تأثیر کیفیت آب آبیاری و سیستم‌های کودی مختلف بر برخی ویژگی‌های فیزیولوژیک و پیوسته‌بودن گارژیان اروپایی (Borago officinalis)\(^1\)

پژوهش دانلده‌ی: محمد رضا اصغری پور \(^2\) و اصغر قادری \(^3\)

دانشگاه آزاد اسلامی واحد شهرکرد، باشگاه گزارشگران جوان و نخبگان شهرکرد، ایران، گروه زراعت، دانشکده کشاورزی، دانشگاه زابل، گروه باغبانی، دانشکده کشاورزی، دانشگاه زابل

(تاریخ دریافت: ۱۳۹۴/۱۲/۲۴، تاریخ پذیرش نهایی: ۱۳۹۵/۰۶/۰۲)

چکیده:

گارژیان اروپایی (Borago officinalis L.) یک گیاه ارزش‌مند داروی است و تا کلید آن برای تأمین نیازهای صنعت دارویی ارزش بالایی دارد. به منظور بررسی اثرات کیفیت آب و سیستم‌های مختلف کودی بر صفات فیزیولوژیک و پیوسته‌بودن گارژیان اروپایی، آزمایشی به صورت کردهای خرد شده در قالب طرح بلورک‌های کامل تصادفی با سه تکرار در سال ۱۳۹۱ در مزرعه دانشگاه زابل آغاز شد. عملیات کیفیت آب آبیاری در سطح آبیاری با آب رودخانه و آب شور چاه و عامل قرار پذیرفتن سیستم‌های مختلف کودی شامل کودهای NPK به نسبت ۸۰:۴۰:۳۰ در سطح گیاه کاشته شد. کیفیت آب آبیاری در سطح آبیاری با آب رودخانه و آب شور چاه و عامل قرار پذیرفتن سیستم‌های مختلف کودی شامل کودهای NPK به نسبت ۸۰:۴۰:۳۰ در سطح گیاه کاشته شد. کیفیت آب آبیاری در سطح آبیاری با آب رودخانه و آب شور چاه و عامل قرار پذیرفتن سیستم‌های مختلف کودی شامل کودهای NPK به نسبت ۸۰:۴۰:۳۰ در سطح گیاه کاشته شد.

کلمات کلیدی: آب شور، آنزیم‌های آنتی اکسیدانی، کودی، گیاهان دارویی

مقدمه:

مشکل شوری در بیشتر اراضی جهان بخصوص در اراضی کشت آبی در مناطق خشک و نیمه خشک وجود دارد. در ایران نیز حدود ۱۲ درصد (۱۴ میلیون هکتار) مساحت بیای کشاورزی استفاده می‌شود که ۵۰ درصد آن به دوجه‌های مختلف، مشکل شوری واژگی‌های دارد. میدان‌های برخی از بزرگ‌ترین اثرات رژیم‌های استفاده از روش‌های صحیح تغذیه معدنی گیاهان است که

m_asgharipour@uoz.ac.ir

\(^{1}\)نویسنده مؤلف، نشانی پست الکترونیکی: m_asgharipour@uoz.ac.ir

\(^{2}\)نویسنده مسئول، نشانی پست الکترونیکی: m_asgharipour@uoz.ac.ir

\(^{3}\)نویسنده مسئول، نشانی پست الکترونیکی: m_asgharipour@uoz.ac.ir
نفیس قابل ملاحظه‌ای از آفایی‌ها علائم دارد. محققین علام
کودن عامل محیطی از جمله کود آب تغییرات بیان
در تولید و کیفیت مواد موثره گیاهان دارویی مث الکالوئیدها. گیاکیزوئیدها و استروئیدها مقدار (بریتمانی، 1376). همچنین
محاوئ برخی در بقیه گاهی‌های یکی از اسات مرتبط
با کیفیت محصولات بوده که نتیجه بنون قابل دسترس خاک و
کودهای مصرف شده است (Raisi et al., 2013). در همین
ارتباط پژوهشگران اظهار داشتند که در اثر مصرف زیاد کودهای نیتروژ، دسترسی به کربه‌های‌ها برای سنت
روغن کاشف می‌یابد و در مقابل سنت پرترنین آفایی می‌یابد (Rathke et al., 2005) در این بین کیفیت کودهای شیمیایی و
آلی اثر بیشتری در رشد و عملکرد، کیفیت و تغذیه گیاهان دارد (Olaniyi et al., 2010) که مورد استفاده کودهای دامی و
شیمیایی می‌باشد.

