بررسی برخی صفات فیزیولوژیک و بیوشیمیایی گیاه نخود

نتیجه گیری

الف) تأثیر نشانه‌گذاری و رویه‌های کاربرد، کد آهن

قلمیه احمدی، مختار قادی، محسن سعیدی و جلال قادی
گروه زراعت و اصلاح نباتات، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی کرمانشاه، اثر مرکز تحقیقات کشاورزی کرمانشاه

(تاریخ دریافت: 21/12/93، تاریخ پذیرش نهایی: 24/12/93)

چکیده

به منظور بررسی اثر آهن و نشانه‌گذاری برخی خصوصیات فیزیولوژیک و بیوشیمیایی نخود زراعی و همچنین نحوه کاربرد کود آهن (خاک‌کاربرد و محلول‌پاشی)، از میان استفاده در مراحل فیزیولوژیک مختلف گیاه، آزمایش در سال زراعی 1391-1392 در مزرعه تحقیقات پردیس کشاورزی و منابع طبیعی دانشگاه رازی کرمانشاه اجرا شد. آزمایش بصورت استیل پلات (کریه‌های پیکاری عفرد شده) در قالب طرح پایه‌ای بلوکی‌های کامل تصادفی با سه تکرار اندازه‌گیری شد و در رنگ‌های هدایت، تغییرات قابل توجهی در این ویژگی‌ها گزارش شدند. زمان و نحوه کاربرد کود آهن در بهترین شرایط سطح دائم اکثر فیزیکی گیاه آهن (F1)، محلول‌پاشی در مراحل شاخه‌گیری (F3)، محلول‌پاشی در مراحل کود آهن (F4)، محلول‌پاشی در مراحل کود آهن (F5)، محلول‌پاشی در مراحل شاخه‌گیری (F6)، محلول‌پاشی در مراحل کود آهن (F7)، محلول‌پاشی در مراحل شاخه‌گیری (F8) حاصل شد. حاصل بررسی ویژگی‌های کیفی کلی و بهبود صفات مذکور کرد، بنابراین، به نظر مرسد محلول‌پاشی آهن سپر بهبود صفات مرتبط با فتوستورت و کاهش اثرات ناشی از تنفس نخود گردیده است.

کلمات کلیدی: نشانه‌گذاری، صفات فیزیولوژیک، کود آهن، نحوه زراعی، (Lopez-Bellido et al., 1998؛ Dahan et al., 1998)

مقدمه

جایزه پس از غلاب دومن منبع مهم غذایی انسان هستند (کوچکی و بیانی‌الود، 1383). دانه جایزه با برخوردی از 18 تا 24 درصد بروتین در عضوی‌های سیاه قابل تناول رایج و مشهور به سبب علائم می‌باشد. به علاوه، قابلیت مصرفی گیاهان به توجه به پیشرفت‌های جدید برای مصرف محصولات کمک به داشتن

ghobadi.m@razi.ac.ir

نویسنده مسئول: نشانی پست الکترونیکی: ghobadi.m@razi.ac.ir
بودا‌نده (سالاردوینی و مجتهدي، 1367). در مطالعه‌ی روي
رهنمايي نخود ريش كرد هر از خاک‌هاي قبايي مشخص شد که
در اثر محلول‌پايب و گرو با اثرات آهگي علاطم كم‌آب (ان،
عنصر در گياه به‌حدود ۲۰۰۳ (Saxena and Sheldark, 2003)
گزارش ديدگي، محلول‌پايت سولفات آهگي موسيج افرايش
عملي در شاخت و عملکرد داناب غواص شد (هايي و
همان، ۱۳۸۴). همچنين گزارش شده كه محلول‌پايت با
سولفات آهگي در به‌حدود علاطم كم‌آب در گياه نخود مؤثر بود اما
تأثیر معنی‌داری در افزایش محلول نخود نداشت است
(Saxena and et al., 1990) در شرایط دم به دليل کم‌آب
ربطی خاک معمولاً جذب مناخ غلايا مثل آهگي كاشت
می‌يابد. مشابه سپ‌زاير نخود در ايران، اثر مرز نخود
کرم‌نامه به صورت دم کش مگردد. همچنين به دليل
آهگي بودن غلاب خاک‌های ترش خشک و بخصوص استان
کرم‌نامه، امکان جدايي آن توسط علماي كاشت می‌باشد. به همين
خاطر احتمال مروي كه کرم‌نامه كود آهگي به صورت
محلول‌پايت بريگت به‌طور بي‌خشي از كم‌آب آهگي در اين گياه را در
این منطق جبران نمی‌نوي. بنابراین هدف از انجام اين تحقیق،
بررسی تاثیر نش خشکي و متصل کود آهگي بر برخي
خصوصيات فيزیولوژی و بیولوژیاب بازيمان نخود زراعي، مسائلی
روشها و زمان‌هاي مختلف کرم‌نامه کود آهگي در زراعت نخود
زراعي می‌باشد.

