تأثیر امواج فراصوت با ارزی پایین بر تمامی غشا سلول‌های (Petroselinum crispum L.)

جداکشت جعفری

فائزه قناتی و سارا سیحان نژاد

گروه علم گیاهی، دانشکده علوم زیستی، دانشگاه تبریز مدیر، تهران، ایران، ص پ 154-161, 1395

نویسنده مسئول، نشانی پست الکترونیکی: ghangia@modares.ac.ir

چکیده:
توانایی درک و پاپس به محرک های فیزیکی در بین تمامی موجودات از اهمیت زیادی برخوردار است. امواج فراصوت به عنوان یک محرک فیزیکی می‌تواند در شدت های بالا تأثیرات مخربی بر روی سیستم‌های زندگی داشته و تغییرات پایداری در آنها ایجاد کند. اما در مورد امواج فراصوت با شدت پایین گزارش‌هایی از تأثیرات زیادی این امواج و کاربردهای آنها در رست فناوری وجود دارد. یکی از گسترده ترین تأثیرات غیر مخرب امواج فراصوت بر سلول‌های زندگی افزایش بافتی غشا است که جلد ترکیبات خارجی و دفع فازگردی‌های درون سلولی توسط سیستم املاح افزایش می‌یابد. در تحقیق حاضر سلول‌های جعفری با امواج فراصوت با شدت 29 kHz سولو را افزایش می‌دهند. در این تحقیق حاضر سلول‌های جعفری با امواج فراصوت با شدت 29 kHz سولو را افزایش می‌دهند.

مقدمه:
امروزه مطالعات در مورد تأثیر عوامل فیزیکی بر سیستم‌های زندگی کرده است. یکی از این عوامل امواج فراصوت که به محرک فیزیکی و پاپس به محرک های (Ultrasound) معروف است. توانایی درک و پاپس به محرک های فیزیکی در بین تمامی موجودات از اهمیت زیادی برخوردار است. مطالعات اولیه در مورد اثرات و خطرات احتمالی استفاده از امواج فراصوت بر روی درمان انسان و جانوران متمرکز بود در حالی که امروزه اثرات مفید و کاربردهای بالقوه امواج

کلمات کلیدی: امواج فراصوت، تمامی غشا، سلول‌های چگری

ghangia@modares.ac.ir
دامنه‌های افزایشی رشد سلول‌ها شود (Liu et al., 2003a). یکی از گسترده‌ترین تاثیرات غیر مخرب فراصوت بر سلول‌های زنده افزایش نفوذپذیری غشاء است که جذب ترکیبات خارجی و دفع فرآورده‌های درون سلولی توسط سلول‌ها افزایش می‌دهد. افزایش نفوذپذیری غشاء انتقال ترکیبات خارجی بر درون سلول‌های زنده تحت تأثیر امواج فراصوت نموده می‌شود. از امواج فراصوت سیوناک (با ویژه درامه‌های ضد سرطان) به یاد سپرده و سبب تقویت تاثیرات این درواها گردید. بیشتر بررسی‌های انجام شده بر روی سلول‌های جانوری صورت گرفته و مطالعات تأثیرات فیزیولوژیک امواج فراصوت بر سلول‌های گیاهی کمتر مورد توجه بوده است. سلول‌های به دست امواج، به دست امواج مدت زمان فراگرفتن سلول‌ها در محیط معیار این امواج بستگی دارد (Rezaei et al., 2011). در هر طوری با تأثیر امواج فراصوت با انرژی کم بر افزایش تولید منابع غذایی تاثییه احتمال ممکن بادام زمینی، سرخ‌آمده و فندق وجود دارد (Wu and Ge, 2004; Safari et al., 2013).

وحصیراً این دریافت که عملکرد انتخاب نمی‌شود و به همین سبب در سیستم‌های پروتکسیکا کاربرد پزشکی (جراحی، دندانپزشکی و...) سرطان این حیث سر در روش سونوپورتانیون. (Hoigne et al., 2006; Labanca et al., 2008) و زمان‌های فراگرفتن سلول‌ها در معرض امواج پر اساس مطالعات قبلی انجام گرفت با روی سایر سلول‌های گیاهی انتخاب شد (Safari et al., 2013). سلول‌ها پس از هر روز از محیط جدا شده و بررسی ویژه مورد توجه به روی آن‌ها انجام شد. اندوز کردن رشد و تغییر درصد زندگی مانی سلول‌ها از وزن تا عنوان معایر برای تعیین رشد سلول‌ها استفاده شد. مقدار متوسط سلول‌ها بر روی قیف پری و یکدیگر با استفاده از فشار منفی (پمپ خلاء) 42 µM (و با استفاده از فشار منفی 35 میکرون شش و 50 میکرون شش همچنین برای تعیین درصد زندگی مانی سلول‌ها با واکنش یافتن یافته پس از ورود آن‌ها به روش‌های دست‌керدهای جداکنش یافته می‌باشد.

