تأثیر آرسنات سدیم و جیبلریک اسید بر میزان پروپن، آنتوسیانین، فنل و صفات زراعی در دو رقم برنج (Oryza sativa L.)

فرزند نجفی، رضابنامی خاویر، زاده، منصور افشار محمدیان، و سیده فاطمه فلاح

(دانشکده علوم زیستی، دانشگاه خوارزمی، تهران، ایران) گروه زیست شناسی، دانشکده علوم پایه، واحد علوم و تحقیقات دانشگاه آزاد تهران، گروه زیست شناسی، دانشگاه علوم پایه، دانشگاه گیلان)

(تاریخ دریافت: 1392/12/26، تاریخ پذیرش نهایی: 1393/07/20)

چکیده:
آرسنیک متجم به آلودگی آب‌های زیر زمینی می‌شوید و بر روی گیاه‌های انسان و حیوان تاثیر می‌گذارد. هورمون‌های گیاهی نقش مهمی در هماهنگی رشد و عملکرد گیاه از نظر کمی و کیفی دارد. به منظور ارزیابی واکنش زیست‌فیزیولوژیک گیاه به آرسنات سدیم و جیبلریک اسید، آزمایشی به صورت فاکتوریال در قالب بلک کاملاً تصادفی در ۴ تکرار در شرایطی مزرعه‌ای اجرا شد. گیاهان ۹۰ روزه ۲ زننی‌بی طارم به عنوان یک رقم محلی و شیرودی به عنوان رقم پر سحر ذریه در ۳ گروه مختلف آرسنات سدیم (۰، ۵۰ و ۱۰۰ میکرو‌میلی‌گرم) و ۲ خیزپت جیبلریک اسید (۰ و ۱ میکرو‌میلی‌گرم) مرده برسی قرار گرفته‌اند. صفات بررسی شده در این آزمایش شامل: میزان پروپن، پرگ و ریشه، میزان آنتوسیانین و فنل پرگ، ارتفاع گیاه، طول خوشه، تعداد دانه‌های پر و خوشه، تعداد دانه‌های پر و خوشه، زون حزار، وکل، و تعداد دانه‌های پر در خوشه، و زون حزار، وکل، و تعداد دانه‌های پر در خوشه، و زون حزار، وکل، و تعداد دانه‌های پر در خوشه، و زون حزار، وکل، و تعداد دانه‌های پر در خوشه، و زون حزار، وکل، و تعداد دانه‌های پر در خوشه، و زون حزار، وکل، و تعداد دانه‌های پر در خوشه، و زون حزار، وکل، و تعداد دانه‌های پر در خوشه، و زون حزار، وکل، و تعداد دانه‌های پر در خوشه، و زون حزار، وکل، و تعداد دانه‌های پر در خوشه، و زون حزار، وکل، و تعداد دانه‌های پر در خوشه، و زون حزار، وکل، و تعداد دانه‌های پر در خوشه، و زون حزار، وکل، و تعداد دانه‌های پر در خوشه.

واژه کلیدی: آرسنات سدیم، آنتوسیانین، برنج، پروپن، جیبلریک اسید، صفات مورفولوژیک، فنل

مقدمه:
آرسنیک (Oryza sativa L.) محصول غالب در آسیا است و بیش از ۳۰ درصد کالری مصرفی این منطقه‌ها توسط آن می‌دهد و برخی از قاره‌های جغرافیایی کشت داده می‌شود. آرسنیک سوم‌تنین شکل از آرسنیک است که در آب و خاک محلول تحرک بالایی دارد و به طور مؤثر توسط ریشه برنج جذب می‌شود (Zheng et al., 2011). آرسنیک به راحتی ناگفته می‌شود. f_najafi@yahoo.com
فرآینده‌های فتوستز و رشد در هند و نش نرم محسوب در سرده‌های فلات سگین از طریق بهبود رشد گیاه و سنت کازورفی ایاف می‌گردند. ارتباط می‌یابیم و مخزن زایمت شرایط نش نرم تنظیم می‌کند و بر فیزیولوژی و
متانلیسم گیاه تاثیر دارد (Iqbal et al., 2011).