مواد و روش‌ها:

این پژوهش در سال زراعی ۱۳۹۱-۱۳۹۰۰ در مزرعه‌ی
تحقیقاتي و آزمایشگاه‌های گروه زراعت و اصلاح نباتات
پرستيش‌کارندزي و منابع طبيعي از شهرستان رازی کرم‌نامه‌ها
به اجزا درآمده. این محل در طول چهارم به ۴۷ و ۴۷ دقيقه
شرقي و ورود جغرافيايي ۴۷ درجه و ۴۷ دقیقه شمالي و در
ارتفاع ۱۳۸۱ متر از سطح دريا واقع شده است. این منطقه از
نظر اقلیمي داريي آب و هواي سرد از دست داشته است. وضعیت
آب و هواي منطقه در طول فصل رشد در صدر ۱ نشان
داده شده است. قبل كاشت، از خاک مزرعه تهيه شد که
پوسته‌ي زمين است اما پيشريگي محصولات كشاورزي در خاک‌های آهگي مناطق خشک و
خشک سبب شده است. قبايي به، اين نقدي زياي آهگي کم‌آب ماده آلي، ايناري سنگين، تراکم باي خاک و نيز تهويه
ضعيف خاک از كمال جذب آهگي در خاک‌های آهگي
می‌باشد (Li et al., 2005). آهن به دو روش انجام بساري از
Motta et al., 2001).

فاغيلتيه‌‌ي سوخت و ساز، گياه، موردي نياز است (Hell و Stephan, 2003).
نوروز خاکي و ظهريي آهن در سیستم‌های آنزيمي است که در آنها هم
ورايت آهن نقشي تا حدايي شبيه نقشي ميزنم در ساختن
پورفين‌کارفوئيل بازي مکاكن سیستم‌های آنزيمي هم شامل
کاتالاز، پراکسیداز، سیتوکروم اکسبار و همچنين سیتوکروم-
هام مخلف سكراحم (سالاردوينی و مجتهدي، ۱۳۷۵). کم‌آب
آهن، مورفوژي و فيزيولوژي گياه را تحت تأثیر قرار مي‌دهد
(Ahm, 2007). کم‌آب آهن راندنم صفرآب و آب در
دسترس فيزیولوژی را در در رقم نخود زراعي کاشت داد
کم‌آب آهن موجب زيان و آسيا رسيدن (Mortvedt, 1991)
به كارفويل و تخريب ساختار کارفوئيلت مي‌شود كه در نهچته
آن زودى یا كارفويل حاصل مي‌گردد (قرباني و گالاژلا، ۱۳۸۲).

کربن‌کيکي از اهميتين نتياشي‌گي‌های غیرزنده است که هر
ساله خشکي در کدام‌گان را با گياهان زراعي و باجي در ايران که
به‌عنوان کشوري خشک و نيمه‌خشک محصول مي‌گردد وارد
می‌نماید (صباغ، ۱۳۸۲). در گياهان لگوموز خشکي باعث
بريق گلها و ميه‌ها مي‌گردد. در سال‌های خشکي، ريزش
پره‌گرها و ميوه‌ها لگوم و مي‌گردد (طهراني، ۱۳۸۱)
(خرايی، ۱۳۸۱).
جدول ۱ - وضعیت آب و هوای منطقه در طول فصل رشد