مواد و روش‌ها:
کشت سلول‌های طیار سلول‌ها با امواج فراصوت: در این تحقیق ابتدا رشد سلول‌ها با رشد سریع از گیاه جغعی پنایه‌گذاری شد. به همین منظور از بذردهای جغعی پنایه‌گذاری شد.
شکل ۱- منحنی رشد سلول‌های جعفری در محيط کشت تمیلی

همایه الکتریکی محلول‌ها به سپرگاه دستگاه meter PT-20 (Sartorius, Germany) گیری شد (EC₁). سپس نمونه‌ها به مدت ۵۰ دقیقه در حمام آب به سرد شدن نمونه‌ها در دماوای مختلف الکتریکی محلول باعث پرای دوم اندازه‌گیری شد و نیز میزان نشت الکترولیت‌ها با استفاده از فرمل زیر محاسبه گردید (Chen et al., 2008)

\[\text{EL(\%)} = \frac{EC_{1}}{EC_{2}} \times 100 \]

توجه تیمار با امواج فراصوت با تمیث غشا ی سلول‌های جعفری همچنین با اندازه‌گیری میزان پناسم و کلسم نشت بافتی به‌طور میانگین سیلو کارنش شد. همین‌طور با استفاده از فرمول مایکا M₅MES منظور بایر CaCl₂·1/2H₂O، pH 9-4، 5 میلی مول K₂SO₄، و تعیین تریس بر روی ۶ تنظیم گردید. سلول‌ها از محیط کشت جدا شده و توسط بایر مذکور شسته شدند. مقدار ۱/۴ و ۱/۲ گرم از سلول‌ها (بر ترتیب بایر پناسم و کلاسم) به مدت یک ساعت در بایر مذکور و بروی شبکه انگل‌سازی شدند و پس از آن به مدت ۱۰، ۲۰ و ۵۰ دقیقه مورد تمیث با امواج فراصوت قرار گرفتند. تبلاویچ از سیلول‌های مورد تمیث ۵۰ دقیقه و کالری صافی (بدون یک خلا) از اضافه جدا شده و یک از AA-۳۰۰، Flame emission-absorption spectrophotometer (Shimadzu, Japan) (Wu and Lin, 2002) مورد استفاده قرار گرفت ذرع و در برند بند میزان سلول‌های با امواج فراصوت صاف شده و به منظور شسته شدن اضافات محیط کشت دوبار با آب دیتیوریز ایکسیکی به مقدار ۲۰۰ mg/L سلفنیته اضافه شد و به مدت ۳۰ دقیقه در دما ۲۵ درجه سانتیگراد و به سبب ۲۰ دانه و در مسیر لغه گرفت.
کلیه آزمایشات با سه نمونه از حداکثر سه نمونه مستقل انجام گرفت. مقایسه میانگین‌ها با استفاده از نرم‌افزار SPSS از نسبه 22 و آزمون دانکن جهت تعیین معنی‌دار بودن نتایج در سطح 0.05 انجام شد.

نتیجه

تأثیر امواج فراموش بر میزان رشد و درصد زنده ماتی سولول

بررسی تغییرات رشد (ویژه تسلیم جغرافی) پس از تیمار با امواج فراموش در زمان‌های مختلف تغییر معنی‌داری را در میزان رشد سولول‌هایی که به مدت 40 دقیقه در معرض امواج فراموش قرار داشتند نسبت به گروه کنترل نشان داد. اما میزان رشد سولول‌هایی که به مدت 20 دقیقه با امواج فراموش تیمار شده بودند در مقایسه با داده‌ها به طرز معنی‌داری افزایش یافت (شکل 2). در نتیجه این ردیف امری برای اوانس بلو درصد سولول‌های زنده را نشان می‌دهد. در این ردیف امری سولول‌های زنده که غشا سیتوپلاسمی و غشا واکنشی آنها سالم است رنگ نشده می‌مانند در صورتی که سیتوپلاسم سولول‌های آسبید دیده و مرده کامل به رنگ آبی در می‌آید و تیره دیده می‌شود. در تحقیق حاضر این ردیف امری نشان داد که درصد زنده ماتی سولول هایی که 20 دقیقه در معرض امواج فراموش قرار داشتند در مقایسه با گروه تیمار غشا تغییر نداشتند. همچنین تغییرات در مقایسه با گروه رشد 40 دقیقه با امواج فراموش باعث کاهش معنی‌داری در رشد و زنده مانی آنها در مقایسه با گروه رشد گردید (شکل 3).

