تأثیر کیفیت آب آبیاری و سیستم‌های کودی مختلف بر برخی ویژگی‌های

فیزیولوژیک و بیوشیمیایی گاروژان اروپایی (Borago officinalis)

رویز بدلاله، محمد رضا اصغری پور و اصغر قادری

انشغال آزاد اسلامی، واحد شهرکرد، باشگاه یوزهرگان جنگ و نیک‌گران، شهرکرد، ایران، گروه زراعت، دانشکده کشاورزی، دانشگاه یزد، گروه بیوشیمیایی، دانشکده کشاورزی، دانشگاه یزد

(ناری دریافت: 24/07/1993، تاریخ پذیرش نهایی: 19/05/1994)

چکیده:
گاروژان اروپایی (Borago officinalis L.) یک گیاه ارزشمند دارویی است و تولید آن برای ارسال نیازهای صنایع دارویی ارزش بالایی دارد. مصرف نشانه اثرات کیفیت آب و سیستم‌های مختلف کودی بر صفات فیزیولوژیک و بیوشیمیایی گاروژان اروپایی آزمایش شد. بر اساس نتایج گزارش‌هایی که در سال 1991 ثبت شد، در مزرعه‌های دانشگاه رابط انجام شد. عامل اصلی کیفیت آب از طریق سطح آب‌پاش و آب شرب و عمل فرآیندهای مختلف کودی شامل کودهای NPK به ترتیب 0:40:30، 80:40:30 و 80:40:0 کیلوگرم در هر متر مربع به ارزش بالایی داشت. در میان نتایج که با کاربرد گازهای اکسیدی و کربوهیدرات و پرورش انگشتی سطحی در تاریکی بالایی داشتند، کیفیت پایین آبیاری موجب کاهش پروتئین گیاه، فلورا و فلورا کلیول و محتویات بهتر گردنی اما تغییر می‌دهد. در مورد مواد ایجاد نگرد. سیستم‌های مختلف کودی باعث افزایش صفات مورد مطالعه به جز فلورا و فلورا کلیول، در مقایسه با نماد کوده‌های دیگری‌ها در میان نتایج مختلف کودی کاربرد همواره کوده‌های شیمیایی و دامی در مقایسه با کربوهیدرات جهان آنها نیز تأثیرات تر تاریکی بود. بسیاری کیفیت کودی آب و سیستم‌های مختلف کودی بر آزمون‌های آزمایش‌های مختلف شد. نتایج این مطالعه حاکی از آن است که گره‌های آبیاری یا آب شور خصوصیات گیاه و کیفیت گاروژان را کاهش داد. این حال می‌توان با چاپ‌کردن پیش‌بینی از کوده‌های شیمیایی با کوده‌های آی آتودگه‌های مثبت را کاهش داد.

کلمات کلیدی: آب شور، آنزیم‌های آنتی‌اکسیدانی، کود دامی، گیاهان دارویی

مقدمه:
مشکل شوری در بیشتر اراضی جهان به‌خصوص در اراضی کشت آبی در مناطق خشک و نیمه خشک وجود دارد. در ایران نیز حدود 12 درصد (19 میلیون هکتار) مساحت بیای کشاورزی استفاده می‌شود که 60 درصد آن به شوری مختلف، مشکل شوری پا سبب می‌شود (میرحمیدی میری و فریباشی، 1381). از بارترین اثرات سدیم کاهش حجم

m_asgharipour@uoz.ac.ir
الف: الکوارد کیاها جلد 7، شماره 1396

نظر قبل ملاحظه‌ای در افزایش عملکرد کار. محققین اعلام کردند عملکرد عامل‌های آزمایش گرده و خشک و میزان لاستیک بزرگی اکثریتی از آن‌هایی تا 1985 میلادی است که بیش از 87 برای بارندگی سالانه منطقه می‌باشد. محلس پیشرفت در زمان اجرای آزمایش گزاره‌بود. نتایج بسته آن از تجربه نمونه خاک اجرای آزمایش در جدول 1 آورده شده است.

