تی‌سُت‌سِبی‌سِ به‌وشیمیایی گیاهان آراییدورپسیس چه‌شی‌نی‌تائفه ntrc طی پِری‌اق‌ه‌د ش‌د ت‌و‌س‌ت‌ت‌اری‌کی

فاطمه تمسکی، حمیدرضا صادقی‌پور، مهناز اقدسی و احمد عبدالزاده
گروه زیست‌شناسی، دانشکده علوم، دانشگاه گیلان
(تاریخ دریافت: 1395/07/20، تاریخ پذیرش نهایی: 1396/02/13) چکیده:

در تیودورکسین‌ها در نظم رودکس بسیار از فرآیندهای سلولی دخالت دارند. در این مطالعه نقش ن‌-تیودورکسین رنکتار (ntrc)-NADP+ و تیودورکسین رونکتاز (ntrc) در کنترل پری‌برگ از طریق مطالعه پیوستی‌های آراییدورپسیس چه‌شی‌نی‌تائفه ن‌-تیودورکسین رونکتاز (ntrc) برسی شد. گیاه‌های و دو لاین جهش‌پایه ntrc روزه تحت رژیم روشانی-تاریک رنرال یا تاریک یپوپه به مدت 3 روز به ترتیب به عناوین تامار کمال و پری قرار گرفتند. پارامترهای رشد میزان کربوهیدرات‌ها، رنگدانه‌های ntrc و فعالیت چرب‌ای آنتی‌ای‌کسیدان‌های بروی گیاه و دو لاین جهش‌پایه طی پری‌اق‌ه‌د ش‌د ت‌و‌س‌ت‌ت‌اری‌کی متقابل‌ه‌د. تاریک تی‌مَتر چ‌د به کاشه وزن ت و خشکی، محتوای کلروفیل‌های کارتوئید‌ها، نشاسته و پروتئین‌ها ده در گیاه و جهش‌پایه گردید و تفاوت می‌یابد در پره‌کش‌های زنوتیب و تیمار برای این پیش‌برد و وجود ندادند. همچنین تاریک تی‌مَترومن‌تی‌، دقت‌های کل و غربال‌های را اینان کرده‌اند و تاریک کربوهیدرات‌ها در لاین‌های جهش‌پایه نسبت به وجود دیده شده‌بود. در هر صورت تفاوت معنی‌داری در پاتری‌های و جهش‌پایه نسبت به تاریک در آن جهش‌پایه وجود نداشت. فعالیت‌کاتالاز، الکلکسیداز و پلی‌نی‌اکسیداز‌های لاین‌های جهش‌پایه نسبت به جهش‌پایه به سرعت معنی‌داری داده بود. با وجود اینکه تاریک فعالیت‌کاتالاز و آسکوربی‌کسیداز را کاهش داد، باعث افزایش فعالیت پلی‌نی‌اکسیداز و پلی‌نی‌اکسیداز بوده‌ی در لاین‌های جهش‌پایه شد. تفاوت معنی‌داری در مورد در مرطب تاریک آنتی‌ای‌کسیدن‌های ن‌-تیودورکسین‌ها و و جهش‌پایه در پاتری‌های و جهش‌پایه وجود داشت. بنظر عرضه که جهش‌پایه دارد نیاز‌ری‌دی‌فُ‌ری‌تی‌نز ن‌-تیودورکسین‌ها آنتی‌ای‌کسیدن‌های را طی پری‌برگ چنین تحت تأثیر قرار می‌گیرد. نتایج این مطالعه می‌تواند در برنامه‌های اصلاحی آباد، برای کنترل فرآیندهای پری در جهت بهبود عملکرد گیاهان زراعی می‌باشد.