هدف از اتخاذ انجام مطالعه بررسی اثر تقارن آلاینده سدیم (Na$_2$HAsO$_4$) و چربیلک ایست بر یکی از دو نژاد بهبود پرورشی، اکتسن الکترون، مصرف مهم زراعی و مواد فلوشیمیاکی و بررسی حساسیت به تحمل زننیات به‌طور درست نش آبی این آلاینده سدیم و چربیلک ایست در شرایط موزعه است.

مواد و روش‌ها:
بذرها دو رقم برنج شامل طارم به عنوان رقم محیط کم محصول و شرودی به عنوان رقم پرمحصول از آن تحقیقات برنج کشور واقع در شهرستان آمل به‌طور نسبی بسیار کم از مزارع رشته آقاز واقع در شهرستان سالاری عرب خرایلی ایجاد شد. میزان بارندگی متوسط 75/26 میلیتر گزارش‌گرده که و در یک بارندگی در تیره مأمور برنج گزارش‌گرده که می‌باشد درجه حرارت 2/5 درجه سانتی‌گراد و در اردیکی رطوبت 32 درصد و حداکثر آن 100 درصد گزارش در شده است. بردها به‌طور کلی سدیم به مدت ده دقیقه استریل شد. سپس باری نمونه‌گیری به حوالی کاغذی مرطوب به مدت 8 ساعت در دمای 24 درجه سانتی‌گراد در مکانی تاریک به‌طور داخلی شدند. بذرها مورد حمله در اردیکی رطوبت مسئول می‌گردید. برنج تیره مسابقه در واریانس‌گیری 92 ابتدا در شرایط آب و خاک موزعه خوانگیری شدند و در مراحل 3-2 و 3-0 روزه به فاصله 60 ساعت در گلدان‌های اول پر شده از خاک موزعه نمایش شدند. قبل از شروع تیمار آلالیر خاک انجام شد.
جدول-1: خصوصیات فیزیکی و شیمیایی خاک محل آزمایش

<table>
<thead>
<tr>
<th>درصد مواد خشک شونده (%)</th>
<th>عمق خاک (Cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کربن آلی (%)</td>
<td>رس (%)</td>
</tr>
<tr>
<td>درصد ماده آلی (%)</td>
<td>رس (%)</td>
</tr>
<tr>
<td>نیترژن کل (%)</td>
<td>شم (%)</td>
</tr>
<tr>
<td>فسفر (p.p.m)</td>
<td>سبیلت (%)</td>
</tr>
<tr>
<td>پتاسیم (p.p.m)</td>
<td>هدایت الکتریکی (Ec)</td>
</tr>
<tr>
<td>آرسنیک (p.p.m)</td>
<td>اسیدهای الکتریکی (%)</td>
</tr>
<tr>
<td><10</td>
<td>درصد اشباع (%)</td>
</tr>
</tbody>
</table>

خاک کمتر از 10 ppm آرسنیک داشت. پس انقلال گیاهک های برنج به گلدن، در مرحله اول بطور هوموئم توسط غلاف پوش های مختلف آرسنیک سدیم و جیبیلک اسید تیماههی شدند. اسید جیبیلک طی چهار مرحله در فاصله زمانی 3 روز افشانه سازی شد. برابر اندازه گیری میزان پرولین و آنتوسیانین و فنل گیاهان 14 روز بعد از تیماردهی برداشت شدند. نتایج تجزیه خاک در جدول 1 آمد است.

اندازه گیری میزان پرولین و ریشه گیاه: برای اندازه گیری میزان پرولین از روش (Bates et al., 1973) استفاده شد. ابتدا 250 گرم از بافت پرک و ریشه با استفاده سولفوسیلیک اسید بسته‌بندی گردید. گیاه پروپانل از روش (Dia et al., 2006) استفاده شد. ابتدا 50 گرم از بافت پرک و ریشه با استفاده سولفوسیلیک اسید برداشت و در دمای 0/5 درجه سانتی‌گراد قرار گرفته و پس از سرد شدن نمونه‌ها جذب در طول موج 520 نانومتر از تیماردهی آنتوسیانین و فنل محاسبه شد.