گازرات اوراپیا به نام علمی Borago officinalis L. گیاهی است غلیفی که در آن مقدار
خانواده Boraginaceae جنی اسناد، موسیلا، نان، اصلاح منگنز، اسد فسفریک و
آلئوتونین بایت می‌شود (مکا زاده تفی و همکاران، 1387) در
طب سنتی، مواد مورد استفاده در گل‌ها و سرشاخه‌های آن
برای تصفیه خون، نرم کننگی سیب، تقویت قلب و موارد
متوسطی استفاده کودهای شیمیایی و به مدت روغن مصرف
در بذر گیاه، کشت گیاهت آن به عنوان دانه روغنی مرسوم
شد (مکا زاده تفی و همکاران، 1387) از آنجا که
کودهای این استفاده شده برس اساس نتایج آزمایش ایراهی و
هامکاران (Ebrahimi et al., 2010) و مقدار
کودهای آن استفاده شده برس اساس نتایج آزمایش ایراهی و
هامکاران (Ebrahimi et al., 2010) و مقدار
کودهای آن استفاده شده برس اساس نتایج آزمایش ایراهی و
هامکاران (Ebrahimi et al., 2010) و مقدار

مواد و روشها:

به منظور مطالعه کیفیت آب همراه با کاربرد کودهای آلف و
شیمیایی به بررسی صفات فیزیولوژیکی و بیوشیمیایی گیاه
دارویی گازرات اوراپیا در منطقه سیستان مطالعه مورد‌عهای در
جدول 1- ویژگی‌های فیزیکی و شیمیایی خاک محل آزمایش در حجم صرف ۲۰ سانتی‌متری

<table>
<thead>
<tr>
<th>پاتاژ</th>
<th>حداقل</th>
<th>تمرکز</th>
<th>لایه رس</th>
<th>شن</th>
<th>تپانیم</th>
<th>pH</th>
<th>هدایت الکتریکی (ds/m)</th>
<th>قسمت در میلیون</th>
<th>لوم شی</th>
<th>ماده آلی</th>
<th>نیترژن</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد</td>
<td></td>
</tr>
<tr>
<td>7/5</td>
<td>1/6</td>
<td>1/63</td>
<td>1/4</td>
<td>0/7</td>
<td>148</td>
<td>28</td>
<td>0/54</td>
<td>800</td>
<td>6/43</td>
<td>5/09</td>
<td>4/27</td>
</tr>
</tbody>
</table>

جدول 2- محتویات اب‌های آبیاری

<table>
<thead>
<tr>
<th>pH</th>
<th>ESP</th>
<th>SAR</th>
<th>Meq/ 1</th>
<th>Exchangeable Sodium Percentage (ESP)</th>
<th>Cation exchange capacity (CEC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>100</td>
<td>4/1</td>
<td>7/6</td>
<td>72</td>
<td>0.8</td>
</tr>
<tr>
<td>95</td>
<td>100</td>
<td>4/1</td>
<td>7/6</td>
<td>72</td>
<td>0.8</td>
</tr>
</tbody>
</table>

جدول 3- برخی مشخصات کرده دامیده در استفاده

<table>
<thead>
<tr>
<th>pH</th>
<th>EC (ds.m⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/6</td>
<td>7/6</td>
</tr>
</tbody>
</table>