کلمات کلیدی: آنتی‌ای‌کسیدن‌ها، آنتی‌ای‌کسیدن‌ها، تی‌مَترومن‌تی‌، ن‌-تیودورکسین‌ها، کلروفیلیات

مقدمه:

نتی‌جذ‌س‌های پرتوی‌های کوچک با وزن مولکولی 12-14 کبوداتون‌بوده و حداقل 20 زن کنده‌ام پرتوی‌های از طریق تعمیم‌تولی‌زی‌آراییدورپسیس شناسایی شده‌است (de Dios Barajas-Lopez et al., 2007; Arner and Holmgren, 2000; Schurmann and Jacquot, 2000)

پرتوی‌های کد شده توسط این زن‌ها شامل تیودورکسین‌های ن‌-تیودورکسین‌های دومی، NTR و ntrc کربوهیدرات‌ها و رنگدانه‌ها تیودورکسین‌ها.

Dietz and Pfannschmidt, 2011) سیب‌زی و می‌تواند به نسبت می‌تواند می‌تواند می‌تواند تی‌مَترومن‌تی‌، NADPH و NADPH تیودورکسین‌ها رونکتاز (NTR) و تیودورکسین‌های کلروفیلیستی به بی‌بی‌تی‌مَترومن‌تی‌، فردکسین‌های کلروفیلیستی (Buchanan and Balmer, 2005) احیای می‌تواند NTR علاوه بر این گیاهان دارای نوعی داده می‌شود.
آنیتی اکسیدان‌های غیر انسانی‌ی به‌نیاز به یک بخش از کم‌پوش‌های وابستگی به‌نیاز به وجود پرداخته می‌گردد (Serrato et al., 2004). در این پژوهش، مطالعه بر روی دو لاپن از جنس یافته‌های این پرتوکسین به‌نیاز به ۱۷۷۷۶ و ۱۱۴۲۹ صورت می‌گیرد.

فوتیپ پار لایناً جنس یافته‌ای این زن رنگ سبز پرتوتیپ و کنکی رشد است (Lepisto et al., 2008). یکی از پژوهش‌های مهم کاردلان کارولیاست (NTRC) ساخته می‌کند (Lo et al., 2009).

مطالعه آنانژین مولکولی نشان داد که در فرآیند پرتوتیپ بدون پاسخ از زن‌ها تغییر می‌کند. زن‌های مرتبت با پرتوتیپ شباهتی از پرتوکسین‌های نشان‌داده دارند. در فردان‌های زن‌های با شکست مکروکولها هم‌جنس آزمایش پرتوتیپ، لیاز، و ریبوکینها در زن‌های ایکسیدنتی با عکس‌های تئوری تغییر می‌کند. در جهتی جمع‌آوری می‌کند مکروکولها بیشتر از میان‌رده‌ها در پرتوکسین‌ها تغییر می‌کند. در مقایسه با نشان‌داده داده است (Collin et al., 2004; Serrato et al., 2004; Perez-Ruiz et al., 2006; Chi et al., 2008)

در داخل‌های خالی روش‌های غیر از آزمایش‌های هدف‌گذاری پرتوکسین‌ها را در نمود کارولیاست. کاردلان‌های جنس‌زده دیسمورا، اسکوریپر، پرتوکسین‌ها، دی‌آکسی‌کارولیاست، کاردلان‌های گلوتاتیون‌های پرتوکسین‌های دی‌آکسی‌کارولیاست، گلوتاتیون‌های دی‌آکسی‌کارولیاست، گلوتاتیون‌های سنتز و سیستم‌های پرتوتیپ با گزارش کرده است (Alkhalfioui et al., 2007).

برای بکر می‌تواند به صورت سیستم‌های غذایی و تنظیم‌های جنسیت‌زا کمک‌می‌کند. این موارد غذایی و مشابه‌های سیستم‌های پرتوتیپ در مرجع فیزیولوژیکی، پوست‌پرتوتیپ و اتاق‌های مولکولوها و سلول‌های مادر مولکول‌های پرتوتیپ‌ها و می‌تواند دی‌آکسی‌کارولیاست، گلوتاتیون‌های پرتوتیپ با گزارش کرده است (Alkhalfioui et al., 2007; Montrichard et al., 2009).

در مراجع فیزیولوژیکی، پوست‌پرتوتیپ و اتاق‌های مولکولوها و سلول‌های مادر مولکول‌های پرتوتیپ‌ها و می‌تواند دی‌آکسی‌کارولیاست، گلوتاتیون‌های پرتوتیپ با گزارش کرده است (Alkhalfioui et al., 2007; Montrichard et al., 2009).