اندازه گیری سطح زراعی: جهت اندازه‌گیری عملکرد و اجزای عملکرد، پس از رشدگی فیزیولوژیک دانه و پاپیون آمدن رطوبت دانه‌ها، بوته‌ها در مرداد ماه سال 92 و عصر صاف شده را با 1 میلی‌لیتر مخفف نین هیدرین و 1 میلی‌لیتر مخفف نین هیدرین و 1 میلی‌لیتر استیک گلاسیپال دی‌پک لوله آزمایش ریخته و لوله‌ها بمدت یک ساعت در بین ماری با دمای 100 درجه سانتی‌گراد قرار گرفته و پس از سرد شدن نمونه‌ها جذب در طول موج 720 نانومتر از تیماردهی آنتوسیانین و فنل محاسبه شد.

اندازه گیری میزان آنتوسیانین و فنل: برای سنجش میزان آنتوسیانین از روش (Dia et al., 2006) استفاده شد. بین این میانگین 300 گرم از باقع ترک ایندیکا به فلت توزین و در هاوای حاوی 3 میلی‌لیتر منتوئول اسیدی (منتوئول/99/5 و اسید کاربنیک /1 به نسبت 99 به 1) سایه‌بندی شده، عصاره به تهیه شده در فالکرون ریخته شد و به مدت 24 ساعت در تازیگی و در دمای 4 درجه سانتی‌گراد قرار داده شد. پس از 24 ساعت نمونه‌ها از تازیگی خارج شده و به مدت 10 دقیقه در...
نتیجه و تحلیل آماری: در تمام موارد مقایسه معیاری تیمارها با روش داتن صورت گرفت و برای انجام تجزیه‌های آماری از نرم‌افزار SPSS v.16 استفاده شد.

نتایج و بحث:

میزان پرولین برق و ریشه: با افزایش تنش آرتسن سدیم، محتوای پرولین در برق و ریشه‌ها در هر دو رقم به طور معنی‌داری افزایش یافت. برهمکنش آرتسن سدیم و چربی‌لیک اسبب افزایش متوسط در محتوای پرولین برق و ریشه بود (۳۰) در دو مکرومولار شده است در حالی که این افزایش در مکرومولار سدیم در هر دو رقم معنی‌داری دارد (جدول ۲). پرولین یک اسید آمینه ضروری است که در بسیاری از کونه‌هایی که پاسخ به نش‌تهجیم می‌یابد و از سایت‌های درون سلولی و مکرومولولار تحت شرایط نش مراقبت می‌کند. عملکرد پرولین همانند یک پرتابولیک نرم‌افزاری مختلف مطرح می‌شود. مثال‌هایی از این نقش یافته‌اند: پیشگیری از تجمع پروتئین، ثبات لکات هیدروژن در میان چربی‌لیک حیاتی، ملاحات از نتیجه‌های دو روش در تنش استیمک، عنصر سنگین و پایداری فیبرونکائیت‌ها و پروتئین‌ها تحت تنش نش آرتسن می‌بایست.

پرولین می‌تواند (ROS) را کاهش دهد و در تجزیه‌گر مرگ سلولی برانما ریزه شده جلوگیری کند و می‌تواند پراکسیداسیون لیپید را در سلول جلبکی که تحت تنش آرتسن Szabados and Savoure, ۲۰۰۹) قرار گرفته‌اند را کاهش دهد (Cvirkov et al., ۲۰۱۳) و تأثیر شوری و کادی‌پرم در گیاه مشاهده شده است (Howladar ۲۰۱۴).