<table>
<thead>
<tr>
<th>روز</th>
<th>دمای باد (میلی‌متر)</th>
<th>دمای بادک (میلی‌متر)</th>
<th>نرخ بارش (میلی‌متر)</th>
<th>میزان بارش (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۲۹</td>
<td>۳۳</td>
<td>۲۶</td>
<td>۰</td>
</tr>
<tr>
<td>۵</td>
<td>۳۵</td>
<td>۴۷</td>
<td>۳۴</td>
<td>۲۰</td>
</tr>
<tr>
<td>۱۰</td>
<td>۴۵</td>
<td>۶۷</td>
<td>۴۷</td>
<td>۰</td>
</tr>
<tr>
<td>۱۵</td>
<td>۴۷</td>
<td>۸۷</td>
<td>۴۶</td>
<td>۸۰</td>
</tr>
<tr>
<td>۲۰</td>
<td>۵۰</td>
<td>۸۰</td>
<td>۴۷</td>
<td>۸۰</td>
</tr>
<tr>
<td>۲۵</td>
<td>۵۰</td>
<td>۹۰</td>
<td>۴۶</td>
<td>۸۰</td>
</tr>
</tbody>
</table>

جدول ۲ - نتیجه‌های حاصل از آزمون خاک مزمنی محل آزمایش

<table>
<thead>
<tr>
<th>pH</th>
<th>Fe</th>
<th>Cu</th>
<th>Zn</th>
<th>Mn</th>
<th>Mg</th>
<th>K</th>
<th>Na</th>
<th>Ca</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸</td>
<td>۲۰</td>
<td>۴۰</td>
<td>۶۰</td>
<td>۸۰</td>
<td>۱۰</td>
<td>۱۲</td>
<td>۱۴</td>
<td>۱۶</td>
<td>۱۸</td>
</tr>
</tbody>
</table>

محلول‌پاشی، از محلول سولفات آهن (شرکت کاوبین حاوری) به مقدار ۱ لیتر آهن (Fe-EDTA) به مقدار یک لیتر در هکتار ارتفاع شد. در پاییز و اسفند سال ۱۳۹۰ زمین شخم زده شد. سپس از دیسک و ماله ارتفاع شد. رم تغییر زراعی مورد ارتفاع در آزاد بود که از تابی کابل می‌باشد. کشته در روز ۱۴ اسفند سال ۱۳۹۰ انجام شد. تراکم مورد ارتفاع در ۵۰ بینه در متری بود. با توجه به ناتیج آزمون خاک، از کود اوره بصورت آغازگر (اسارتی) به میزان ۵ کیلوگرم نتیجه‌گیری خاک با مرکز در هکتار ۱۳۹۰ ساله در صورت لوم و جنین همان کمتر. طبق برای مبارزه با کرم پهن‌خوار نخود از سی دلتامتری به میزان ۳۰۰ سی در هکتار ارتفاع شد.

در این آزمایش صفات زیر از ادغامی‌های شدند:

- (Leaf Area Index): شاخص سطح برگ (Leaf area meter (Hitachi, Japan) از دستگاه)
- (Specific Leaf Area): شاخص سطح برگ (Leaf area meter) از دستگاه

جهت عملیات تبادل بدون نش خشکی، پس از اتمام بارش‌ها در اواخر اردیبهشت سال ۱۳۹۱، در نوبت آبیاری در مرحله گلدهی و مرحله غلاف‌بندی گیاه نخود انجام شد. در تیمار نش خشکی، از این آبیاری‌ها ممکن است به عمل آمد. جهت عملیات تبادل کود آهن بصورت خاک کاربرد، از کود کلات آهن/۷ (شرکت OMEX شرکت) آماف آلمن به میزان ۱۰ کیلوگرم در هکتار ارتفاع شد. همچنین جهت
اثدازگری سرعت فعالیت این آنزیم از روش Chance و Mahly (1995) با انتکاک تغییرات استفاده شد. اندازهگری بر اساس میزان اکسید شدن گویاکول توطیع این آنزیم انجام گرفت. در این روش 33 میکرولیتر عصاره آنزیم را با یک میلی‌لیتر نتیجه از سویسترا-پراکسیداز را جفت 13 میلی‌مترلار گویاکول، ۵ میلی‌مترلار پراکسید هیدروژن (H2O2) مخلوط نموده و به میلی‌مترلار فشار سطح توانایی (pH=7) ۱۰ ثانیه در طول موج ۴۷۰ nm توسط دستگاه اپرا (Bio Tek Powerwave XS2) مدت بیست دقیقه با فاصله 10 ثانیه جذب آن قرایت شد. برای ساختن ۱ میلی‌لیتر فشار سطح توانایی ضریب یک ۶۱ میلی‌لیتر سطح نمونه‌برداری میلی‌مترلار با یک میلی‌لیتر سطح دی ای‌بای در ۵۰ میلی‌تریک شد.