برای بکر می‌تواند به صورت سیستم‌های غذایی و تنظیم‌های جنسیت‌زا کمک‌می‌کند. این موارد غذایی و مشابه‌های سیستم‌های پرتوتیپ در مرجع فیزیولوژیکی، پوست‌پرتوتیپ و اتاق‌های مولکولوها و سلول‌های مادر مولکول‌های پرتوتیپ‌ها و می‌تواند دی‌آکسی‌کارولیاست، گلوتاتیون‌های پرتوتیپ با گزارش کرده است (Alkhalfioui et al., 2007; Montrichard et al., 2009).
مواد و روش‌ها:
کشت گیاه‌ها: برده‌های در لاین SALK_096776 و SALK_114293 به‌عنوان هدف به توس‌تی گره پروفسور Lepisto و Rintamaki از کلنا تهیه‌شده‌اند که جایگاه ورود T-DNA در آنها به ترتیب در اینترون ۸ و اکرون ۹ می‌باشد. به منظور شکستن خوام برده به ۴ روز درون یخچال در دمای ۴ درجه سانتی‌گراد سرمایه‌شده می‌باشد.

کشت گیاه‌ها به صورت قرص‌های فشرده حاوی مواد غذایی مورد نیاز برای روش بذر و روش گیاهی به کپسول‌هایی از قرار گرفته در آب حجم شده و نیز به یک بست می‌باشد.

برای کشت گیاه‌ها نیز دامه موش‌تی اکت در روز ۱۶ ساعت نور و ۸ ساعت در روز. نگهداری گیاه‌ها بر اساس Resende et al. (2002) صورت می‌گیرد. گیاه‌ها به میادینی از مدل‌های مختلف حیاتی به‌علاوه، اینگونه نگهداری کشت‌های حیاتی مورد نگهداری در یک دمای برابر ۲۰ دوره در تاریکی صورت می‌گیرد. گیاه‌ها در میادینی از حیاتی به‌علاوه نگهداری می‌باشد.

استخراج آنزیم‌های آسکوربیات پراکسیداز: کالقار، باکوک

کشت گیاه‌ها: برده‌های در لاین SALK_096776 و SALK_114293 به‌عنوان هدف به توس‌تی گره پروفسور Lepisto و Rintamaki از کلنا تهیه‌شده‌اند که جایگاه ورود T-DNA در آنها به ترتیب در اینترون ۸ و اکرون ۹ می‌باشد. به منظور شکستن خوام برده به ۴ روز درون یخچال در دمای ۴ درجه سانتی‌گراد سرمایه‌شده می‌باشد.

کشت گیاه‌ها به صورت قرص‌های فشرده حاوی مواد غذایی مورد نیاز برای روش بذر و روش گیاهی به کپسول‌هایی از قرار گرفته در آب حجم شده و نیز به یک بست می‌باشد.

برای کشت گیاه‌ها نیز دامه موش‌تی اکت در روز ۱۶ ساعت نور و ۸ ساعت در روز. نگهداری گیاه‌ها بر اساس Resende et al. (2002) صورت می‌گیرد. گیاه‌ها به میادینی از مدل‌های مختلف حیاتی به‌علاوه، اینگونه نگهداری کشت‌های حیاتی مورد نگهداری در یک دمای برابر ۲۰ دوره در تاریکی صورت می‌گیرد. گیاه‌ها در میادینی از حیاتی به‌علاوه نگهداری می‌باشد.

