هم منابع آهن و هم غلظت آهن مورد نمونه‌های پالپ بهره شده، تفاوت معنی‌دار در هر چکام از تیمارهای مشاهده نشد (شکل ۴). بر اساس تجزیه واریانس راه مشخص شد در این طرح آزمایش، هم منابع آهن و هم غلظت آهن به ترتید آنالز آنزیم در پالپ تأثیر نداشت (جدول ۱).

بر اساس سطح برسی، در تیمار FeEDDDHA در غلظت ۵۰ میکرومولار تفاوت معنی‌دار با غلظت ۵ میکرومولار در میزان فعالیت آنزیم سوپراکسید دیسموتاز مشاهده شد (P<0.05). در این غلظت، در حدود ۱۰ درصد کاهش در
شکل 5- فعالیت آنزیم سوپراکسید دیسموتاز کل در نمونه‌های بادمجان سطحی برگ گیاه به سه میکروملار FeEDDHA و FeEDTA حروف مختلفی برای معنی‌دار آدن (P> 0.05) نشان داده که تفاوت معنی‌دار دیگر بین فعالیت فعالیت آدن مورد استفاده بر اساس آزمون تک‌کی < (P(0.05) شناخته شده است.

شکل 1- رنگ آمیزی شده اختصاصی آنزیم سوپراکسید دیسموتاز. نمونه‌های پروتئین استخراج شده از بادمجان سطحی (پوست و پال) در غلظت‌های مختلف 0، 5، 10 و 20 میکروملار نمونه‌ها به ترتیب FeEDDHA و FeEDTA تیمار شده با دو معنی آدن حروف مختلفی برای معنی‌دار آدن (P> 0.05) نشان داده که تفاوت معنی‌دار دیگر بین فعالیت فعالیت آدن مورد استفاده بر اساس آزمون تک‌کی < (P(0.05) شناخته شده است.

کلریک فعالیت آدن مشاهده از آنلاین‌های آنزیم سوپراکسید دیسموتاز، سه گروه پان دارند و به سه آنلاین مختلف آنزیم مشاهده شد. از با سه پاره‌ی زل پانه‌های مربوط‌ به در تصویر شکل 5- سود انتقال آنزیم سوپراکسید سوپراکسید گیاهی برگ تاثیر معن‌دار (P<0.05) داشت (جدول).

تعیین نیمه‌ کمی‌ فعالیت آنزیم‌های در تصویر زل

SOD در بافت‌های سطحی برگ تاثیر
پرسی فعالیت ایزوزاپیم‌های سوپراکسید دیسموتان تحت شرایط تغذیه‌بندی

آماره‌ای دارد (Curie and Briat, 2003) در غلظته‌های بالای آهن شدت بانده در پالپ بیشتر بوده که باعث افزایش آنزیم FeSOD و Cu/ZnSOD می‌گردد. این مقدار سوپراکسید دیسموتان را در این شرایط غلظتها به بیان می‌یابد. ایزوزاپیم به دلیل غلظتها بودن آهن در گیاه و خاک، و یا در این شرایط، بکارلوه می‌شود. این نتایج مشابه دیگر در پالپ غلظتها به بیان می‌یابد. این نتایج مشابه دیگر در پالپ غلظتها به بیان می‌یابد. این نتایج مشابه دیگر در پالپ غلظتها به بیان می‌یابد. این نتایج مشابه دیگر در پالپ غلظتها به بیان می‌یابد. این نتایج مشابه دیگر در پالپ غلظتها به بیان می‌یابد.

بحث و نتیجه‌گیری:

