تأمیل امواج فراصوت با انرژی پایین بر تمامی غشای سلول‌های جدایکت جعفری (Petroselinum crispum L.)

فائزه قناتی و سارا سیبان نژاد

گروه علم گیاهی، دانشکده علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران، ص پ. 164-165، 1395

*نویسنده مسئول، نشانی پست الکترونیک: ghangia@modares.ac.ir

(تاریخ دریافت: 03/06/1394، تاریخ پذیرش نهایی: 1394/07/23)

چکیده:
توانایی درک و پاسخ به محیط‌های فیزیکی در بین تمامی موجودات از همیت‌زیادی برخوردار است. امواج فراصوت به عنوان یک محیط فیزیکی می‌تواند در شدت های بالا تأثیر مخرب بر روی سیستم‌های زندگی داشته و تغییرات پایداری در آنها ایجاد کند. امکان مورد امواج فراصوت با شدت پایین گزارش‌هایی از تأثیرات ویژه این امواج و کاربردهای آنها در رست فناوری وجود دارد. یکی از گستره‌های تأثیرات غیر مخرب امواج فراصوت بر سلول‌های زندگی افزایش فعالیت غشا است که جهت تکیه‌گاه خارجی و دفع فاکتورهای درون سلولی توسط 29 kHz افزایش می‌دهد. در تحقیق حاضر سلول‌های جدایکت جعفری با امواج فراصوت به شدت 455 mW/cm² و فرکانس تا 29 kHz سلول گزارنده می‌باشد.

کلمات کلیدی: امواج فراصوت، تمامی غشا، سلول‌های جعفری

مقدمه:
امروزه مطالعه در مورد تأثیر عوامل فیزیکی بر سیستم‌های زنده گسترش یافته است. یکی از این عوامل امواج فراصوت (Ultrasound) یا پاسخ به محیط‌های فیزیکی در بین تمامی موجودات از همیت‌زیادی برخوردار است. مطالعات اولیه در مورد اثرات و خطرات احتمالی استفاده از امواج فراصوت بر روی درمان انسان و جانوران متغیر بود در حالی که امروزه اثرات مفید و کاربردهای بالقوه امواج
همچنین الفراش رشد سولو ها شود (Liu et al., 2003a). بکی از گستردگی ترین تأثیرات غیر مربوط جریان فراشونی تری غشاها است که جذب تکثیرات خارجی و دفع فرآورده ها درون سولو توسط سولو را افزایش می دهد. افزایش فرآورده غشا انتقال تکثیرات خارجی به درون سولو های زنده تحت تأثیر امواج فراصوت

را نامیده‌اند. اثری امواج فراصوت سی توانان با تأثیر مستقیم بر غشا و تغییر نفوذ پذیری آنها باعث نفوذ دارد (به ویژه در اونهیه سر سرطان) به بافت شده و سپس تقویت تأثیرات این درازه کرده. بستر بررسی های انجام شده

بر روی سولوهای جانوری صورت گرفته و طولانی تأثیرات فیزیولوژیک امواج فراصوت بر سولوهای گیاهی کمتر مورد توجه بوده است. همچنین این امواج فراصوت بر روی سولوهای غشا، به شدت امواج مدت زمان مرگ و فصل سولو (Rezaei et al., 2011) در معرض این امواج بسیار دارد. گزارش‌های زیادی می‌باشد که تأثیر امواج فراصوت با انرژی کم بر افزایش تولید متابولیت‌های ثانویه در گیاهان مختلف مانند (Wu and Ge, 2004; Pedro et al., 2010; Safari et al., 2013

وجود این حیکم از مطالعات فوق، چگونه و متغیر تأثیر امواج فیزیولوژیک سولوهای گیاهی بررسی نگردیده است و بنابراین به مطالعه کمی تأثیر این امواج بر سولوهای ثانویه تولید

ماپرتابه‌های ثانویه پرداخته‌شده است. همچنین این امواج

عوامل این امواج بر آزاد سازی متابولیت‌های ثانویه از طرف افزایش نفوذ‌پذیری غشا صورت می‌گیرد (Pong et al., 2006). نتایج دیگر (حذف اثر حاضر بررسی تأثیر زمان‌های مختلف فرآورده گرفته در معرض امواج فراصوت بر توانای غشا سولوهای یا جداییت جغدی می‌باشد.

مواد و روش‌ها:

کشت سولوهای تیمار سولوهای امواج فراصوت: در این

تحقیق ابتدا رشد سولوهای سا مزرعه یک گیاه جغذی بین نبات LS گذاری شد. به این منظور از بذرهای جغذی یک پایه

تایپ.
ثبتیش روش سلول‌های جعفری در مهیج کشت تعیمی

هداکت الکتریکی محلول‌ها به وسیله دستگاه meter PT-20 (Sartorius, Germany) در دمای 25 درجه سانتی‌گراد می‌باشد. این محلول‌ها به دستگاه یونیت آنالیزیک (إم‌دی‌اِ‌آ) (Olympus, BH2, Japan) نوری محلول‌های ماده و زنده و محاسبه کل آنها درصد زنده بودن سلول‌ها تعیین گردید (Smith et al., 1984).