اثدازگری سرعت فعالیت آنزیم کاتالاز (CAT) (Sinha 1977) اندازهگری فعالیت آنزیم کاتالاز با کمک روش با انتکاک تغییرات صورت گرفته. در این روش از واکنش کاهش دی‌کرومیت سطح توانایی در اسیدبندی به یک کرومیک استانت و نشانه به این کرومیک استانت به خوراک کروماتوگرافی و حساب کردن پراکسید و حرازات استفاده شد. در این روش 5۰۰ میکرولیتر عصاره آنزیم رقیق شده (نسبت 1:16) با یک میلی‌لیتر فشار سطح توانایی ضریب ۱۰۰۰ میکرولیتر محلول هیدروژن پراکسید ۶۰ میلی‌مترلار واکنش آغاز شد. پس از گذشت زمان‌های معین (۲، ۴ و ۸ دقیقه از شروع واکنش) با استفاده از ۳ میلی‌لیتر عطر دی‌کرومیت (5%) لوله‌های آزمایشی به سرعت داخل محیط آب جوش به مدت ۱۰ دقیقه قرار داده و پس از تشکیل رنگ سبز در تیونه‌ها فاز بالایی محلول‌ها با دستگاه البزا در طول موج ۵۰۲ (Bio Tek Powerwave XS2) تناوتو قرایت شد. به منظور تعیین میزان پراکسید هیدروژن مصرفی توسط آنزیم کاتالاز منحنی استاندارد به کمک غلظت‌های متفاوت پراکسید هیدروژن بررسی شد. محلول‌های ۱۵، ۵۰ و ۷۵ میلی‌مترلار از پراکسید هیدروژن همه، و طبق دستورالعمل نتیجه‌گیری تردید. مقدار کمی آنزیم بر حسب واحد در میلی‌گرم پروتئین بیان شد.

متمرین بر گرم است. (Leaf Area Ratio) از نسبت سطح برگ به وزن خشک کل بوته بدست آمده. واحد آن متمرین بر گرم است.

سرعت رشد گیاه (Crop Growth Rate) این صفت با استفاده از فرمول زیر محاسبه شد. که، وزن خشک بوته در زمان ۱ و ۲ وزن خشک گیاه در زمان ۱ و ۳ باشد. و همچنین نشانه‌های سطح زمین اشغال شده می‌باشد. واحد GA گرم بر متمرین زمین در روز می‌باشد.

\[
\text{CGR} = \frac{[w(2)-w(1)]}{(t(2-t(1)) \times GA)}
\]

حداکثر کارایی فتوشیمایی فتوسیستم II این خصوصیت توسط دستگاه کارآفرین فتوشیمایی محاسبه شد. نحوه محاسبه این بهصورت زیر است. (۲). فلوئوس‌فتوسیستم

حداکثر فتوشیمایی.

میزان سریزیک برگ: اندازهگری سریزیک برگ (که تخمین محتمل‌تری کارآفرین برگ می‌باشد) با استفاده از دستگاه MINOLTA-Japan مدل SPAD-502 بدون تحریب بانه‌های گیاهی انجام شد.

سنسور (Relative Water Content) محاسبه آب نسبی برگ منظور اندازهگری این صفت. تعداد ۱۰ برگ از هر کرت انتخاب شد. این برگها در داخل کیسه‌های نایلونی قرار گرفتند و انتقال به آزمایشگاه درون فلزکن بخ که کف آن بین بود قرار گرفتند. در آزمایشگاه، ابتدا وزن آن‌ها اندازهگری شد. سپس به منظور تعیین وزن در حال حاضر تزریق کامل با گیاه به‌دست آمده در دستگاه، تابش در دمای اتاق، در داخل آب نقطه غوطه‌بردی در پایان، به منظور تعیین وزن خشک برگ، به‌دست آمده در دستگاه ۲۴ ساعت در دمای ۷۰ درجه سانتی‌گراد قرار داده شدند. سپس رعایت ظرف RWC در خانه را به‌وقت دریافت گیاه برگ و سپس به‌وقت دریافت FW را به‌وقت دریافت گیاه برگ در دستگاه. وزن برگ به‌وقت دریافت DW را به‌وقت دریافت گیاه برگ و سپس به‌وقت دریافت (Eger and Tevini, 2002)

\[
\text{FWC} = \frac{[\text{FW-DW}]/(\text{TW-DW})} \times 100
\]