تأثیر امواج فراموش بر تهیه غشا سولول:

همانطور که در شکل 4 ملاحظه می‌شود استفاده از امواج فراموش تا مدت 20 دقیقه تأثیر خاصی بر غشا سولول‌های جدایش جغرافی نداشت و تغییر معنی‌داری در میزان MDA و نشان کلرویتی‌ها از سولول‌ها در مقایسه با نمونه‌هایی که 40 دقیقه در معرض امواج فراموش داشتند می‌باشد.
تأثیر امواج فراصوت با انرژی پایین بر تهیه غشای سلول‌های... ۱۳

شکل ۱- منحنی رشد سلول‌های جعفری در محیط کشت تمیلی

شکل ۲- میزان رشد و زنده بودن سلول‌های جدایکت جعفری (Petroselinum crispum L.) پس از گرفتن در معرض امواج فراصوت در زمان‌های مختلف. مقادیر نشان داده شده با اکستیشن (انحراف معیار) می‌باشد. حروف مقاوت نشان دهنده معنی‌دار بودن مقایسه در سطح P≤۰.۰۵ بر اساس آزمون دالکین می‌باشد.

شکل ۳- تاثیر تیمار با امواج فراصوت در زمان‌های مختلف بر زنده بودن و ریخت شناسی سلول‌های جدایکت جعفری. رنگ آمیزی سلول‌ها با اوانس بلو انجام شد. مقياس معادل ۱۰۰ μm است.

(Sundaram et al., ۲۰۰۳). افزایش یکی از تأثیرات ایجاد شده تحت تأثیر امواج فراصوت می‌باشد (۲۰۰۳). افزایش به دنبال ییده به سلول‌ها افزایش یکی از تأثیرات ایجاد شده تحت تأثیر امواج فراصوت می‌باشد (۲۰۰۳). افزایش
شکل 4- تأثیر امواج فراصوت در زمان‌های مختلف بر میزان پراکسیداسپرون لیپیدهای غشا و میزان نشت الکترولیت‌ها در سلول‌های جدایش جعفری (Petroselinum crispum L.). مقادیر نشان داده شده میانگین ± تکرار SD (انحراف میانگین) می‌باشد. حروف متواقت نشان دهنده معنی‌دار بودن تفاوت‌ها در سطح 0.05 می‌باشد.

شکل 5- تأثیر امواج فراصوت در زمان‌های مختلف بر میزان Ca\(^{2+}\) از غشا سلول‌های جدایش جعفری (Petroselinum crispum L.). مقادیر نشان داده شده میانگین ± تکرار SD (انحراف میانگین) می‌باشد. حروف متواقت نشان دهنده معنی‌دار بودن تفاوت‌ها در سطح 0.05 می‌باشد.

شکل 6- تأثیر امواج فراصوت بر میزان آموز در سلول‌های جدایش جعفری (Petroselinum crispum L.). مقادیر نشان داده شده میانگین ± تکرار SD (انحراف میانگین) می‌باشد. حروف متواقت نشان دهنده معنی‌دار بودن تفاوت‌ها در سطح 0.05 می‌باشد.
Nepotodizirr SLO up to shape manifold in the protection of chloroplasts and selective enzymes

Springer-Verlag, Berlin.

 Pickard, B. G., and Fujiki, M. (2005) Ca²⁺ pulsation in BY-2 cells and evidence for control of mechanosensory Ca²⁺-selective channels by the
Effect of low-intensity ultrasound on membrane integrity of suspension-cultured parsley cells (*Petroselinum crispum* L.)

Faezeh Ghanati* and Sara Sobhannejad

Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University

(Received: 4 July 2014, Accepted: 25 August 2015)

Abstract:

The ability to sense and respond to physical stimuli is an important key of the life. It was recognized that ultrasound as a physical stimulus could produce drastic changes in biological systems. High-intensity ultrasound is well known to be destructive to biological materials, but low-intensity ultrasound, on the other hand, has shown a range of biological effects with potential significance in biotechnology. One of the most studied effects of ultrasound on living cells is the increase in their membrane permeability, enhancing the uptake of foreign substances and the release of intracellular products into the media. In the present research suspension-cultured parsley cells were treated with ultrasound at 29 kHz with the power of 455 mW/cm2, for 10, 20, and 40 min. The viability of cells was examined using Evan's blue dye. Alteration of membrane permeability was evaluated by measuring the lipid peroxidation rate and leakage of electrolytes such as Ca$^{2+}$ and K$^+$ from membranes to the extracellular medium. According to the results exposure to ultrasound for 10 and 20 min neither changed the viability of the cells nor lipid peroxidation of the membranes. Exposure of parsley cells to ultrasound for 40 min however, decreased the viability and increased the release of K$^+$ to the extracellular medium. The results suggest that low dosage of ultrasound energy dose not adversely affect the membrane integrity of parsley cells and also stimulates their growth.

Keywords: Membrane integrity, Parsley cells, Ultrasound.

*corresponding author, Email: ghangia@modares.ac.ir