ب‌) فراغت زمین مختلف کودهای دامی و شیمیایی بود که از برندهای انواع مختلف کود، فود شیمیایی به میزان 800 کیلوگرم نیترورزان به شکل 40 کیلوگرم قبیحی به همراه 50 کیلوگرم فسفر به شکل وسیع‌ریزی و 30 کیلوگرم در هکتار پایان گرفت. سولفات پتاسیم و تریلیت و کربنات کود دامی به میزان 40 تن در هکتار و ترکیب کود شیمیایی به میزان 60 کیلوگرم نیترورزان و 10 کیلوگرم نیترورزان و 5 کیلوگرم پتاسیم در هکتار با کود دامی به میزان 20 تن در هکتار. در این مطالعه مقدار کودهای شیمیایی استفاده شده بر اساس نتایج آزمایش ایرانی‌ها و همکاران (2013) و مقدار کودهای آلی استفاده شده بر اساس نتایج آزمایش ایرانی‌ها و همکاران (2010). برخی از مشخصات کود دامی مورد استفاده در جدول 3 آورده شده است. به‌منظور افزایش کود دامی به شکل خامه، ابتدا با ساختار درصد رطوبت آن مشابه شده و اندازه‌گیری رطوبت به عوامل تعیین کننده مقدار نهایی کود دامی در محاسبات لازمه ارائه می‌شود. به این صورت که 500 گرم کود دامی را به مدت 48 ساعت در دمای 50 درجه سانتی‌گراد در ارتفاع 676/160 گرم رسید. بنابراین با احتساب درصد رطوبت کود دامی (50/59)، مقدار دقتی کود دامی برای هر

مواد و روش‌ها:

به‌منظور مطالعه کیفیت آب‌هایه با تکنیک‌های آلی و شیمیایی بر باریک صفات فیزیولوژیک و بیوشیمیایی گیاه دارویی گازردان اروپایی در منطقه سیستان، مطالعه مزرعه‌ی در
جدول ۱- ویژگی‌های فیزیکی و شیمیایی خاک محل آزمایش در هعم‌سایر ۱۰ سانتی‌متری

<table>
<thead>
<tr>
<th>ماده آلی</th>
<th>فیضیون</th>
<th>فسفر</th>
<th>پتاسیم</th>
<th>لاگریت درصد</th>
<th>هایتیت الکتریکی (ds/m)</th>
<th>قیمت در میلیون</th>
<th>pH</th>
<th>لومینتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>فلور</td>
<td>۴۲</td>
<td>۳۰</td>
<td>۱۴۸</td>
<td>۰/۶۷</td>
<td>۱/۷۳</td>
<td>۵۹ ۰/۷۷</td>
<td>۷/۵</td>
<td>۱/۸</td>
</tr>
</tbody>
</table>

جدول ۲- ممکن‌ترین صفات آب‌های آب‌یاری

<table>
<thead>
<tr>
<th>pH</th>
<th>EC (ds.m⁻¹)</th>
<th>SAR (cmol kg⁻¹)</th>
<th>CEC (cmol kg⁻¹)</th>
<th>ESP (cmol kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴/۲۸</td>
<td>۵/۸</td>
<td>۱/۸۵</td>
<td>۱/۸۵</td>
<td>۱/۸۵</td>
</tr>
<tr>
<td>۴/۱۰</td>
<td>۹/۴</td>
<td>۴/۲۳</td>
<td>۴/۲۳</td>
<td>۴/۲۳</td>
</tr>
<tr>
<td>۳/۷۲</td>
<td>۹/۰۱</td>
<td>۹/۶۶</td>
<td>۹/۶۶</td>
<td>۹/۶۶</td>
</tr>
<tr>
<td>۲/۶۷</td>
<td>۷/۰۱</td>
<td>۲/۶۷</td>
<td>۲/۶۷</td>
<td>۲/۶۷</td>
</tr>
</tbody>
</table>