استخراج آنزیم‌های آسکوربیات پراکسیداز: کالقار، باکوک

پراکسیداز محلول و پیل فلکسیداز: استخراج فعالیت‌های آنزیم‌ها با استفاده از روش Kar و Mishra (1976) صورت می‌گیرد. مقدار ۵۰ گرم بافت در هاون چینی سرد به ۱ میلی‌لیتر با فشار سولفانیک ۵۰ مولار با استفاده ۱۰۰ هموزن گردیده. هموزن حاصل به ۱۵ دقیقه به شتاب ۱۶۰۰۰ گردیده شده. از روش‌های سایر (سوپرئنزات) به‌کار رفته از آنیمزیاها و همچنین مقدار پروتئین محلول استفاده شده. میزان پروتئین محلول به روش Bradford (1976) انداده گرایی شد.
استخراج و انداده‌گیری فن‌ها و نشانه‌ها

فیکودا و همکاران

فیکودا و همکاران بر اساس روش Price و Butler (۱۹۷۷) استخراج و قطعه‌گذاری انجام شدند. در این روش به ۱۰۰۰ گرم از بافت ترم نمونه، ۵ میلی لیتر استاندارد صورت گرفت. استخراج نشانه به کمک روش McCreedy و همکاران (۱۹۵۰) از سرویس به‌دست آمده پس از استخراج قطعه‌گذاری انجام شد. فن محلول کل بر اساس روش Price و Butler (۱۹۷۷) انداده‌گیری گردید. فن محلول کل به روش McCreedy و همکاران (۱۹۵۰)، قطعه‌هایهای کربناتی به روش Handel (۱۹۷۸) و قطعه‌های احیایی به روش Prado و همکاران (۱۹۹۸) استفاده گردید.

نتایج:

در این مطالعه صفات رشد مورد استخراج‌گیری قرار گرفت و نتایج حاکی از آن بود که میزان وزن‌بردار و خشکی بخش‌های چربی و ریشه و طول بخش‌هایی که در گیاه و حیاتی نسبت به هر هر دو لایه ntrc و همچنین در نمونه‌های پایین (۳ و ۶ روزه) ntrc جهش یافته و شاهد آن نشان داد. در مجموع میزان کارتنویس دارای دو لایه جیلی نسبت به گیاه و حیاتی و در تیمار تایی نسبت به شرایط کنترل کاهش معنی‌داری را نشان داد. (نکته ۲).

میزان کارتنویس در گیاه و حیاتی و جهش یافته ntrc در این مطالعه صفات رشد مورد استخراج‌گیری قرار گرفت و نتایج حاکی از آن بود که میزان وزن‌بردار و خشکی بخش‌های چربی و ریشه و طول بخش‌هایی که در گیاه و حیاتی نسبت به هر هر دو لایه ntrc جهش یافته و شاهد آن نشان داد. در مجموع میزان کارتنویس دارای دو لایه جیلی نسبت به گیاه و حیاتی و در تیمار تایی نسبت به شرایط کنترل کاهش معنی‌داری را نشان داد. (نکته ۲).

میزان کارتنویس در گیاه و حیاتی و جهش یافته ntrc در این مطالعه صفات رشد مورد استخراج‌گیری قرار گرفت و نتایج حاکی از آن بود که میزان وزن‌بردار و خشکی بخش‌های چربی و ریشه و طول بخش‌هایی که در گیاه و حیاتی نسبت به هر هر دو لایه ntrc جهش یافته و شاهد آن نشان داد. در مجموع میزان کارتنویس دارای دو لایه جیلی نسبت به گیاه و حیاتی و در تیمار تایی نسبت به شرایط کنترل کاهش معنی‌داری را نشان داد. (نکته ۲).
شکل 1- (A) مقایسه وزن‌برداری و بخش‌هایی، وزن‌برداری شکل‌های طول‌دار و بخش‌هایی بین گیاه و حشی و در لاین‌ها مواد در دانه‌های صفر، روز سوم و ششم‌‌تیمار تاریکی و شاهد روز سوم و ششم. می‌تواند روي‌های یک‌روه روي هر یک از ستون‌ها، خطای استاندارد را در هر گروه نشان می‌دهد و ستون‌هایی دارای حداقل یک حرف مشترک با آزمون دانک در سطح 5 درصد با یکدیگر تفاوت معنی‌داری ندارند که مربوط به (A) وزن‌برداری، (B) وزن‌برداری کل و (C) طول کل گیاه می‌باشد.
شکل ۲- مقایسه میزان کرولفیل، a و کرولفیل کل بین گیاه و حیش و دو لاین موانع در ntrc در زمان صفر، Roz سوم و ششم تیمار تاریکی و شاهد روز سوم و ششم. میله‌هایی روی هریک از ستونها خطای ایستادگی مرتبه کرولفیل a و کرولفیل b و حروف مشخص شده بر روی هر ستون تفاوت میزان کرولفیل کل را نشان می‌دهد.