میزان انوکسیاتین و فلز: در جدول‌های ۲ و ۳ مشاهده می‌شود که با افزایش میزان آرتسن انوکسیاتین و فلز در هر دو رقم پرولین به طور معنی‌داری به شاهد افزایش می‌یابد که این افزایش فوری در رقم شرودری به دلیل قیفی از تغییرات افزایش چربی‌لیک اسبب و آرتسن سدیم در قیفی نسبت به شاهد افزایش معنی‌داری در میزان انوکسیاتین ایجاد کرده است در حالی که در رقم طرخ ناپدید می‌شود. عملکرد انوکسیاتین مشاهده شد و این تغییر در میزان ترکیبات فلزی معنی‌داری دارد (شیباری و متون ۲۰۱۲). تیمار هم‌زمان چربی‌لیک در افزایش انسداد در میزان دیابت این افزایش معنی‌داری در رقم طرخ ناپدید می‌شود. عملکرد انوکسیاتین مشاهده شد و این تغییر در میزان ترکیبات فلزی معنی‌داری دارد (شیباری و متون ۲۰۱۲).

شکل‌های گیاهی، یکی از جمله نش‌تهجیم‌ها، این احتمال وجود دارد که این ترکیب‌ها تأثیر گذاری در ارگانیسم‌ها دارند.
جدول 2- تأثیر آرسنات سدیم و چربیلیک اسید بر میزان پرولین پرگ و ریشه، آنتیوپراتی در و فنل پرگ در دو رشته بذر

<table>
<thead>
<tr>
<th>فنل (mg g⁻¹ F.W.)</th>
<th>آنتیوپراتی (mg g⁻¹ F.W.)</th>
<th>پرولین پرگ (mg g⁻¹ F.W.)</th>
<th>پرولین ریشه (mg g⁻¹ F.W.)</th>
<th>آنتیوپراتی اسید (µM)</th>
<th>آنتیوپراتی اسید (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>143.7/7±11d</td>
<td>7/4/1±0,7f</td>
<td>3/4/5±0.3/4f</td>
<td>2/3/4±0.3/4f</td>
<td>7/4/1/9,1b</td>
<td>7/4/1/9,1b</td>
</tr>
<tr>
<td>176/1/4±9.7d</td>
<td>7/4/1/9,7d</td>
<td>7/4/1/9,7d</td>
<td>7/4/1/9,7d</td>
<td>7/4/1/9,7d</td>
<td>7/4/1/9,7d</td>
</tr>
</tbody>
</table>

حریف مشابه نشان دهنده وجود اختلاف معنادار در سطح 5 درصد آزمون دانکن می‌باشد.

جدول 3- تأثیر آرسنات سدیم و چربیلیک اسید بر میزان پرولین پرگ و ریشه، آنتیوپراتی در و فنل پرگ در دو رشته بذر

<table>
<thead>
<tr>
<th>منبع تغییرات</th>
<th>پرولین ریشه</th>
<th>پرولین پرگ</th>
<th>آنتیوپراتی</th>
<th>آنتیوپراتی اسید</th>
<th>درجه آزادی</th>
<th>رقم</th>
</tr>
</thead>
<tbody>
<tr>
<td>رقم</td>
<td>1/22281</td>
<td>25/36770</td>
<td>178/69968</td>
<td>5/67895</td>
<td>2/22281</td>
<td>1/22281</td>
</tr>
<tr>
<td>رقم</td>
<td>32/35876</td>
<td>29/12547</td>
<td>88/23456</td>
<td>33/27497</td>
<td>2/22281</td>
<td>1/22281</td>
</tr>
<tr>
<td>رقم</td>
<td>5/15456</td>
<td>3/54547</td>
<td>57/46576</td>
<td>13/95927</td>
<td>2/22281</td>
<td>1/22281</td>
</tr>
<tr>
<td>رقم</td>
<td>0/32576</td>
<td>35/24687</td>
<td>19/64897</td>
<td>5/23926</td>
<td>2/22281</td>
<td>1/22281</td>
</tr>
<tr>
<td>رقم</td>
<td>7/65787</td>
<td>5/12378</td>
<td>51/23787</td>
<td>8/94264</td>
<td>2/22281</td>
<td>1/22281</td>
</tr>
<tr>
<td>رقم</td>
<td>22/920</td>
<td>33/7233</td>
<td>4/22345</td>
<td>2/34367</td>
<td>2/22281</td>
<td>1/22281</td>
</tr>
<tr>
<td>رقم</td>
<td>57/9287</td>
<td>25/86598</td>
<td>0/21678</td>
<td>5/47237</td>
<td>2/22281</td>
<td>1/22281</td>
</tr>
</tbody>
</table>