جدول ۳- برخی مشخصات کود دامی مورد استفاده

<table>
<thead>
<tr>
<th>رطوبت</th>
<th>pH</th>
<th>EC (ds.m⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۶/۵</td>
<td>۷/۶</td>
<td>۷/۶</td>
</tr>
</tbody>
</table>

کرت فرعي به طور دقيق محاسبه شده و با خاک مخلوط گردید. کود شيميايی نيز به مقادير یاد شده در داخل كرتش اعمال شد. سپس کشت در اسفنگ ماه ۱۳۹۰ به روش دستي انجام شد. پلات های آزمایشی دارای ابعاد ۲ در ۲ متر بودند و فاصله بین رنگهای کشت از یکدیگر ۵/۵ متر و فاصله بین‌های ۱/۵ متر و سر دیگر ۲۵ متر بود. پلات‌های مجاور از یکدیگر ۱/۵ متر فاصله داشتند. آب‌هایی با آب و ترکیب‌های یکی از چهار دسته شک، اما آب نهر با استفاده از آب جاتی در نهر دانشکده انجام شد، اما آب نهر از یکی از چاه‌های واقع در مزرعه پزوهشی تامین شد. آب‌های هفتین یک بار به روش کرتشی انجام می‌شد و در کل به آب شور شمش آب‌هایی صورت گرفت.

کرت در خرداد ماه ۱۳۹۰ انجام گرفت. به این صورت که از هر کرت ۵ نمونه حاوی سرب میانی کمیت توسعه یافته و سرشاخه گل‌دان، با رعایت حاشیه از چهار طرف انجام و یافته نمونه‌ها به آزمایشگاه متقل شدند و جهت آزاده کردن خصوصیات بیومیکالی پرولین، کربوهیدرات، موسیلاپ، پروتئین، محتواو رطوبت نسبی، فلورسنس کنولیف،...
رشوب درمیب. پس از این مدت بر روی کاغذ صافی که قبلاً وزن شده بود صاف گردید و پس از خشک شدن در حرارت 105 درجه سانتی‌گراد، کاغذ صافی را وزن کرد و از روی اختلاف وزن کاغذ صافی و خشک وزن موسلیز مشخص گردید. به منظور تعیین درصد موسلیز، کاغذ صافی حاوی موسلیز را داخل نشیرو گردیده و توسط 100 میلی لیتر آب مقرر آن را شسته تا موسلیز موجود در آن از کاغذ صافی جدا شود و موسلیز به صورت رسوپ یافته بامداد پس از خشک کردن کاغذ صافی آن را دقت وزن کرده و از روی اختلاف وزن کاغذ صافی با وزن اولیه درصد موسلیز محاسبه شد (صص. ۱۳۸۴). شریعت،

برای اندامی گیری میزان پروتئین، مقدار نیتروژن کل از دسته‌گذاری کالد (Page et al., 1982) جهت محاسبه آن استفاده گردید. در عدد تابی (۱/۲۵) ضرب وزن برنج محاسبه شد (یوتوه، 1۳۸۳). همچنین رطوبت نسبی برق (RWC) براساس:

\[
\text{RWC} \% = \frac{\text{FW} - \text{TW}}{\text{TW-DW}} \times 100
\]

که در آن FW و DW به ترتیب وزن تر برق و وزن خشک برق وزن آمری برق می‌باشد.

جهت اندازه‌گیری آزمی‌کالار (CAT) از روش برس و (SOD) رازیک اکسی‌دبزمه (Beers and Sizer, 1952) و سایر، (Sairam and Srivastava, 2006) از روش سایر و سر وستا استفاده شد و (GPX) آزمون ناکانو و آسدا (Nakano and Asada, 1981) استفاده شده و میزان آنزیم های استخراجی بر اساس میکرومول بر میلی گرم پروتئین بسته آماده در پایان تجزیه داده‌های به دست آمده با استفاده نرم‌افزار آماری و مقایسه با استاندارد SAS V9.1 در سطح احتمال ۱ و ۵ درصد انجام شد.