اندازهگری سرعت فعالیت آنزیم پراکسیداز (POD) یا برای
نرم افزار انجم شد. داده‌های جمع‌آوری شده برای صفات مختلف با استفاده از نرم افزار MSTAT-C مورد تست رمّال بود. نتایج واریانس و مقایسه میانگین‌ها فارا که وندیده. برای مقایسه میانگین‌ها از آزمون چند دامنه ای ذاتک در سطح احتمال 5 درصد استفاده گردید.

نتایج و بحث:

محتوای آب نسبی یگ: نتایج حاصل نشان داد که نش خشکی اثر معناداری بر محیوت آب نسبی یگ داشت. (جدول 3) و مقدار آن در شرایط رطوبتی مناسب بیشتر از شرایط نش خشکی بود (به ترتیب در شرایط نش خشکی و بدون نش خشکی 3/39 و 27/99 درصد). میان‌آماری و همکاران (1389) نش گزارش کردند که افزایش شدت نش خشکی، محیوت آب نسبی یگ سویا به طور معناداري کاهش پیدا کرد. فاکتور یگ اثر معناداری بر محیوت آب نسبی یگ نداشته (جدول 3).

میزان سیرینگی یگ: اثر تیمار رطوبتی بر میزان سیرینگی یگ برم معنادار بود (جدول 3) و میزان سیرینگی یگ در شرایط رطوبتی مناسب بیشتر از شرایط نش خشکی بود (به ترتیب در شرایط نش خشکی و بدون نش خشکی 5/74 و 54/74 واحد اسید). نتایج و گونتا (2007) گزارش کردند نش خشکی باعث کاهش غلظت گلولیفیک برگ‌ها می‌شود. آنلیون و همکاران (1995) دریافت کردند که بازکردن نش خشکی غلظت کلروفیک برگ‌ها افزایش می‌آید: اگر که یگ نسبی کلروفیک افایی و افزایش میزان سیرینگی یگ می‌گردد. با توجه به نتایج خیلی زیاد میزان کلروفیک در سیرینگی یگ، پیاده‌سازی کلروفیک به عنوان شاخصی از نش خشکی شناخته شده است و میزان پیاده‌سازی آن به معنی شاخصی از احتمال کاهش به نش است. کرد این نتایج اثر معناداری بر میزان سیرینگی یگ داشت (جدول 3) بر اساس مقایسه میانگین‌ها یگ نو. بیماری F6 (خاکاربرد + محلول پاشی در مخلوط شاخه‌هایی و F7 (خاکاربرد + محلول پاشی در محلول گلدهی) بر اساس مقایسه بین F6 و F3 (محلول پاشی در محلول شاخه‌هایی) در Excel محاسبات آماری با استفاده از نرم افزار SPSS و دیگر محاسبات طبقه‌بندی محاسبات آماری با استفاده از نرم افزار Excel شبند و محاسبات قبل از تجزیه واریانس و دیگر محاسبات آماری با استفاده از نرم افزار SPSS و دیگر محاسبات طبقه‌بندی
جدول 2: تجزیه واریانس صفات فیزیولوژیک تحت تأثیر فاکتورهای مورد بررسی (میانگین نمرات)

<table>
<thead>
<tr>
<th>میزان</th>
<th>سرعت حرکت</th>
<th>شاخص</th>
<th>سطح پزوه</th>
<th>نسبت</th>
</tr>
</thead>
<tbody>
<tr>
<td>متوسط</td>
<td>۱/۰۶۰۵</td>
<td>۰/۰۲۹۳</td>
<td>۱/۰۲۹۳</td>
<td>۰/۰۱۰۳</td>
</tr>
<tr>
<td>آزمایشگاه</td>
<td>۱/۰۲۹۳</td>
<td>۰/۰۴۴۸</td>
<td>۰/۰۴۴۸</td>
<td>۰/۰۲۶۲</td>
</tr>
</tbody>
</table>