*** در سطح احتمال 0.001 معنادار است. **** در سطح احتمال 0.0001 معنادار است.

به عنوان یک ناقل فلز سنگین به وکتور عمل کند. مارس و والت (سال 1997) گزارش کرده‌اند که کادمیوم می‌تواند سنتز Glutathion-S-Transferase (S-GST) آنزیم گلکاتائی-ا-تیترنزر (transferase) که آنزیم کلیدی در آن‌چه بیوسنتر است را تحریک کند و از این طریق موجب افزایش سنتز آنتیوپرات اسید شود آنتیپرات در مقدار آنتیپراتا برگ در غلظت‌های 50 و 100 میکرومولار آرسنات سدیم به گیاه در شرایط نشان می‌کند که از این در راه‌پیمایی آزاد اکسیژن می‌شود. که نتایج مشابه در گیاه ارای‌پس سپردویل و مزوتکاس (Sperdouli و Moustakas، 2012) تحت نشان شکلی تحت شرایط مایع پایین (Vitis vinifera L.) مشاهده کرده‌اند. در این مطالعه جبریل شهدا و در مطالعه Romero et al. 2008 مقدار آنتیپراتا را در دو غلظت 50 و 100 میکرومولار آرسنات سدیم در برگ هر دو رقم افزایش می‌دهد. در نتیجه افزایش میزان آنتیپراتا در باغ گیاه، برای رای می‌تواند به تأخیر اندیشه در سیستم تأثیر به عنوان یک ناقل فلز سنگین به وکتور عمل کند. مارس و والت (سال 1997) گزارش کرده‌اند که کادمیوم سنتز Glutathion-S-Transferase (S-GST) آنزیم گلکاتائی-ا-تیترنزر (transferase) که آنزیم کلیدی در آن‌چه بیوسنتر است را تحریک کند و از این طریق موجب افزایش سنتز آنتیپرات اسید شود آنتیپرات در مقدار آنتیپراتا برگ در غلظت‌های 50 و 100 میکرومولار آرسنات سدیم به گیاه در شرایط نشان می‌کند که از این در راه‌پیمایی آزاد اکسیژن می‌شود. که نتایج مشابه در گیاه ارای‌پس سپردویل و مزوتکاس (Sperdouli و Moustakas، 2012) تحت نشان شکلی تحت شرایط مایع پایین (Vitis vinifera L.) مشاهده کرده‌اند. در این مطالعه جبریل شهدا و در مطالعه Romero et al. 2008 مقدار آنتیپراتا را در دو غلظت 50 و 100 میکرومولار آرسنات سدیم در برگ هر دو رقم افزایش می‌دهد. در نتیجه افزایش میزان آنتیپراتا در باغ گیاه، برای رای می‌تواند به تأخیر اندیشه در سیستم تأثیر به عنوان یک ناقل فلز سنگین به وکتور عمل کند.
آزمایشی در هر دو رقم بینم طارم محلي و شیروی اختلاف معنی‌داری در سطح اختلاف کمتر از 5/ ویژه دارد. مقایسه میانگین تیمارها در جدول 4 نشان می‌دهد که در غلظت‌های 50 میکرومولار آرسنیک، ارتفاع گیاه، طول خوشه، تعداد دانه‌های پرو، عملکرد دانه و عملکرد ماده خشک و شاخ ص در رقم طارم، شد. در حالی که در رقم شیروی غلظت 100 میکرومولار آرسنیک بیش از عملکرد ماده خشک و شاخص برداشت در رقم طارم، شد. باعث کاهش معنی‌داری در تعداد دانه‌های پرو و عملکرد دانه و عملکرد ماده خشک و شاخ ص در رقم طارم، شد. در میزان ارتفاع گیاه، تعداد دانه پرو و عملکرد دانه نسبت به شاهد و تیمار 50 میکرومولار آرسنیک کمتر و در غلظت 100 میکرومولار آرسنیک ارتفاع گیاه، طول خوشه، تعداد دانه‌های پرو، وزن هزار دانه، عملکرد دانه و عملکرد ماده خشک به طور معنی‌داری نسبت به تیمار 100 میکرومولار آرسنیک در ردیو جهانی سبب افزایش نشان داد و برای رشد ریشه و صاقع و طول و وزن خشک ریشه و ساقع در غلظت‌های بالایی از تیمار آرسنیک کاهش می‌یابد و از جهد موارد غذایی در ریشه جلوگیری می‌شود. شرکت کل گیاه متوسط می‌شود در تیمارهای زیر در بخش جرو (بیوس) گیاهان کاهش می‌یابد. مطالعات نشان می‌دهد که وجود عناصر سنگین در ذهن سالسیلیک تحت نش آب در گیاه سبی زمین (Hayat et al., 2008) (Lycopersicon esculentum) شدند.