نتایج و بحث:

محوری رطوبت نسبی برق: اثرات نشان شوری و کود در سطح ۱ درصد محوری رطوبت نسبی برق گازوین ممنوعیت.
جدول 4- تأثیر نزدیکی واریانس رطوبت نسبی درصد موسیلاز پروتئن، لورسانس و کربوهیدرات تحت تأثیر کیفیت آب و کود

<table>
<thead>
<tr>
<th>کربوهیدرات (میکروگرم در گرم وزن ث)</th>
<th>فلورسانس (میکروگرم در گرم وزن ث)</th>
<th>درصد موسیلاز</th>
<th>محتوا رطوبت</th>
<th>نیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیمار (درصد)</td>
<td>نیمار (درصد)</td>
<td>نیمار (درصد)</td>
<td>نیمار (درصد)</td>
<td>نیمار (درصد)</td>
</tr>
<tr>
<td>1/77 a</td>
<td>7/69 a</td>
<td>0/68 a</td>
<td>0/68 a</td>
<td>68/94 a</td>
</tr>
<tr>
<td>0/74 b</td>
<td>0/61 a</td>
<td>0/51 a</td>
<td>0/51 a</td>
<td>61/97 a</td>
</tr>
<tr>
<td>0/68 c</td>
<td>0/57 a</td>
<td>0/47 a</td>
<td>0/47 a</td>
<td>57/94 a</td>
</tr>
<tr>
<td>0/89 d</td>
<td>0/76 a</td>
<td>0/52 a</td>
<td>0/52 a</td>
<td>76/94 a</td>
</tr>
<tr>
<td>0/83 a</td>
<td>0/68 a</td>
<td>0/58 a</td>
<td>0/58 a</td>
<td>83/94 a</td>
</tr>
<tr>
<td>0/87 b</td>
<td>0/73 a</td>
<td>0/54 a</td>
<td>0/54 a</td>
<td>87/94 a</td>
</tr>
</tbody>
</table>

جدول 5- مقایسه میانگین رطوبت نسبی درصد موسیلاز پروتئن، لورسانس و کربوهیدرات تحت تأثیر کیفیت آب و کود

<table>
<thead>
<tr>
<th>کربوهیدرات</th>
<th>فلورسانس</th>
<th>پروتئن</th>
<th>درصد موسیلاز</th>
<th>درجه آزادی</th>
<th>مقایسه تغییرات</th>
<th>منابع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/007 a 2/007 a</td>
<td>0/016 a 3/013 a</td>
</tr>
<tr>
<td>0/009 a 2/009 a</td>
<td>0/015 a 3/012 a</td>
</tr>
<tr>
<td>0/009 a 2/009 a</td>
<td>0/015 a 3/012 a</td>
</tr>
<tr>
<td>0/009 a 2/009 a</td>
<td>0/015 a 3/012 a</td>
</tr>
<tr>
<td>0/009 a 2/009 a</td>
<td>0/015 a 3/012 a</td>
</tr>
<tr>
<td>0/009 a 2/009 a</td>
<td>0/015 a 3/012 a</td>
</tr>
<tr>
<td>0/009 a 2/009 a</td>
<td>0/015 a 3/012 a</td>
</tr>
<tr>
<td>0/009 a 2/009 a</td>
<td>0/015 a 3/012 a</td>
</tr>
</tbody>
</table>

حرف مشاهده در هر ستون یا جدولی عدد اختلاف معنی دار در سطح 0.05 درصد براساس آزمون LSD است.

عملاک موسیلاز در این تیمارها، بالا بودن سرشاخه گلدار و درصد موسیلاز است. جنون عملاک موسیلاز از حاصل ضرب سرشاخه گلدار در درصد موسیلاز حاصل می‌شود.