شکل ۳- مقایسه میزان کاربیوتید بین گیاه و حیش و دو لاین موانع در ntrc در زمان صفر، Roz سوم و ششم تیمار تاریکی و شاهد روز سوم و ششم.

لاین ۱۱۴۲۹۳ و ۱۱۷۶۷۶ میزان کنترل ۲۶.۶۶ و ۲۱.۸۷ در روز ششم تیمار تاریکی نسبت به شروع تیمار افزایش معنی‌داری یافت و بهبودی در لاین ۱۱۴۲۹۳ در روز سوم تیمار تاریکی افزایش فندکل با شاهد همان دوره معنی‌دار نبود (شکل ۱- A).

میزان کنترل بین گیاه و حیش در شرایط شاهد پس از ۶ روز کاهش یافت ولی تیمار تاریکی به مدت ۶ روز سپس حفظ می‌کرد.

لاین ۱۱۴۲۹۳ در تیمار تاریکی روز سوم نسبت به شاهد روز سوم کاهش معنی‌داری داشت و در هر صورت در این لاین میزان نشانه در روشنایی در روز سوم افزایش قابل ملاحظه‌ای یافت (شکل ۲).

میزان کنترل در گیاه و حیش در کل دوره تاریکی تفاوت معنی‌داری نسبت به گیاهان شاهد هم‌دوره نشان نداد. در هر یک از لاین‌ها میزان کنترل در گیاه و شاهد به هم‌دوره در ۲۹.۰۹ وجود داشت (شکل ۳).
شکل 4- مقایسه میزان آنتوسیانین بین گیاه وحشی و دو لاین مونتات در زمان صفر، روز سوم و ششم تیمار ناریکی و شاهد روز سوم و ششم.

شکل 5- مقایسه میزان فنل محلول بین گیاه وحشی و دو لاین مونتات در زمان صفر، روز سوم و ششم تیمار ناریکی و شاهد روز سوم و ششم.

شکل 6- مقایسه میزان نشاسته بین گیاه وحشی و دو لاین مونتات در زمان صفر، روز سوم و ششم تیمار ناریکی و شاهد روز سوم و ششم.
تغییرات فعالیت آنزیمی در بایت صرفنظر از تغییرات مقدار پروتئین سنجیده می‌شود و در این مطالعه از این روش استفاده شد.

روند تغییر فعالیت آنزیم آسکوربیت پرکسیداز در گیاه ویژه و لاین 11493 در شرایط شاهد و تیمار تاریکی دارای اکتیویت بکسیکان بود (شکل 9-A). در هر دو گیاه فعالیت آنزیم این آنزیم ابتدا در زمان اول و گزارش شد و سپس در روز ششم افزایش یافت. در لاین 9787-6 در روز دوم تیمار تاریکی نسبت به شاهد گیاه روز فعالیت آنزیم به شدت کاهش یافت و نتایج در فعالیت آنزیم در روز ششم گیاهان تیمار تاریکی با شاهد مشابه شد.

ntre فعالیت آنزیم کاتالاز در گیاه ویژه و جهش‌پذیر لاین 9787-6. در روز سوم تیمار تاریکی نسبت به شاهد مربوط کاهش معنای داری را نشان داد. در لاین 11493 در روز سوم و گزارش شد و شاهد مربوط نسبت به زمان صفر کاهش معنای داری را نشان داد (شکل 9-B) در مجموع فعالیت آنزیم کاتالاز در دو لاین جهش بیشتر نسبت به گیاه ویژه افزایش معنای دار در تیمار تاریکی نسبت به شرایط کنترل کاهش معنای دار نشان داد.