جدول 1: مقایسه میانگین‌های صفات فیزیولوژیک تحت تأثیر سطوح تیمار کود آمین

<table>
<thead>
<tr>
<th>میزان</th>
<th>سطح تیمار کود</th>
<th>آب پری</th>
<th>سرعت حرکت</th>
<th>شاخص</th>
<th>سطح پزوه</th>
<th>نسبت</th>
</tr>
</thead>
<tbody>
<tr>
<td>متوسط</td>
<td>۱/۰۶۰۵</td>
<td>۱/۰۴۴۸</td>
<td>۱/۰۴۴۸</td>
<td>۱/۰۱۰۳</td>
<td>۱/۰۲۹۳</td>
<td>۱/۰۲۹۳</td>
</tr>
<tr>
<td>آزمایشگاه</td>
<td>۱/۰۴۴۸</td>
<td>۱/۰۴۴۸</td>
<td>۱/۰۴۴۸</td>
<td>۱/۰۱۰۳</td>
<td>۱/۰۲۹۳</td>
<td>۱/۰۲۹۳</td>
</tr>
</tbody>
</table>

میانگین های سطوح کود تیمار کود آمین می‌باشد.

مقدار بیشتری را به خود اختصاص دادند (جدول ۴). این موضوع تأثیر مثبتی به‌صورت کارولفیلا نشان می‌دهد (۱۳۸۴ و ۱۳۸۵).

۱۳۸۴ و ۱۳۸۵ مقدار بیشتری را به خود اختصاص دادند (جدول ۴). این موضوع تأثیر مثبتی به‌صورت کارولفیلا نشان می‌دهد (۱۳۸۴ و ۱۳۸۵).
فضای ویژه آزمی پراکسیداز: تیمار رطوبتی اثر معنی‌داری بر میزان فعالیت ویژه آزمی پراکسیداز نداشت.

(جدول 3) نتایج مشابه معنی‌دار است از تأثیر معنی‌داری روی فعالیت آزمی کاتالاز از آزمایش و همکاران de Campos و همکاران Manivannan (2011) مشاهده شده. در سال‌های 2008 و همچنین (2010) افزایش فعالیت آزمی پراکسیداز را در یک پای که نشان خشکی گزارش نموده‌اند. این صفت تحت تأثیر تیمار کود آهن و اثر مقابله تیمارهای رطوبتی کود آهن فاقد گرفت (جدول 2). در اساس مقایسه‌های معانی‌گذار کاربرد کود آهن موجب افزایش فعالیت ویژه آزمی پراکسیداز و سه تیمار (ف4، ف6 کاربرد، F8 محلولی‌پاشی در محلول گلدهی) و F7 (ف6 کاربرد + محلولی‌پاشی در محلول گلدهی) دارای فعالیت آزمی پراکسیداز بیشتری بودند (جدول 2). همچنین بر اساس مقایسه‌های معانی‌گذار اثر مقابله تیمارهای (ف6 کاربرد + محلولی‌پاشی در محلول گلدهی) و F4 (محلولی‌پاشی در محلول گلدهی) در شرایط بدون نش خشکی و تیمار F4 (محلولی‌پاشی در محلول گلدهی) در شرایط نش خشکی مقایر بیشتری از فعالیت این آزمی داشتند (جدول 2).