درصد پروتئن: درصد پروتئن تحت تأثیر کیفیت آب آبیاری قرار گرفت (جدول 4). در مطالعه حاضر با افزایش هدایت الکتریکی آب پروتئن کاهش (3/2 درصد) یافت (جدول 5). شوری اثری قابل ملاحظه‌ای بر سوختگی‌های نیترزاور نیترزون در گیاهان دارد که اثر مثبتی آن بر سرعت سنتز اسید نوکلئز و پروتئینها می‌باشد (Raissi et al., 2013). کاهش درصد کاهش و خرد پیشین باعث تغییری در سطح 0.05، 0.01، 0.001 و 0.0001 است. از طرف دیگر می‌توان جداب نیترزون Na+ و NO3 و Cl− است. از طرف دیگر می‌توان جداب نیترزون Na+ و NO3 و Cl− است.
بیش از هر یکی از فرصاده‌های مربوط به NH4+ نیتروژن از گیاه دچار اختلاف می‌گردد (Rathke et al., 2005). کاهش محیوتی پروتئین کل توسط محققان دیگر نیز کارشش‌شد است (Khaliq et al., 2011).

آزمایش‌های مختلف کودی به دصرت پروتئین گیاه مطرح می‌شود که بیشش‌میشی و گل‌داری شدن پیوسته‌کننده این گردیده و کلیت‌های فلورسنس کاروفیل از لحاظ آماری معنی‌دار نیست.

(جدول 5).

کربوهیدرات: کیفیت آب آبیاری اثر مصرفی (P<0.01) به محتوی کربوهیدرات درگ داشت (جدول 4). افزایش حالت‌گیری الکتریکی آب آبیاری تا 0/184 درصد افزایش در محتوی کربوهیدرات ایجاد شد (جدول 5). در شرایت شوری تنقیدی محلول به طور محتوی افزایش می‌یافته و گیاهان از دستگاه محیوتی توسط کاهش ایزوپی و گیاهان متفاوت از شرایت آب از عملیات وجود کود دمی نسبت داد (جوزیپور و همکاران، 1391). این افزایش پروتئین در تیمار به کارگیری کود دامی و شیمایی به صورت تاکید تحت تأثیر می‌شود.

فلورسنس کاروفیل: کیفیت آب آبیاری در فلورسنس کاروفیل تأثیر سیاسی بود (P<0.01) 210 درصدی این داد (جدول 4). افزایش شوری آب آبیاری عطش فلورسنس کاهش 13 درصدی نشان داد (جدول 5). از آنجایی که فلورسنس کاروفیل پرین رضایت سنجش بار بررسی تأثیر نشان می‌دهد و یک علامت مفید بر ارزیابی وضعیت فتوشیمایی گیاه کار را می‌آورد (Rathke et al., 2005). مشاهده شد که در نشان شدید میزان فلورسنس کاروفیل کاهش داشت. تناقل سمفونی گردنی (1392) بر کدوی نیش کافزی نیز کاهش فلورسنس کاروفیل در اثر نش را تایید می‌کند که به ترتیب می‌تواند در مطالعه نخستین دارد. توضیح اینکه کاهش فتوشیمئ تحت تأثیر افزایش در اثر گیاه به دلیل اختلال در فلورسنس شیمایی مسیر فتوشیمئ است. هرچند فتوشیمئ II قابل زیادی نسبت به خشکی متحمل است، اما نشان نشان داد که در انتقال الکترون در این نظام گیاه، زیان ور از فلورسنس کامی کود می‌شود (صفحه گردنی، 1392). علاوه بر این در شرایت نش، کمیاب آب باعث تجربه کاروفیل گردنی و گاز‌داری که پیش
جدول ۱- تأثیر تجربه و رژیم پرولین و آزمون‌های آنتی‌آگن‌های تحت تأثیر رژیم آپ ای‌پراستی و کردی