فعالیت آنزیم پرکسیداز در دو لاین جهش‌پذیر گیاهی در کل بیشتر از گیاه ویژه بود (شکل 9-C). تیمار تاریکی سبب افزایش معنای دار فعالیت آنزیم در روز ششم (در گیاهان ویژه و لاین 9787-6) و روز سوم و گزارش نسبت به گیاهان تاریکی مربوط گردید.

فعالیت آنزیم پلی فنل کاتالاز نیز در دو لاین جهش بیشتر ویژه بود (شکل 9-D). تیمار تاریکی سبب افزایش معنای دار فعالیت آنزیم در روز ششم (در لاین 9787-6) و روز سوم (لاین 11493) نسبت به گیاهان شامل روز سوم و گزارش گردید.

جدول 1 آنالیز واریانس نشان داد که برهمکنش ژن‌های گیاه و تیمار، ژن‌های گیاه و لاین، ژن‌های تیمار و لاین در مورد آنزیم آسکوربیت پرکسیداز، کاتالاز، پرکسیداز و پلی فنل کاتالاز معنی‌دار بودند (جدول 1).

میزان فعالیت احیایی در سطح برای با گیاهان شاهد در شروع آزمایش گردید. روند تغییر فعالیت در لاین 9787-6 در گیاهان شاهد و تیمار تاریکی در طی دوره 6 روز کاهش بود و به لحاظ مقدار فقط مماثل نمود. اما در لاین 11493 میزان فعالیت بیشتر در کل دوره چه در گیاهان شاهد و تیمار تاریکی نسبت به تغییر معنای‌داری از لحاظ میزان قندیابی احیایی بین دو گیاه وجود نداشت (شکل 7-B).

جهش‌پذیری در شرایط جهش‌پذیر افزایش یافت (شکل 7-C). برخلاف گیاهان ویژه این میزان فعالیت غیراصیابی در هر دو لاین جهش‌پذیری در شرایط تاریکی معنای داری را در روز سوم برای لاین 9787-6 و در روز ششم برای لاین 11493 نشان داد.

میزان پروتئین محلول کیا و ویژه در روزهای سوم و ششم تیمار تاریکی نسبت به گیاهان شاهد در زمان‌های مشابه کاهش معنای داری یافت (شکل 8). برخلاف گیاهان ویژه کاهش پروتئین محلول در تاریکی در لاین‌های 9787-6 و 11493 صرفاً در روز ششم در مقایسه با گیاهان شاهد مربوط مشاهده گردید. در مجموع میزان پروتئین محلول در لاین‌های 9787-6 و 11493 نسبت به گیاهان تاریکی نسبت به شرایط کنترل سبب کاهش در پروتئین درری در پروتئین محلول گردید.

به‌طور معمول فعالیت آنزیمی در عصار استخراج شده را (specific activity) به دو روش گزارش می‌کنند. فعالیت ویژه (specific activity) که در این حالت میزان فعالیت آنزیم بر مبنای مقدار پروتئین استخراج شده بیان می‌شود. این روش پیشتر برای مطالعات تحلیل آنزیم سودان بهبود زمینه بانی از کل فعالیت را نشان داده و تابع از پروتئین استخراج شده است که پایان‌دار بود. علاوه بر این فعالیت کل آنزیم (total activity) است که در آن کل فعالیت استخراج به واحده متری فعالیت برای پیش‌بینی داده می‌شود و در مطالعات فیزیولوژیکی کارایی بیشتری برای تفسیر داده‌ها دارد. زیرا
شکل ۷- (A) مقایسه میزان قند محلول کلی، قند احیائی و قند غیراحیائی بین گیاه وحشی و دو لاین موتانت در زمان صفر، روز سوم و ششم تیمار تاریکی و شاده روز سوم و ششم.
جدول 1- آنالیز واریانس برخی از پارامترهای تحت تأثیر تیمار، تیمار و زمان و تأثیر متقابل آنها بر یکدیگر.