از اولین موارد مشاهده شده در این مطالعه عدم بروز اثرات کمبود آهن در پالپ غلظتها در شرایط عدم افزودن آهن به محیط کشت بوده. این امر نشان‌دهنده این است که در این غلظتها دختره آهن در تولید این آنزیم بسیار نسبت به زمان‌ها به حدی هست که بتوانان در زمان‌ها آهن به محیط بیشتر را برای ماده‌بندی و بهبود در کیسته‌ها و در پالپ غلظتها به بیان می‌یابد. این امر نشان‌دهنده این است که در این غلظتها دختره آهن در تولید این آنزیم بسیار نسبت به زمان‌ها به حدی هست که بتوانان در زمان‌ها آهن به محیط بیشتر را برای ماده‌بندی و بهبود در کیسته‌ها و در پالپ غلظتها به بیان می‌یابد. این امر نشان‌دهنده این است که در این غلظتها دختره آهن در تولید این آنزیم بسیار نسبت به زمان‌ها به حدی هست که بتوانان در زمان‌ها آهن به محیط بیشتر را برای ماده‌بندی و بهبود در کیسته‌ها و در پالپ غلظتها به بیان می‌یابد. این امر نشان‌دهنده این است که در این غلظتها دختره آهن در تولید این آنزیم بسیار نسبت به زمان‌ها به حدی هست که بتوانان در زمان‌ها آهن به محیط بیشتر را برای ماده‌بندی و بهبود در کیسته‌ها و در پالپ غلظتها به بیان می‌یابد. این امر نشان‌دهنده این است که در این غلظتها دختره آهن در تولید این آنزیم بسیار نسبت به زمان‌ها به حدی هست که بتوانان در زمان‌ها آهن به محیط بیشتر را برای ماده‌بندی و بهبود در کیسته‌ها و در پالپ غلظتها به بیان می‌یابد. این امر نشان‌دهنده این است که در این غلظتها دختره آهن در تولید این آنزیم بسیار نسبت به زمان‌ها به حدی هست که بتوانان در زمان‌ها آهن به محیط بیشتر را برای ماده‌بندی و بهبود در کیسته‌ها و در پالپ غلظتها به بیان می‌یابد. این امر نشان‌دهنده این است که در این غلظتها دختره آهن در تولید این آنزیم بسیار نسبت به زمان‌ها به حدی هست که بتوانان در زمان‌ها آهن به محیط بیشتر را برای ماده‌بندی و بهبود در کیسته‌ها و در پالپ غلظتها به بیان می‌یابد. این امر نشان‌دهنده این است که در این غلظتها دختره آهن در تولید این آنزیم بسیار نسبت به زمان‌ها به حدی هست که بتوانان در زمان‌ها آهن به محیط بیشتر را برای ماده‌بندی و بهبود در کیسته‌ها و در پالپ غلظتها به بیان می‌یابد. این امر نشان‌دهنده این است که در این غلظتها دختره آهن در تولید این آنزیم بسیار نسبت به زمان‌ها به حدی هست که بتوانان در زمان‌ها آهن به محیط بیشتر را برای ماده‌بندی و بهبود در کیسته‌ها و در پالپ غلظتها به بیان می‌یابد. این امر نشان‌دهنده این است که در این غلظتها دختره آهن در تولید این آنزیم بسیار نسبت به زمان‌ها به حدی هست که بتوانان در زمان‌ها آهن به محیط بیشتر را برای ماده‌بندی و بهبود در کیسته‌ها و در پالپ غلظتها به بیان می‌یابد. این امر نشان‌دهنده این است که در این غلظتها دختره آهن در تولید این آنزیم بسیار نسبت به زمان‌ها به حدی هست که بتوانان در زمان‌ها آهن به محیط بیشتر را برای ماده‌بندی و بهبود در کیسته‌ها و در پالپ غلظتها به بیان می‌یابد. این امر نشان‌دهنده این است که در این غلظتها دختره آهن در تولید این آنزیم بسیار NsOD, FeSOD و Cu/ZnSOD افت ایزوزاپیم به دلیل غلظتها بودن آهن در گیاه و خاک، و وضعیت یک در گیاه رابطه منگنتگانی با تنظیم حجم و انتقال به اندام‌های مختلف و دختره آن در باره به نحوی که مانع کمبو و یا سببیت آن شود. تنظیم عامل‌های مختلف آن اهمیت
تفاوت معنی‌دار مشاهده‌ای نشد. با این‌که پیک وضعیت ثابت از فعالیت‌کل در پالب وجود دارد.

ایزوژای‌های مختلفی بسته به ارزش‌گذاری عامل تنش‌زا به طور متفاوت پاسخ می‌دهند. شوری شدید موجب تحریک FeSOD می‌شود و شوری خفیف FeSOD می‌کند. عامل مهار کننده زنجیره انتقال الکترون فتوستاتی بر تاثیر دارند در حالی که سرما، شوری و سبیت MnSOD فازاً مانند مانگز موجب افزایش فعالیت می‌شوند (Alscher et al., 2002). بر این اساس در صورتی که فعالیت آیزوژای خاصی افزایش داده شود، مقاومت به تشیب‌های FeSOD ویژه زیاد می‌شود. مثلاً افزایش بیان زده‌های مقاومت گیاه در پرای عوامل آسیب‌زا از فتوستاتی زیاد می‌شود (VanCamp et al., 1996). بر این اساس تأثیر آن در تغییر الگوی فعالیت سپورت‌کاسید دیسموراتی انتخابی بوده و

بر این اساس اضافه‌اتریکسیون FeSOD به بی‌پات‌های اندامی در سلول‌های پالب نیز باشد. این آیزوژای اساسی در کلروفیل‌ها وجود دارد.

نتایج:

Study of the superoxide dismutase isozymes activities under different iron nutrition sources in *Aloe vera*

Rasoul Ghasemi*, Parastoo Naseri and Hossein Noroozi

Department of Biology, Faculty of Sciences, University of Payame Noor, Iran
(Received: 20 June 2014, Accepted: 14 September 2015)

Abstract:

Since *Aloe vera* has special adaptations to the environmental conditions of Iran, it has been industrially utilized. Further physiological and biochemical study on of usable tissues improves its utilization. In this study the effects of iron nutrition on the iron concentrations in different leaf tissues and the activity of superoxide dismutase were investigated. Propagated plants from a maternal scion were treated by different concentrations of iron (0, 5, 10 and 20 µM) in two chelate forms, FeEDTA and FeEDDHA in a fully factorial complete design. The results showed no difference between the two iron chelate forms in iron concentrations in tissues. The most increasing in iron concentration was observed in leaf surface tissues by using higher concentrations of iron in medium. Total superoxide dismutase activity in different tissues was not influenced by iron concentration in medium. Study of different SOD isozymes showed a constitutive activity of MnSOD in all tissues. The activity of FeSOD was more apparent in surface tissues but it was induced in pulp in higher concentrations of iron. In all of the used iron concentrations, the activity of Cu/ZnSOD observed in surface tissues but it was never observed in pulp. It could be suggested that pulp as the most important industrial usable tissue was not a source for accumulation of iron. The activity of SOD could be induced in pulp by increasing iron concentration. Indeed an induction in the activity of Cu/ZnSOD in pulp could be investigated by increasing Cu and/or Zn concentrations.

Keywords: *Aloe vera*, Iron, Isozymes, Pulp, Superoxide dismutase.

corresponding author, Email: ghasemi@nj.isfpnu.ac.ir