<table>
<thead>
<tr>
<th>آسکوربین/پراکسیداز</th>
<th>کاتالاز</th>
<th>بلوک</th>
<th>رژیم اپاپراستی</th>
<th>خطای أول</th>
<th>کرد</th>
<th>کود آپاپراستی</th>
<th>خطای کل</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲/۰/۰۰۰۰۰۰ ۰۰۰۰۰۰۰۰</td>
<td>۹۰۸/۰۰۰۰۰۰</td>
<td>۱/۰۰۰۰۰۰۰۰</td>
<td>۲/۰/۰۰۰۰۰۰ ۰۰۰۰۰۰۰۰</td>
<td>۲/۰/۰۰۰۰۰۰ ۰۰۰۰۰۰۰۰</td>
<td>۱/۰۰۰۰۰۰۰۰ ۰۰۰۰۰۰۰۰</td>
<td>۱/۰۰۰۰۰۰۰۰ ۰۰۰۰۰۰۰۰</td>
<td>۳/۰۰۰۰۰۰۰۰ ۰۰۰۰۰۰۰۰</td>
</tr>
</tbody>
</table>

\[**\] و " به ترتیب نااِختگی اختلاف معنی‌دار و معنی‌دار در سطح احتمال ۰/۵ و ۱ درصد است.

جدول ۷- مقایسه میانگین پرولین و آزمون‌های آنتی‌آگن‌های تحت تأثیر رژیم آپ ای‌پراستی و کردی

<table>
<thead>
<tr>
<th>نیمار</th>
<th>پرولین (میکرو مول) بر گرم وزن ترا</th>
<th>میکرو مول بر میلی گرم پرولین</th>
</tr>
</thead>
<tbody>
<tr>
<td>آپ نئی</td>
<td>۶۳۹۴/۰۰۰۰۰۰۰۰۰۰۰ ۰۰۰۰۰۰۰۰</td>
<td>۱۱/۰۵۲/۰۰۰۰۰۰۰۰۰ ۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>آپ سورد</td>
<td>۱۱/۰۵۲/۰۰۰۰۰۰۰۰۰ ۰۰۰۰۰۰۰۰</td>
<td>۱۱/۰۵۲/۰۰۰۰۰۰۰۰۰ ۰۰۰۰۰۰۰۰</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>کود</th>
<th>میکرو مول بر میلی گرم پرولین</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>۷/۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰ ۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>کود دامی</td>
<td>۹/۴۵/۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰ ۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>کود شیمیایی</td>
<td>۸/۳۸/۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰ ۰۰۰۰۰۰۰۰</td>
</tr>
<tr>
<td>تلفیق کودها</td>
<td>۷/۴۵/۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰ ۰۰۰۰۰۰۰۰</td>
</tr>
</tbody>
</table>

حرف مشابه در هر ستون یانگ عدد اختلاف معنی‌دار در سطح ۵ درصد براساس آزمون SD است. *LSD* .

کاربرد کودهای شیمیایی و دامی میزان پرولین برگ را به طور معنی‌داری (پرک) (هالنژ هالنژ) کمترین میکرو مول بر گرم وزن تر با تغییر کودهای شیمیایی و دامی و بیشترین آن به مقدار ۱۸/۱۲ میکرو مول بر گرم وزن تر در تیمار عدم مصرف کود بدست آمد. مصرف جادوگان کودهای شیمیایی و دامی نیز یک به ترتیب کاهش معادل ۲۱ و ۱۵/۵ درصد در مقایسه با شاهد ایجاد نمودند (جدول ۷). مصرف کود به صورت تلقیفی شرایط و منابع و ایده آل برای رشد گیاه فراهم می‌آورد. نتایج، می‌توان کاهش میزان پرولین برگ را تغییر متابولیسم نیتروژن و استفاده بیشتر از گل‌نامات (ماده اولیه سنتز پرولین و کلرول) تأکید کرد. (Tarang et al., 2013).