<table>
<thead>
<tr>
<th>منابع تغییرات</th>
<th>درجه آزادی</th>
<th>پروتین محلول</th>
<th>کانون</th>
<th>آسکوربیت پراکسیداز</th>
<th>پلاک آکسیداز</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ntRc</td>
<td>ntrc</td>
<td>abc</td>
<td>ab</td>
</tr>
<tr>
<td>تیمار</td>
<td>2</td>
<td></td>
<td></td>
<td>80/543854909**</td>
<td>80/543854909**</td>
</tr>
<tr>
<td>تیمار</td>
<td>1</td>
<td></td>
<td></td>
<td>320442948**</td>
<td>320442948**</td>
</tr>
<tr>
<td>زمان</td>
<td>2</td>
<td></td>
<td></td>
<td>117942166/65**</td>
<td>117942166/65**</td>
</tr>
<tr>
<td>تیمار×زمان</td>
<td>2</td>
<td></td>
<td></td>
<td>1241178405**</td>
<td>1241178405**</td>
</tr>
<tr>
<td>نتیجه</td>
<td></td>
<td></td>
<td></td>
<td>50/949076/65</td>
<td>50/949076/65</td>
</tr>
<tr>
<td>نتیجه</td>
<td></td>
<td></td>
<td></td>
<td>40/878678/60**</td>
<td>40/878678/60**</td>
</tr>
<tr>
<td>نتیجه</td>
<td></td>
<td></td>
<td></td>
<td>96/426766/68</td>
<td>96/426766/68</td>
</tr>
<tr>
<td>نتیجه</td>
<td></td>
<td></td>
<td></td>
<td>44/743895/65</td>
<td>44/743895/65</td>
</tr>
<tr>
<td>نتیجه</td>
<td></td>
<td></td>
<td></td>
<td>44/743895/65</td>
<td>44/743895/65</td>
</tr>
<tr>
<td>نتیجه</td>
<td></td>
<td></td>
<td></td>
<td>56/327055/60</td>
<td>56/327055/60</td>
</tr>
</tbody>
</table>

بحث:
تحقیقات نشان داد که تیمار تاریکی به میزان زیادی سرعت پیشیر را تشدید می کند و مکررا برای مطالعات پیشیر بکار رفته است (Weaver et al., 1998). مطالعات انجام شده توسط Lepisto و همکاران (2008) حاکی از این است که

لاپین های جهش یافته نیز نماینده نمای تغییرات وابسته به میزان زمان و تیمار می باشند و نتایج نشان داده که نتایج عامل تاریکی و زمان کنترل نتایج آزمون ها مبین نمایند. تغییرات زمان تاریکی در این گیاهان گزارش نشده است. نتایج به دست آمده در این تحقیق نشان داد که جهش در زن NTRC سبب تغییرات بارزی در تغییرات را نشان داد که NTRC می تواند به عنوان یک داروسازی مانند کنترل استفاده شود.
می‌باشد زیراً سرعت تثبیت دی‌اکسیدیرین در طی پرو کاهش
پیدا می‌کند. همچنین افزایش میزان قند محلول در طی
پیر ممکن است به علت کاهش تامینات بافتی و
عمک‌کردی در غشاء سلولی باشد که موجب تقویت
کاپاتولمبز لیپید غشایی و ازای روسبی نتیجه قند
به‌ونه‌که (Buchanan-Wollaston et al.,
2003b; Lim et al., 2007)
می‌باشد که اکثر گیاه در شرایط تاریک در دو مسیر
کاهش فعالیت آنزیم ستین کنده ناشته و یا افزایش کاپاتولمبز
نشته و یا احتمالاً کوکشتی که می‌باشد، میزان ناشته در
امتداد سیکل نوری در گیاهان آرایندوبیسیس دارای بالاترین
مقدار بوده و در پایان دوره تاریک به صورت معنی‌داری داشت
باید (Graf et al., 2010). مطالعه می‌نماید آن درد است که
NTRC به عنوان یکی از اهداف تنظیم دوکست و آسیت
آنزیم SOM یکی از پرورش تیووردکسین AGPase
مانند که افزایش فعالیت آنزیم ستین کنده ناشته را تحت
NTRC شرایط احیائی مقدت به‌کارگیری گیاه جهش باقیه
تحیر کرده و آسیت به رودکس پاتنتر آنزیم
Michalska et al., 2009; Dietz و Pfannschmidt,
داهنده (2011). نتایج این مطالعه نشان داد که گیاه جهش باقیه نسبت به
گیاهی وحشی میزان ناشته به‌این آن مقد در نماینده
تثبیت (فاکتور نتیجه) در سری NTRC
راتین NTRC تیووردکسین
و با سایر پرورش‌ها خانواده تیووردکسین به عنوان سیستم
AGPase رودکس جایگزین نشی جبرانی از اقیافت فعالیتی
در سری NTRC در 2012.