(GPX، و آزمایشات آنان (کاسیکا) گلپایگان پرکریسیال (CAT) و ماسک اکسید دسومان (SOD) مورد استفاده قرار گرفته‌اند. فلوسانت‌کلرفل پیش از افزایش رشد و پس از اعمال تیمار آبیاری با آب شور از روی سطح مناسب کامل توسط Hansatech ساخته شده و با استفاده از دستگاه فلوسانت (مدل V.D.C12 Soltani، 2004) برای اندازه‌گیری. بار آب‌های گرمی (Bates و همکاران، 1983) استفاده شده. جهت اندازه‌گیری کربوهیدرات میزان نور جذبی در 483 لوم‌نتر در اسکیتروفومتری به‌دست آمده و میزان کربوهیدرات استخراجی بر اساس میکروگرم کلروفیل در کرم ون تر استخراج کرده‌اند. استخراج کرده‌اند (Irigoyen et al., 1992). به منظور تعیین درصد موسیلاژ ۵ گرم از سرشاخن گلدش خشک آسیاب شده را در بشر ریخته و ۱۰۰ میلی لیتر آب مقطع به آن افزوده و ۲۴ ساعت در یخچال نگهداری شد. ۵۰ میلی لیتر از این مخلوط صاف شده را برداشت و ۱۰۰ میلی لیتر اتانول ۵/۳ به آن اضافه‌کرده و دوباره ۲۴ ساعت نگهداری شد تا موسیلاژ موجود به صورت کرت فرآیند طویل محدود کنم و به کار مخاطب گردد. کرده اسفنجی به مقدار یاد شده در داخل آزمایش اعمال شده. شیب کشت در اساس ماه ۱۳۹۰ به روش دستی انجام شد. پلاته‌های آزمایشی دارای ابعاد ۲ در ۲ متر بودند و فاصله بین ریف‌های کشت از هم ۷/۵ متر و فاصله بین پوشه‌ها ۹/۱ متر و ریف‌های پتلی‌های مجاور از یکدیگر ۵/۰ متر و بلندی‌ها از یکدیگر دو متر فاصله داشتند. آب‌های یکم به میزان ۷/۶ تا ۷/۶ متر بودند و بار آب‌های اول‌گزار ۷/۵ از یکدیگر دو متر فاصله داشتند. آب‌های دوم و سوم به میزان ۷/۶ تا ۷/۶ متر بودند و بار آب‌های دوم و سوم به میزان ۷/۶ تا ۷/۶ متر بودند و بار آب‌های سوم به میزان ۷/۶ تا ۷/۶ متر بودند و بار آب‌های چهارم به میزان ۷/۶ تا ۷/۶ متر بودند و بار آب‌های پنجم به میزان ۷/۶ تا ۷/۶ متر بودند و بار آب‌های جزء النگه‌داری شده و در کل ۳۰ مدرسه آبیاری صورت گرفت. برداشت در هرد ماه به این صورت که از هر کرت ۵ نمونه حاوی سه گرم مناسب به‌طور تکرار یافته و سرشاخن گلدش، با رعایت حاشیه از چهار طرف انجام و بلافاصله نمونه‌ها به‌طور آزمایشگاهی متقابل شده و جهت اندازه‌گیری خصوصیات بیولوژیکی پرولین، کربوهیدرات، موسیلاژ، پروتئین، محتوای رطوبت نسبی، فلوسانت کلروفیل،...
رشابدان و کاردک، گیاهی، جلد ۶، شماره ۱۹۸۶، ۱۳۹۶

محتویات رطوبت نسبی بزرگانه‌ها در سطح احتمال ۱ درصد معنی‌دار بود.

درصد موسيلاز تحت تأثیر کفیفت آب آبیاری قرار نگرفت. اما اثر ترکیبی مختلف کود بر رشد موسيلاز در حضور لحاظ آماری در سطح احتمال ۱ درصد معنی‌دار بود.

رشوب درمیان پس از این مدت در روز کافی صافی که حاصل رشد شده، بود صاف گردید و پس از خشک شدن در حضور

درجه سانتی‌گراد. کافی صافی را وزن کرد و از روز اختلاف وزن کافی صافی نر و خشک وزن موسيلاز مشخص گردید. به

منومن عینی درصد موسيلاز. کافی صافی حاوی موسيلاز را

داخل بشری قرار داده و توسط ۱۰۰ میلی لیتر آب مقتدر آن را

شسته تا موسيلاز موجود در آن کافی صافی جدای شود و

موسيلاز به صورت رسوب باقی ماندان پس از خشک کردن کافی صافی آن را دقت وزن کرد و از روز اختلاف وزن کافی

صافی با وزن اولیه درصد موسيلاز محاسبه شد (صصصاص

شریعت، ۱۳۸۷).

یگ میزان پروتین، مقدار نیتروژن کل از دستگاه کبدیان (Page et al., 1982) گردد. در عدد نتایج ۱۲۵ گربه و میزان پروتین می‌باشد.

(برای، ۱۳۸۵). همچنین رطوبت نسبی برگ (RWC) برابرس (Clavel et al., 2006):

\[
\text{RWC} \% = \frac{\text{FW-DW}}{(\text{TW-DW}) \times 100}
\]

که در آن FW و DW به ترتیب وزن تر درگ و وزن خشک برگ و وزن آماس برگ می‌باشد.