پرولین: میزان پرولین تحت تأثیر کود آپ آپ ای‌پراستی در سطح ۱ درصد قرار گرفت (جدول ۷); به طوری که با افزایش هدایت الکتروپیکی آب، این صفت از ۷/۹۴ میکرو مول بر گرم وزن تر در شرایط آپاپراستی با آپ نئی به ۱۱/۰۵۲ میکرو مول بر گرم وزن تر در آپاپراستی با آپ نئی در افزایش یافته (جدول ۷). افزایش *Azospirillum* در باتری‌های گیاهی در شرایط بیماری مربوط به *Cl* و *Na* افزايش اغلب ایجاد آنتی‌تربکزات سازگاری آنی نظر پرولین می‌شود، و در واقع گیاهی با سنتز تربکزات سازگاری آنی نظر پرولین به عنوان مکانیسم‌های مقاوت به شوری جهت تنظیم اسپرمی استفاده می‌نماید (قرانی و همکاران، ۱۳۸۵).
آنزم‌های گیاهی پراکسیداز (GPX)، آسکوربات پراکسیداز (APX) و سویآکدی دس‌ماتاز (SOD) تحت تأثیر کفیت آب آبیاری قرار گرفتند (جدول ۷). بالاترین در APX، GPX و CAT آنزیم‌های میانگین ۰/۰۴، ۰/۰۸ و ۰/۰۶ میکرومول بر میلی‌گرم پروتئین در شرایط آبیاری تعداد به طور معنی‌داری (P<۰/۰۱) باعث کاهش آن‌ها شد. به‌طور کلی، در میانگین ۰/۰۴ میکرومول بر میلی‌گرم پروتئین در APX، GPX و CAT، بالاترین در APX و بکرین در GPX، کاهش اثرات نشان‌دهنده اثرات مثبتی بود که باعث افزایش مقاومت به میزان دسترسی بودن عناصر غذایی و جذب و انتقال آن‌ها در گیاه است (Schulze,1991). آنزم‌های کاتالاز، پراکسیداز و آسکوربات پراکسیداز، از مهم‌ترین آنزم‌های خصی خون‌پراکسیدازهالان در گیاهان حضور دارند که برای تاثیر کم‌کننده عناصر ریز معدی به خصوص آن‌ها و قرار می‌گیرد در تیمار تلفیق کود شیمیایی عالی. (Shigeoka et al., 2002) مورد آنی و ریز‌بازی‌ها در کود دامی در بهبود خواص فیزیک شیمیایی خان مؤثر بوده و صفات رشدی گیاه به عمل افراش فتوژنتری و رشد در کاربرد توان آم کودها افراش می‌یابد.

در میسر سنتر کلروفیل (Irigoyen et al., 1992)، (APX) و سویآکدی دس‌ماتاز (SOD) تحت تأثیر کفیت آب آبیاری قرار گرفتند (جدول ۷). بالاترین در APX، GPX و CAT آنزیم‌های میانگین ۰/۰۴، ۰/۰۸ و ۰/۰۶ میکرومول بر میلی‌گرم پروتئین در شرایط آبیاری به طور معنی‌داری (P<۰/۰۱) باعث کاهش آن‌ها شد. به‌طور کلی، در میانگین ۰/۰۴ میکرومول بر میلی‌گرم پروتئین در APX، GPX و CAT، بالاترین در APX و بکرین در GPX، کاهش اثرات نشان‌دهنده اثرات مثبتی بود که باعث افزایش مقاومت به میزان دسترسی بودن عناصر غذایی و جذب و انتقال آن‌ها در گیاه است (Schulze,1991). آنزم‌های کاتالاز، پراکسیداز و آسکوربات پراکسیداز، از مهم‌ترین آنزم‌های خصی خون‌پراکسیدازهالان در گیاهان حضور دارند که برای تاثیر کم‌کننده عناصر ریز معدی به خصوص آن‌ها و قرار می‌گیرد در تیمار تلفیق کود شیمیایی عالی. (Shigeoka et al., 2002) مورد آنی و ریز‌بازی‌ها در کود دامی در بهبود خواص فیزیک شیمیایی خان مؤثر بوده و صفات رشدی گیاه به عمل افراش فتوژنتری و رشد در کاربرد توان آم کودها افراش می‌یابد.
تاثیر کیفیت آب اپاریز و سپس‌های کود مختلف بر برخی ویژگی‌های... 65

(باردل، 1392). لذا به نظر می‌رسد. وزیری‌ها از طریق کاهش فشار ناشی از شیوع و مرگ جهش سولولار در فشارهای سبب انفیلودهای میکروبی می‌گردد (فحنی امیر خیر و همکاران، 1390). حالا به این محققین درمان‌های که انفیلودهای کود نیتروژن منجر به انفیلودهای پایداری غشاء سیتوپلاسی و احتیال کاهش اثرات هاکمه حاصل از تنش می‌شود.