(Thormahlen et al., 2012)
همچنین نتایج این مطالعه در مورد میزان قند کل و
نیتروژنیک که تحت شرایط بی‌عامل سودی افزایش تاریک
ثبت به شرایط کنترل آفایش پیدا کرد، می‌تواند با دلالت بیان
شد در فرآیند پری‌بی در گیاهان افراش‌ها مشاهده که تجمع
می‌باشد که اکثر گیاه در شرایط تاریک در دو مسیر
کاهش فعالیت آنزیم ستین کنده ناشته و یا افزایش کاپاتولمبز
نشته و یا احتمالاً کوکشتی که می‌باشد، میزان ناشته در
امتداد سیکل نوری در گیاهان آرایندوبیسیس دارای بالاترین
مقدار بوده و در پایان دوره تاریک به صورت معنی‌داری داشت
باید (Graf et al., 2010). مطالعه می‌نماید آن درد است که
NTRC به عنوان یکی از اهداف تنظیم دوکست و آسیت
آنزیم SOM یکی از پرورش تیووردکسین AGPase
Michalska et al., 2009; Dietz و Pfannschmidt,
داهنده (2011). نتایج این مطالعه نشان داد که گیاه جهش باقیه نسبت به
گیاهی وحشی میزان ناشته به‌این آن مقد در نماینده
تثبیت (فاکتور نتیجه) در سری NTRC
راتین NTRC تیووردکسین
و با سایر پرورش‌ها خانواده تیووردکسین به عنوان سیستم
AGPase رودکس جایگزین نشی جبرانی از اقیافت فعالیتی
در سری NTRC در 2012.

(Thormahlen et al., 2012)
همچنین نتایج این مطالعه در مورد میزان قند کل و
نیتروژنیک که تحت شرایط بی‌عامل سودی افزایش تاریک
ثبت به شرایط کنترل آفایش پیدا کرد، می‌تواند با دلالت بیان
شد در فرآیند پری‌بی در گیاهان افراش‌ها مشاهده که تجمع
می‌باشد که اکثر گیاه در شرایط تاریک در دو مسیر
کاهش فعالیت آنزیم ستین کنده ناشته و یا افزایش کاپاتولمبز
نشته و یا احتمالاً کوکشتی که می‌باشد، میزان ناشته در
امتداد سیکل نوری در گیاهان آرایندوبیسیس دارای بالاترین
مقدار بوده و در پایان دوره تاریک به صورت معنی‌داری داشت
باید (Graf et al., 2010). مطالعه می‌نماید آن درد است که
NTRC به عنوان یکی از اهداف تنظیم دوکست و آسیت
آنزیم SOM یکی از پرورش تیووردکسین AGPase
Michalska et al., 2009; Dietz و Pfannschmidt,
داهنده (2011). نتایج این مطالعه نشان داد که گیاه جهش باقیه نسبت به
گیاهی وحشی میزان ناشته به‌این آن مقد در نماینده
تثبیت (فاکتور نتیجه) در سری NTRC
راتین NTRC تیووردکسین
و با سایر پرورش‌ها خانواده تیووردکسین به عنوان سیستم
AGPase رودکس جایگزین نشی جبرانی از اقیافت فعالیتی
در سری NTRC در 2012.

(Thormahlen et al., 2012)
are reduced during germination of Medicago truncatula seeds. Plant Physiology 144: 1559–1579.

(Zimmermann et al., 2006)

(Parish, 1968)
and practical implications. Antioxid Redox Signal 11: 861–905.

against Oxidative Damage. The Plant Cell. 18: 2356–2368.

stress and hormone treatment. Plant Molecular Biology 37: 455–469.