جیه انداناکاری آزمایش کانال (CAT) از روش برس و

(SOD) سایز (Beers and Sizer, 1952)، سبزیجات دم‌یکن (Saneeoka et al., 2004)، بی‌بی‌سی (Saneeoka, 2004). به نظر می‌رسد

با کاربرد کودها و به وجود نیتروژن نیاز ویژگی بر

فعل‌گام سلولی افزوده شده و میزان سلولی و ساز آن بالا

می‌رود. در نتیجه تناسق اسلولی کاشش و موجب جذب

می‌شود. نتایج این آزمایش مشابه نتایج آزمایش‌های دیگر و علیدی (۱۳۹۱) در

Sheikhpourt et al., 2014) در

کلیگن و شیخ پور و همکاران (2014) در

گازیان آلیا می‌باشد. آن‌ها گزارش کردند که با افزایش

سطح نیتروژن از صفر تا ۱۰۰ کیلوگرم در هکتار، محتوی

رطوبت نسبی گیاه نیز افزایش می‌یابد.

درصد موسيلاز تحت تأثیر کفیفت آب آبیاری قرار نگرفت. اما اثر ترکیبی مختلف کود بر رشد موسيلاز در حضور لحاظ آماری در سطح احتمال ۱ درصد معنی‌دار بود.

درصد موسيلاز تحت تأثیر کفیفت آب آبیاری قرار نگرفت. اما اثر ترکیبی مختلف کود بر رشد موسيلاز در حضور لحاظ آماری در سطح احتمال ۱ درصد معنی‌دار بود.
جدول ۴- تأثیر کیفیت آب آبیاری و سیستم‌های کودی مختلف بر ضریب ویفیت آهستگی

<table>
<thead>
<tr>
<th>کروهیدرات (میکروگرم در گرم وزن تر)</th>
<th>فلورسانس (میکروگرم در گرم وزن تر)</th>
<th>درصد موسیلاز</th>
<th>محتوای رطوبت (نسبی درصد)</th>
<th>نیترات</th>
<th>نیتروژن</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب نهر</td>
<td>۰/۷۷</td>
<td>۱۳/۴۱</td>
<td>۲/۰۱</td>
<td>۸۷/۹۴</td>
<td>۷۸/۲۵</td>
</tr>
<tr>
<td>آب شور</td>
<td>۰/۷۸</td>
<td>۱۰/۳۸</td>
<td>۲/۰۵</td>
<td>۵۱/۰۹</td>
<td>۶۹/۳۶</td>
</tr>
<tr>
<td>آب کود</td>
<td>۰/۷۷</td>
<td>۹/۰۱</td>
<td>۱/۰۷</td>
<td>۶۱/۰۴</td>
<td>۷۱/۳۶</td>
</tr>
<tr>
<td>کود دامی</td>
<td>۰/۷۸</td>
<td>۷/۰۳</td>
<td>۲/۰۳</td>
<td>۷۴/۱۱</td>
<td>۵۲/۸۸</td>
</tr>
<tr>
<td>کود شیمیایی</td>
<td>۰/۷۷</td>
<td>۱۰/۵۸</td>
<td>۲/۰۸</td>
<td>۷۸/۶۸</td>
<td>۶۲/۹۸</td>
</tr>
<tr>
<td>کود چربی</td>
<td>۰/۷۸</td>
<td>۲/۸۷</td>
<td>۳/۳۴</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>کود چربی</td>
<td>۰/۷۸</td>
<td>۲/۸۷</td>
<td>۳/۳۴</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

(گروه آبیاری) نمایندگی‌های نیز حاکی از تأثیر مثبت تیمارهای مختلف کودی بر سطح مذکور است. سیستم کودکه تلفیقی با میانگین میزان موسیلاز در گیاهان را ایجاد نمود. کاربردی‌ها کود شیمیایی و دامی نیز ضمن فارگیری در یک گروه آماری، به ترتیب با ۳۰/۰۱ و ۲۰/۰۲ درصد کاهش نسبت به تیمار تلفیقی در رتبه‌های بعدی قرار گرفتن (جدول ۴). افزایش سطح لی ‌SDK به‌طور کلی‌های پیش از آن به آبیاری سیستم‌های است. (Raissi et al., 2013). کاهش

جدول ۵- مقایسه میانگین رطوبت نسبی درصد موسیلاز پروتئین، لورسوس و کروهیدرات تحت تأثیر کیفیت آب و کود