آَتَالَیَه های بیو‌شیمیایی: میزان آسیب به غشاها با اضافه گیری میزان مولون دی النده (MDA) به عنوان فراردهنهای پراکسیداسیون لیپیدها غشاها و نیز با تعیین میزان نشته کلونولیت‌ها از غشا سلول‌های از اندام‌گیری شد. به منظور اضافه گیری میزان اندام‌گیری میزان MDA در دمای 200 mg آنها از سلول‌های منجمد شده محاسبه گردید (Chen et al., 2008).

\[EL(\%) = \frac{EC_1}{EC_2} \times 100 \]

تأثیر تیمار با امواج فراصوت با تغییر غشا‌ی سلول‌های جعفری همچنین با اضافه گیری میزان پتاسیم و کلسیم نشته بافت به مابه بردن سلول‌های صنعت قرار گرفته. به‌خared منظور بافر مایت 5M مایت 5M MES به‌خارد که حاصل \[\frac{M}{50} \] می‌باشد. به‌خارد بارده CaCl2 و pH بود و ترس بر روی ۶ تنظیم گردید. سلول‌ها از مهیج کشت جدا شده و توسط بافر مذکور شسته شدند. مقدار ۱/۸ و ۲/۱ گرم از سلول‌ها (به ترتیب برای پتاسیم و کلسیم) به‌خارد نمی‌باشد. به‌خارد بیش از مصرفتو سعی در بافر مذکور به‌خارد استحکام اینکه هنیز و پس از آن به‌خارد ۵۰ دقیقه مورد تیمار با امواج فراصوت قرار گرفتند. با تأثیر برای سلول‌های توسط قیف و کاغذ صافی (باکلیت‌های از بافر جدا شده و ترس از

\[0.1-1.5 \text{ mL} \]

800، Flame emission-absorption spectrophotometer, (Shimadzu, Japan) مورد استفاده قرار گرفت (Wu and Lin, 2002).
کلیه آزمایشات با سه تکرار از حداکثر سه نمونه مستقل انجام گرفت. مقایسه میانگین‌ها با استفاده از نمودار SPSS افزار نسبت 22 و آزمون دانکه تحت تغییر معنی‌دار بود و تفاوت‌ها در سطح 0.05 P= انجام شد.

نتایج:

تأثیر امواج فراصوت بر میزان رشد و درصد زندگی ماتی سول

بررسی تغییرات رشد (ون) سولولهای جعفری پس از تیمار با امواج فراصوت در زمان‌های مختلف تغییر معنی‌داری را در میزان رشد سولولهای که به مدت 10 دقیقه در معرض امواج فراصوت قرار داشتند نسبت به گروه کنترل نشان داد. اما میزان رشد سولولهای که به مدت 20 دقیقه با امواج فراصوت تیمار شده بودند در مقایسه با شاهد به طور معنی‌داری از امواج فراصوت یافت (شکل 1).

در این درک ایامی سولولهای زندگی که غشا سیتوپلاسمی و غشا و اکتوتولی آنها سالم است رنگ نشده می‌باشد. در صورتی که سیتوبلاسم سولولهای آسیب دیده و مرده کاملاً به رنگ آبی در می‌آید و تیره به رنگ سود. در تحقیق حاضر، این رنگ آبی زندگی داده که درصد زندگی ماتی سولول های که 20 دقیقه در معرض امواج فراصوت قرار داشتند، در مقایسه با گروه شاهد تغییر نداشتند. همچنین تغییرات در مقدار ظاهری سولولهای سلامت نسبت به آنها در مقدار سولولهای سلامت مشاهده نشد (شکل 2). اما تیمار سولولهای جعفری به مدت 40 دقیقه با امواج فراصوت باعث کاهش معنی‌دار در رشد و زندگی ماتی آنها در مقایسه با گروه شاهد گردید (شکل 3).

تأثیر امواج فراصوت بر تمامیت غشا سولولهای همچنین در شکل 2، ملاحظه می‌شود استفاده از امواج فراصوت تا 20 دقیقه تأثیری بر غشا سولولهای جداساخته جعفری نداشت و تفاوت معنی‌داری در میزان MDA و نشان یافت که از اسولولهای از سولولهای مانگی سولولهای با نمونه که 40 دقیقه در معرض این امواج قرار داشتند میزان MDA و نشان یافت.
تأثیر امواج فراصوت با انرژی پایین بر تمایل غشاء سولهایهای...