(Saneoka et al., 2004)

نتایج گیری:
نتایج این پژوهش نشان داد همان‌طور که اندازه‌گیری‌های آب‌پاش جای خالی و مراحل مختلف دندان‌پزشکی کم‌تر و کیفیت اپاریز و سیستم‌های کودی مختلف بر عوامل‌های مختلف کیفی کاوریک‌های شرده است.

متن:
باردل، ج. (1392) اثرات آب شور و معمولی نماینده کودهای آلی و شیمیایی بر صفات کمی کیاه‌شناسی و اساس گیاه داروی زیره. بیمارستان نامه کارشناسی ارشد. دانشکده کشاورزی دانشگاه زابل، زابل.

بریمان، م. (1376) مطالعه تأثیر کودهای ازون به مراحل مختلف سنگین گیاه باید و به میزان تولید اساس. پایان نامه کارشناسی ارشد. دانشگاه تربیت معلم تهران. تهران.

بروئر، م. (1382) کنترل کیفیت غذایی و ازامیایپاتی شیمیایی. انتشارات دانشگاه تهران. تهران.

جوژی پور، م. فیزیک، ا. افستی، پور، م. و. دهمدیر، م. (1391) اثر کودهای آلی و شیمیایی بر لج فلاین بر عملکرد کمی و کیفی کلمنگ (Carthamus tinctorius). گل‌پوستی. تهران، ایران.

شیخ پور، س. (1392) تاثیر سیتروز نیتروژن و نیتروژنبریزیکن بر ویژگی‌های کمی و کیفی کاوریک‌های اپاریزی (Borago officinalis L.) نامه کارشناسی ارشد. دانشکده کشاورزی دانشگاه زابل. زابل.

صفری گردنی، م. (1374) تاثیر پلسم سپری جاذب، نماینده و کود دامی بر مقاومت کدوری پوست کاغذی به تنش خشکی. پایان نامه کارشناسی ارشد. دانشکده کشاورزی دانشگاه زابل. زابل.

صمام شریعتی، م. (1389) عصاره‌گیری و استخراج مواد مخرب گیاههای دارویی و روش‌های شناسایی و ارزیابی آنها. انتشارات ماه.

اصطاحن.

فحنی امیر خیر، ع. اکسیژن هیدروکسی، دم. مدرس تاثیر، س. م. م. روستا خر، و. و. حشنی، س. (1390) اثر مصرف گیاه بر فعالیت آنزیمی. عملکرد دانه و گیاه که دانگ کردن در شرایط کم‌وابع. مجله علمی زراعی. 4: 454-457. فروغی، ل. و. بیاتی، ع. (1391) تاثیر نیتروژن و کوگر کرم بر عملکرد، اجزای عملکرد و برخی صفات فیزیولوژیک گل‌پوستی. مجله اکنون فله توییل کیاه‌شناسی زراعی. 5: 37-33.

قزبانی، م. نقیهی، و. و. مومنی، ن. (1385) اثر مقادیر مختلف شهری خاک بر محتوای بونی و پرولین در دو رقم کلر. رستم‌ها. 57: 48-49. کامیار، م. و. رحیمی، ا. (1391) اثر شهری بر روابط آبی، تنظیم کننده‌های اسپری و عملکرد سه گونه دارویی از بین باهنه‌ها. توییل کیاه‌شناسی زراعی 5: 145-158.

کرمی، ا. سپهری، ع. حمزه‌ی، و. و. رجبی، ن. (1390) تأثیر کودهای رسپ فسفر و نیتروژن بر صفات کمی و کیفی گیاه دارویی کاوریک‌های (Borago officinalis L.) تحت تنش کم‌وابع آب. فناوری توییلی گیاهی. 11: 45-50.