<table>
<thead>
<tr>
<th>کروهیدرات</th>
<th>فلورسانس</th>
<th>درصد موسیلاز</th>
<th>درجه آزادی</th>
<th>میانگین تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب نهر</td>
<td>۰/۷۷</td>
<td>۱۳/۴۱</td>
<td>۲/۰۱</td>
<td>۸۷/۹۴</td>
</tr>
<tr>
<td>آب شور</td>
<td>۰/۷۸</td>
<td>۱۰/۳۸</td>
<td>۲/۰۵</td>
<td>۵۱/۰۹</td>
</tr>
<tr>
<td>آب کود</td>
<td>۰/۷۷</td>
<td>۹/۰۱</td>
<td>۱/۰۷</td>
<td>۶۱/۰۴</td>
</tr>
<tr>
<td>کود دامی</td>
<td>۰/۷۸</td>
<td>۷/۰۳</td>
<td>۲/۰۳</td>
<td>۷۴/۱۱</td>
</tr>
<tr>
<td>کود شیمیایی</td>
<td>۰/۷۸</td>
<td>۱۰/۵۸</td>
<td>۲/۰۸</td>
<td>۷۸/۶۸</td>
</tr>
<tr>
<td>کود چربی</td>
<td>۰/۷۸</td>
<td>۲/۸۷</td>
<td>۳/۳۴</td>
<td>**</td>
</tr>
<tr>
<td>کود چربی</td>
<td>۰/۷۸</td>
<td>۲/۸۷</td>
<td>۳/۳۴</td>
<td>**</td>
</tr>
</tbody>
</table>

حرفو مشابه در هر سطون یاک برای عدم اختلاف معنی‌دار در سطح ۵ درصد برای آزمون LSD است.
ماده کلروفیل و پروتین است در اثر این تنش به پروتئین تبیز
شده و در نتیجه از محتوی کلروفیل کاسته می‌گردد
(Lawlor and Comin, 2002). لذا با توجه به نقش تنش شوری
در افزایش جذب آب و در نتیجه افزایش تنش خشکی به
گیاه تبیز خاصی قابل توجه است. اثر سیستمهای مختلف
کودی بر فلورسانس کلروفیل از لحاظ آماری معنادار نیست
(جدول 5).

کربوهیدرات: کیفیت آب آبیاری اثر معنی‌داری (P<0.01)
بر محتوی کربوهیدرات برق داشت (جدول 4). افزایش همی
کربوهیدرات آب آبیاری تا 4/18 درصد افراز در محتوی کربوهیدرات ایجاد
نمود (جدول 5). در شرایط شوری قند اندازه محلول به
طرور معنی‌داری افزایش می‌یابد و گیاهان متحمل به شوری
نسبت به گیاهان حساس معمولاً میزان قند اندازه محلول بیشتری
دارند (Ashraf and Harris, 2004) در تحقیق صورت گرفته در
زمینه اثر تنش شوری بر آلودگی، نتایج نشان داد که تنش
شوری باعث افزایش میزان غلظت گلوکز، زابلوز و مالوز در ذل
برگ این گیاه داردوی گرده‌ایه است که تأثیری کند نسبت به
مطالعه حاضر می‌یابند (2012).

محتوی کربوهیدرات تحت تأثیر سیستمهای مختلف کودی
در مجموع مختلف (P<0.001) قرار گرفت (جدول 4). در مجموع اختلاف
چشمگیری در کاهش این یک صفت اثر از عامل کود و
شیمیایی مشاهده شد اما در این بین، تلفیق گلوکز در کاهش
کربوهیدرات نسبت به شاهد و کاربرد جداگانه کوده‌ایه کاراتر
بوده است. بر این اساس کمترین غلظت کربوهیدرات در تیمار
صرف تلفیق گلوکز (1/80 میکروگرم در گرم وزن) و
شبه‌آرایان آن در تیمار شاهد (98/1 میکروگرم در گرم وزن)
مشاهده گردید (جدول 5). علت کاهش کربوهیدرات‌های
محلول از افزایش سطح کود نیتروژن توم با کود دامی، نقش
نیتروژن در ثابتیس اسیدهای آمینه است که نیاز به بخی
متاپولیت‌های خیره کرده‌های کربوهیدرات‌های کردن و
شندن این ترکیبات دارد و مستلزم مصرف هیدرات‌های کردن و
مشتقات آن است. پس افزایش نیتروژن سبب کاهش هیدرات

به صورت ۱۸ ه‌سی‌ام نیتروژن در گیاه دچار اختلال می‌گردد
کاهش محتوای پروتئین کل توسط محفظان دیگر نیز گزارش
شده است (Khalifi et al., 2011).

اثر سیستمهای مختلف کودی در تیمار پروتئین گیاه در
سطح احتمال ۰/۶ مقدار تنگی بوده است (جدول 4).

مقادیر پروتئین توسط تیمار را به همین یک سیستم نسبت به
کاهش کود و آب در کتیو در تیمار کاهش در تیمار به کارگیری
کود دامی و شیمیایی به صورت توم، نسبت به شاهد و سایر
تیمارهای دیگر است.