شکل ۱ - منحنی رشد سلول‌های جعفری در محیط کشت تمیلی

شکل ۲ - میزان رشد و زنده بودن سلول‌های جعفری (Petroselinum crispum L.) پس از قرار گرفتن در معرض امواج فراصوت در زمان‌های مختلف. مقادیر نشان داده شده میانگین ± انحراف معیار (SD) ۳ تکرار = SD. حروف تفاوت نشان دهنده معنی‌دار بودن تفاوت‌ها در سطح P≤0.05 بر اساس آزمون دالکین می‌باشند.

شکل ۳ - تأثیر تیمار با امواج فراصوت در زمان‌های مختلف بر زنده بودن و ریخت شناسی سلول‌های جعفری. رنگ آمیزی سلول‌ها با اوانس بلو انگجیم شد. میزان معادل ۱۰۰ μm.

به دنبال پیدایش انجرات ایجاد شده تحت تأثیر امواج فراصوت، می‌باشد (Sundaram et al., 2003). یکی از تأثیرات ایجاد شده تحت تأثیر Cavitation به عنوان یکی از تأثیرات ایجاد شده تحت تأثیر قرار گرفتن سلول‌ها در محیط های شرایط پایین نیت‌های گشتاسبی.
شکل 4- تأثیر امواج فراصوت در زمان‌های مختلف بر میزان پراکسیداسیون لیپیده‌های غضروف‌آوری و میزان نشان‌دهنده‌های سلول‌های جدایش (Petroselinum crispum L.). مقادیر نشان داده شده میانگین ۳ تکرار ± SD (انحراف معیار) می‌باشند. حروف متفاوت نشان دهنده معنی‌دار بودن تفاوت‌ها در سطح P≤۰.۰۵ بر اساس آزمون دانکن می‌باشد.

شکل 6- تأثیر امواج فراصوت در زمان‌های مختلف بر میزان کلسیم از غشاء سلول‌های جدایشات جمجمه (Petroselinum crispum L.). مقادیر نشان داده شده میانگین ۳ تکرار ± SD (انحراف معیار) می‌باشند. حروف متفاوت نشان دهنده معنی‌دار بودن تفاوت‌ها در سطح P≤۰.۰۵ بر اساس آزمون دانکن می‌باشد.

شکل ۱- تأثیر میزان‌های مختلف تیمار با امواج فراصوت بر نشت Ca۲+ از غشاء سلول‌های جدایشات جمجمه (Petroselinum crispum L.). مقادیر نشان داده شده میانگین ۳ تکرار ± SD (انحراف معیار) می‌باشند. حروف متفاوت نشان دهنده معنی‌دار بودن تفاوت‌ها در سطح P≤۰.۰۵ بر اساس آزمون دانکن می‌باشد.
TPA, an elicitor isolated from the fungus Porphyridium cruentum, induces the formation of activated Ca²⁺ channels in the plasma membrane of the protoplasts of Pelargonium sidoides, which results in the release of K⁺. Furthermore, a time-dependent increase in MDA and a decrease in the antioxidant capacity was observed. These findings suggest that TPA treatment induces oxidative stress in P. sidoides protoplasts. Colloids and Surfaces B: Biointerfaces 2000; 9:181-6.

Panax ginseng
Corylus avellana

Pickard, B. G., and Fujiki, M. (2005) *Ca*²⁺ pulsation in BY-2 cells and evidence for control of mechanosensory *Ca*²⁺-selective channels by the
Effect of low-intensity ultrasound on membrane integrity of suspension-cultured parsley cells (*Petroselinum crispum* L.)

Faezeh Ghanati* and Sara Sobhannejad

Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University
(Received: 4 July 2014, Accepted: 25 August 2015)

Abstract:

The ability to sense and respond to physical stimuli is an important key of the life. It was recognized that ultrasound as a physical stimulus could produce drastic changes in biological systems. High-intensity ultrasound is well known to be destructive to biological materials, but low-intensity ultrasound, on the other hand, has shown a range of biological effects with potential significance in biotechnology. One of the most studied effects of ultrasound on living cells is the increase in their membrane permeability, enhancing the uptake of foreign substances and the release of intracellular products into the media. In the present research suspension-cultured parsley cells were treated with ultrasound at 29 kHz with the power of 455 mW/cm3, for 10, 20, and 40 min. The viability of cells was examined using Evan's blue dye. Alteration of membrane permeability was evaluated by measuring the lipid peroxidation rate and leakage of electrolytes such as Ca$^{2+}$ and K$^+$ from membranes to the extracellular medium. According to the results exposure to ultrasound for 10 and 20 min neither changed the viability of the cells nor lipid peroxidation of the membranes. Exposure of parsley cells to ultrasound for 40 min however, decreased the viability and increased the release of K$^+$ to the extracellular medium. The results suggest that low dosage of ultrasound energy dose not adversely affect the membrane integrity of parsley cells and also stimulates their growth.

Keywords: Membrane integrity, Parsley cells, Ultrasound.

*corresponding author, Email: ghangia@modares.ac.ir