در گیاه با افزایش میزان سرب به Phaseolus vulgaris، تعداد دانه‌های پرو و عملکرد ماده خشک و شاخ ص در رقم طارم، شد. در سطح حاویی که 50 میکرومولار آرسنیک، ارتفاع گیاه، طول خوشه، تعداد دانه‌های پرو و عملکرد دانه و عملکرد ماده خشک و شاخ ص در رقم طارم، شد. در حالی که در رقم شیروی غلظت 100 میکرومولار آرسنیک بیش از عملکرد ماده خشک و شاخص برداشت در رقم طارم، شد. باعث کاهش معنی‌داری در تعداد دانه‌های پرو و عملکرد دانه و عملکرد ماده خشک و شاخ ص در رقم طارم، شد. در میزان ارتفاع گیاه، تعداد دانه پرو و عملکرد دانه نسبت به شاهد و تیمار 50 میکرومولار آرسنیک کمتر و در غلظت 100 میکرومولار آرسنیک ارتفاع گیاه، طول خوشه، تعداد دانه‌های پرو، وزن هزار دانه، عملکرد دانه و عملکرد ماده خشک به طور معنی‌داری نسبت به تیمار 100 میکرومولار آرسنیک در ردیو جهانی سبب افزایش نشان داد و برای رشد ریشه و صاقع و طول و وزن خشک ریشه و ساقع در غلظت‌های بالایی از تیمار آرسنیک کاهش می‌یابد و از جهد موارد غذایی در ریشه جلوگیری می‌شود. شرکت کل گیاه متوسط می‌شود در تیمارهای زیر در بخش جرو (بیوس) گیاهان کاهش می‌یابد. مطالعات نشان می‌دهد که وجود عناصر سنگین در ذهن سالسیلیک تحت نش آب در گیاه سبی زمین (Hayat et al., 2008) (Lycopersicon esculentum) شدند.