فلورسانس کلروفیل: کیفیت آب آبیاری بر فلورسانس
کلروفیل تأثیر سیستمهای مختلف کودی داشت (جدول 4) با
افراز شوری آب آبیاری غلظت فلورسانس کاهش در
der ناه در نشان داد (جدول 4). از آنگاهی که فلورسانس کلروفیل
یعنی که می‌توان سنجش برای بررسی تأثیر ناه‌محیط و
یک علائم می‌توان ارائه و وضعیت شیمیایی گیاه کار
Rathke et al., 2005) که نشان دهنده که تنش شید
میوه می‌باشد (12/60) در تیمار را دریافت می‌کند که با توجه به
 اختلاف سیستمهای مختلف کاهش داشت. نتایج سطح گردیدن
(12/60) بر کودی کودی کاهشی نیز کاهش فلورسانس
کلروفیل اثر تنش را تایید می‌کند که با توجه به
مطالعه حاضر نشان داد توضیح اینکه کاهش فستوستو تحت تأثیر
افراز دور آبیاری به دلیل اختلال در فرآیندهای شیمیایی می‌باشد
فستوستو است. هرچند فستوستو II
که زیادی نسبت به
خشک متحمل است. اما نشان دهنده که تنش خشکی می‌تواند امکان
الکترون در این نظام شود. از این رو از کاری کلروفیل کاشف
می‌باشد (صفحه گردیدنی 134). میان در این شرایط تنش
کمیاب آب بام تجربه کلروفیل گرده‌ها و گلورامات که پیش
جدول 1- تأثیر جنراینپرفیت پرولین و آزمیختی آنتی اسیدانی تحت تأثیر رژیم آبیاری و کود

<table>
<thead>
<tr>
<th>منابع تغییرات</th>
<th>پلی فول اسیداز</th>
<th>پرولین</th>
<th>کاتالاز</th>
<th>درجه آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>بلوک</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>رژیم آبیاری</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>خطط اول</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>کود</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>کود آبیاری</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

جدول 7- مقایسه میانگین پرولین و آزمیختی آنتی اسیدانی تحت تأثیر رژیم آبیاری و کود

<table>
<thead>
<tr>
<th>رژیم آبیاری</th>
<th>نماد</th>
<th>دام</th>
<th>بروز ایندکس</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب نهر</td>
<td>a</td>
<td>0/004 a</td>
<td>0/003 a</td>
</tr>
<tr>
<td>آب شور</td>
<td>b</td>
<td>0/008 a</td>
<td>0/008 a</td>
</tr>
<tr>
<td>کود</td>
<td>c</td>
<td>0/011 bc</td>
<td>0/008 b</td>
</tr>
<tr>
<td>کود دام</td>
<td>d</td>
<td>0/014 b</td>
<td>0/007 b</td>
</tr>
</tbody>
</table>

حرف مشابه در سطح 0/05 با گزارش نامناسب است. LSD

c et al. (2013)

های کریت می شود (پرولین) میزان پرولین تحت تأثیر کیفیت آب آبیاری در سطح 1 درصد قرار گرفت (جدول 1); به طوری که با افزایش

c et al. (2013)

افزایش این پروتئین در باده‌های گیاه در شرایط شوری منجر به

c et al. (2013)

اطلاع از انتخاب ترکیبات سازگار کننده آلی نظر پرولین می‌شود، و

c et al. (2013)

در واقع گیاه با سنت ترکیبات سازگار کننده نظر پرولین به

c et al. (2013)

عنوان مکانیس‌های مفاهمت به شوری جهت تنظیم اسمیزی

c et al. (2013)

استفاده می‌نماید (قرون و سهیاران، 1385).
در مسری ستون کالرفل (1992) پراکسیداز، آسکوربات، و سوپر آکسید ذرات گردن (SOD) تحت تأثیر کیفیت آب ایکسیلر قرار گرفتهند (جدول 7). البته تأثیر آنها بر SOD و CAT و APX آمیزه‌ها در میانگین 0.01/0.004 تا 0.01/0.008 میکرومول بر میلی‌گرم پروتئین در شرایط آبی جریان بوده و به دست آمده است. در این صفت تغییرات ترکیبی آب و همچنین کیفیت کود در تیمار تلفیق کوده در آبیاری با آب نر بارداری در تیمار APX از تغییرات خاصی در مقابل مشاهده کننده (Shigekawa et al., 1992). از این نظر، SOD، GPX و CAT تحت تأثیر اکسیدازها و پراکسیدازها در محیط‌های مختلف جغرافیا تأثیر آنها روی هماهنگی تغییرات ترکیبی آب و همچنین کیفیت کود را نشان می‌دهند (Shalini and Duey, 2003).

در مورد آزمایش اکسیدازها در محیط‌های مختلف جغرافیا تأثیر آنها روی هماهنگی تغییرات ترکیبی آب و همچنین کیفیت کود را نشان می‌دهند (Shalini and Duey, 2003).

در مورد آزمایش اکسیدازها در محیط‌های مختلف جغرافیا تأثیر آنها روی هماهنگی تغییرات ترکیبی آب و همچنین کیفیت کود را نشان می‌دهند (Shalini and Duey, 2003).

در مورد آزمایش اکسیدازها در محیط‌های مختلف جغرافیا تأثیر آنها روی هماهنگی تغییرات ترکیبی آب و همچنین کیفیت کود را نشان می‌دهند (Shalini and Duey, 2003).

در مورد آزمایش اکسیدازها در محیط‌های مختلف جغرافیا تأثیر آنها روی هماهنگی تغییرات ترکیبی آب و همچنین کیفیت کود را نشان می‌دهند (Shalini and Duey, 2003).

در مورد آزمایش اکسیدازها در محیط‌های مختلف جغرافیا تأثیر آنها روی هماهنگی تغییرات ترکیبی آب و همچنین کیفیت کود را نشان می‌دهند (Shalini and Duey, 2003).

در مورد آزمایش اکسیدازها در محیط‌های مختلف جغرافیا تأثیر آنها روی هماهنگی تغییرات ترکیبی آب و همچنین کیفیت کود را نشان می‌دهند (Shalini and Duey, 2003).

در مورد آزمایش اکسیدازها در محیط‌های مختلف جغرافیا تأثیر آنها روی هماهنگی تغییرات ترکیبی آب و همچنین کیفیت کود را نشان می‌دهند (Shalini and Duey, 2003).

در مورد آزمایش اکسیدازها در محیط‌های مختلف جغرافیا تأثیر آنها روی هماهنگی تغییرات ترکیبی آب و همچنین کیفیت کود را نشان می‌دهند (Shalini and Duey, 2003).

در مورد آزمایش اکسیدازها در محیط‌های مختلف جغرافیا تأثیر آنها روی هماهنگی تغییرات ترکیبی آب و همچنین کیفیت کود را نشان می‌دهند (Shalini and Duey, 2003).

در مورد آزمایش اکسیدازها در محیط‌های مختلف جغرافیا تأثیر آنها روی هماهنگی تغییرات ترکیبی آب و همچنین کیفیت کود را نشان می‌دهند (Shalini and Duey, 2003).

در مورد آزمایش اکسیدازها در محیط‌های مختلف جغرافیا تأثیر آنها روی هماهنگی تغییرات ترکیبی آب و همچنین کیفیت کود را نشان می‌دهند (Shalini and Duey, 2003).

در مورد آزمایش اکسیدازها در محیط‌های مختلف جغرافیا تأثیر آنها روی هماهنگی تغییرات ترکیبی آب و همچنین کیفیت کود را نشان می‌دهند (Shalini and Duey, 2003).

در مورد آزمایش اکسیدازها در محیط‌های مختلف جغرافیا تأثیر آنها روی هماهنگی تغییرات ترکیبی آب و همچنین کیفیت کود را نشان می‌دهند (Shalini and Duey, 2003).

در مورد آزمایش اکسیدازها در محیط‌های مختلف جغرافیا تأثیر آنها روی هماهنگی تغییرات ترکیبی آب و همچنین کیفیت کود را نشان می‌دهند (Shalini and Duey, 2003).

در مورد آزمایش اکسیدازها در محیط‌های مختلف جغرافیا تأثیر آنها روی هماهنگی تغییرات ترکیبی آب و همچنین کیفیت کود را نشان می‌دهند (Shalini and Duey, 2003).

در مورد آزمایش اکسیدازها در محیط‌های مختلف جغرافیا تأثیر آنها روی هماهنگی تغییرات ترکیبی آب و همچنین کیفیت کود را نشان می‌دهند (Shalini and Duey, 2003).

در مورد آزمایش اکسیدازها در محیط‌های مختلف جغرافیا تأثیر آنها روی هماهنگی تغییرات ترکیبی آب و همچنین کیفیت کود را نشان می‌دهند (Shalini and Duey, 2003).

در مورد آزمایش اکسیدازها در محیط‌های مختلف جغرافیا تأثیر آنها روی هماهنگی تغییرات ترکیبی آب و همچنین کیفیت کود را نشان می‌دهند (Shalini and Duey, 2003).