شابک که در جدول 4 نشان داد. فلزات می‌تواند به عوامل مختلفی عادی گرایش باشند. مثلاً به عنوان اعضا حاکم کننده کلاسترول فلزی عمل می‌کند. (Hamid et al., 2010). تجربه شتاب در مراکز تحت ROS و تیمارهای منازلی و قلب همبستگی بینی‌ها و تیمارهای نارنجی همانند مولکول عمادیه برای تجربه نانوپاتور بکار می‌رود. ABA تحریک تجمع برخی متابولیت‌های ناشی مهم در گیاهان استفاده می‌شوند. تجربه نقلیک اسید استفاده در گیاهان توسط PAL، ABA یا این و یا نیکوتین عفای‌های ABA، که سبب تضعیف است راه‌پروی که تغییر گیاهان باعث بهبود و افزایش سطح فلز تحت نش نشته‌ها، و اینکه در نهایت تحقیق که ای (Choudhary et al., 2011) ABA یا فلزات سنتی (سررب، روز و کاداموز) و اینکه استفاده و در Triticum aestivum (Merlin et al., 2012) (Hayat et al., 2013) ABA، در نهایت تحقیق که ای (Choudhary et al., 2011) ABA یا فلزات سنتی (سررب، روز و کاداموز) و اینکه استفاده و در Triticum aestivum (Merlin et al., 2012)
<table>
<thead>
<tr>
<th></th>
<th>GA_2</th>
<th>GA_4</th>
<th>NA_2</th>
<th>NA_4</th>
<th>GA_2</th>
<th>GA_4</th>
<th>NA_2</th>
<th>NA_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GA_2</th>
<th>GA_4</th>
<th>NA_2</th>
<th>NA_4</th>
<th>GA_2</th>
<th>GA_4</th>
<th>NA_2</th>
<th>NA_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GA_2</th>
<th>GA_4</th>
<th>NA_2</th>
<th>NA_4</th>
<th>GA_2</th>
<th>GA_4</th>
<th>NA_2</th>
<th>NA_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>
موجب تجربه رعادي کلام آزاد اکسیژن عمال می‌شود. در سلول‌های برگ گیاه، نمک با افزایش آرسینیک رادیکال آزاد اکسیژن عمال افزایش می‌یابد و خصائص به سلول‌های در شرایط نش وارد می‌کند. بنابراین تعادل بین تولید و حذف رادیکال‌های آزاد اکسیژن عمال در شرایط نش می‌شود (Chun-xi et al., 2007).

وژن شکه اندام هواوی و ریشه تحت شرایط نش کاهش می‌یابد که این کاهش ممکن است ناشی از کاهش سمای برگ و فشار فتوستن باشد. گیاه ممکن است با حفظ گروه‌های سبز مکانیسم‌های سبز داشته باشد که گیاه عمال می‌تواند با وجود پن‌سپل پایین برگ حفظ کند. وژن هزار دانه هم‌اندازی داده با آغاز نش کاهش می‌یابد و بارده محفظ‌ها کشاورزی را کاهش می‌دهد (Faizan et al., 2012).

نتش در طول مراحل مختلف رشد ممکن است اتفاق محصولات فتوستنی را داشته باشد که در نتیجه وژن دانه کاهش و تعداد دانه‌های خالی افزایش یافت. گرچه میزان کاهش به نوع مرکب دارد که در این حیطه تأثیر ایک در رقم طارم پیشرفت در شرایط پر افزایش تنش. نتیجه سلول‌های آندوسپرم کیک می‌یابد و تکنیکی آمیله‌پاتس محدود می‌کند که علامت‌ها در نهایت شرایط است. معمولاً شرایط ناشی‌از نتیجه تنش بیشتر دربرگ، نور و باریکی آبکش موجب می‌شود. جیریتین به تضمین سلول در مانند ریشه و ساقه کمک می‌کنند و در نتیجه شبیه تعداد پیشرفتی می‌شود و هرچه تعداد پیشرفت‌های نشته توسط جیریتین مورد بررسی کاهش در حالت خاص می‌شود و در نهایت گاهی می‌شود که مانند نتیجه نشته عمال کاهش که در نتیجه تضمین سلول با مشابهی به جمع کمک می‌کند که در حالت خاص می‌شود و در نهایت گاهی می‌شود. (Sabetfar et al., 2013). آزمایش جیریتین ایکسیداز در برنجه‌ای رطوبته با افزایش طول گره انتها در مراحل سنگین می‌شود و پیوستن جیریتین در مراحل سنگین می‌شود و در داخلی‌ترین قسمت باش برکت نگلیگ که مکان‌های برای عمل جیریتین در بالش، شیشه می‌شود. جیریتین سبب بهبود بهره‌وری

Día, L. P., Xiong, Z. T. and Huang, Y. (2006) Cadmium induced changes in pigments total phenolics, and phenyl alanine ammonia-lyase activity in fronds of