در مورد آزمایش اکسیدازها در محیط‌های مختلف جغرافیا تأثیر آنها روی هماهنگی تغییرات ترکیبی آب و همچنین کیفیت کود را نشان می‌دهند (Shalini and Duey, 2003).

در مورد آزمایش اکسیدازها در محیط‌های مختلف جغرافیا تأثیر آنها روی هماهنگی تغییرات ترکیبی آب و همچنین کیفیت کود را نشان می‌دهند (Shalini and Duey, 2003).

در مورد آزمایش اکسیدازها در محیط‌های مختلف جغرافیا تأثیر آنها روی هماهنگی تغییرات ترکیبی آب و همچنین کیفیت کود را نشان می‌دهند (Shalini and Duey, 2003).
تأثیر کیفیت آب آبیاری و سیستم‌های کودی مختلف بر رشد و یوگرایی گیاهان

(بازاری، 1392) یا به نظر می‌رسد از معدودی‌ها از طریق کاهش فشار ناشی از تشیع و همچنین حفظ سولو در شرایط طبیعی سبب افزایش مقاومت به تشیع می‌گردد (فتحی امیر خیر و همکاران، 1390). خلاصه، بر این محققان در این مطالعه، کود نیتروژن منجر به افزایش پایداری غلبه سیستم‌ها و احتمالاً کاهش اثرات H2O2 حاصل از تشیع می‌شود. (Saneoka et al., 2004)

نتیجه‌گیری:

نتایج این پژوهش نشان داد هم‌مانندی که انظار می‌رود آبیاری

متایب:

بارادی، ج. (1392) اثرات آب شور و معمولی توم ای گیاهان آنی و شیمیایی بر صفای کمی گیاه‌شناختی و اساس گیاه دارویی زیره.

سیب، پایان نامه کارشناسی ارشد، دانشکده کشاورزی دانشگاه ژال، زابل.

بریمانی، م. (1373) مطالعه تأثیر کودهای ایزه در مراحل مختلف زندگی گیاه‌های گیاه‌داروی و میزان تولید اساس. پایان نامه کارشناسی ارشد، دانشکده کشاورزی دانشگاه ژال، زابل.

خیمی، بس (1392) تأثیر سطح نیتروژن و نیتروژن‌بر یوگرایی کمی و کیفی گازوران ارتباطی (Borago officinalis L.) نامه کارشناسی ارشد، دانشکده کشاورزی دانشگاه ژال، زابل.

صفوی، غریبی (1392) تأثیر پیام مواد شیمیایی بر سطح و کود دامی بر مقاومت کودی یوگرایی کمی، پایان نامه کارشناسی ارشد، دانشکده کشاورزی دانشگاه ژال، زابل.

اصفهان، 1386 (عصرای گیاه و استخراج مواد مفید گیاهان دارویی و روشهای شناختی و ارزیابی آنها، انتشارات ملی، صفحه 37-59)

فتحی امیر خیر، ک. امینی دهقانی، م.، مدرس تانی، س. م. ع.، فاضل‌نژاد، ع.، و حشمتی، س. (1392). اثر مصرف آهن بر فعالیت آنزیم، عملکرد دانه و میزان رنگ دانه گل‌زینگ در شرایط کمبود آب. مجله علم زراعی، 134-426.

فورغی، ل. و علی‌خوا، ع. (1391) تأثیر نیتروژن و گوگر بر عملکرد. اجزای عملکرد و برخی صفات فیزیولوژیکی گل‌زینگ بهاره. مجله اکونومیک تولید گیاهان زراعی، 135-63.

قزاقی، ع.، مفیسی، ع.، و سلیمی، ا. (1385) اثر مقادیر مختلف شوری خاک بر محتوای پوست و پرولز در در رف خاک. رستنی‌ها، 7، 44-57.

گیاهان زراعی، 135-63.

تولید گیاهان زراعی، 135-63.

کرمی، م.، سهیلی، ع.، حمیدی، م.، و سلیمی، ق. (1390) تأثیر کودهای ژستی فسفر و نیتروژن بر صفات کمی و کیفی گیاه دارویی (Borago officinalis L.) تحت شیع کمیوب آب. فناوری تولیدات گیاهی: 45-60.

کرمی، م.، بی‌بی، ع.، حمیدی، م.، و سلیمی، ق. (1390) تأثیر کودهای ژستی فسفر و نیتروژن بر صفات کمی و کیفی گیاه دارویی (Borago officinalis L.) تحت شیع کمیوب آب. فناوری تولیدات گیاهی: 45-60.