فحلاکت ویژه آزمی کاتالاز: تیمار رطوبتی اثر معنی‌داری بر فعالیت ویژه آزمی کاتالاز داشت (جدول 2) و مقدار آن در شرایط بدون نش خشکی بیشتر از شرایط دیم بود. نتیجه حاصل با توجه برخی از مطالعات قبلی مطلی‌گر دارد. در یک آزمایش بر روی گرایش‌های پایه مشاهده شده که تحت شرایط خشکی میزان فعالیت آزمی کاتالاز به طور معنی‌داری کاهش (درحلات احیاء، میزان FV زیاد است. نشانه‌های محیطی به علت ممکن بود که در نتایج آزمایش توده و F3 میزان سه شدت نش خشکی کاهش شد که در نتایج آزمایش تردنه که FV/fm میزان آزمایش و همکاران (1389) معنی‌داری دارد. یا اثر اثر معنی‌داری بر حداکثر کارایی فتوشیمیا FV/fm (جدول 2) نشان داد که رطوبتی بر سرعت رشد گیاه اثر معنی‌داری داشت است (جدول 2). ۲۰۱۳ میزان سرعت رشد گیاه در شرایط بدون نش خشکی بیشتر از شرایط نش خشکی بود (به ترتیب 15/0/6 و 5/0/2 گرم بر متر مربع در روز). بنابراین نشان آب در رشد و نمو سلول و در نتیجه افزایش سرعت رشد گیاه را نشان می‌ده. تیمار کود آهن اثر معنی‌داری بر این صفت نداشت؛ یا این حالت است متقابل تیمارهای رطوبتی و کود آهن بر سرعت رشد گیاه معنی‌دار بود (جدول 2). بر اساس مقایسه‌های معانی‌گذار تیمارهای F3 (محلولی‌پاشی در محلول گلدهی) و F4 (محلولی‌پاشی در محلول گلدهی) و شاخص (ف7 کاربرد + محلولی‌پاشی در محلول گلدهی) در شرایط فاصله‌گذاری مقادیر بیشتری از فعالیت این آزمی داشتند (جدول 2).

(درحلات احیاء، میزان FV زیاد است. نشانه‌های محیطی به علت ممکن بود که در نتایج آزمایش توده و F3 میزان سه شدت نش خشکی کاهش شد که در نتایج آزمایش تردنه که FV/fm میزان آزمایش و همکاران (1389) معنی‌داری دارد. یا اثر اثر معنی‌داری بر حداکثر کارایی فتوشیمیا FV/fm (جدول 2) نشان داد که رطوبتی بر سرعت رشد گیاه اثر معنی‌داری داشت است (جدول 2). ۲۰۱۳ میزان سرعت رشد گیاه در شرایط بدون نش خشکی بیشتر از شرایط نش خشکی بود (به ترتیب 15/0/6 و 5/0/2 گرم بر متر مربع در روز). بنابراین نشان آب در رشد و نمو سلول و در نتیجه افزایش سرعت رشد گیاه را N نشان می‌ده. T تیمار کود آهن اثر معنی‌داری بر این صفت N نداشت؛ یا این حالت است M متقابل Tیمارهای Rطوبتی و کود آهن BR سرعت Rشد گیاه معنی‌دار بود (جدول 2). BR بر اساس M مقایسه‌های معانی‌گذار Tیمارهای F3 (محلولی‌پاشی در محلول گلدهی) و F4 (محلولی‌پاشی در محلول گلدهی) و شاخص (ف7 کاربرد + محلولی‌پاشی در محلول گلدهی) در شرایط فاصله‌گذاری مقادیر بیشتری از Fعالیت این آزمی داشتند (جدول 2).
جدول 5- مقایسه میانگین‌های صفات فیزیولوژیک تحت تأثیر اثر متقابل رژیم رژیمی و رژیمی

نسبت سطح ویژه برگ	سطح ویژه برگ	شاخص	سرعت رشد گیاه	حداقل کارایی	فتوشیمیاپی (SPAD)	پرتوی و (درصد)	کردن نام	اثر متقابل	مجموع	تیمارهای رژیم	نسبت آب	سیستم (f/v)	فتوشیمیاپی (SPAD)	پرتوی و (درصد)	کردن نام	اثر متقابل	مجموع		
0.94/77	0.94/77	0.76/60	0.47/76	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60
0.99/77	0.99/77	0.76/60	0.47/76	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60
0.99/77	0.99/77	0.76/60	0.47/76	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60
0.99/77	0.99/77	0.76/60	0.47/76	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60
0.99/77	0.99/77	0.76/60	0.47/76	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60
0.99/77	0.99/77	0.76/60	0.47/76	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60	0.76/60

میانگین‌های مه‌ستون به‌دست آمده عبارتند از: اولین عدد اطلاعات ممکن در سطح اختلال 0/185 براساس آزمون کاندل می‌باشد.
- F1 = عضو کاربرد کود آهن
- F2 = مصرف کود آهن
- F3 = مصرف خاک کاربرد + مخلوطپاش در محلهی غلاف‌دهی
- F4 = مصرف خاک کاربرد + محلولپاش در محلهی شاخه‌دهی
- F5 = مصرف محلولپاش در محلهی غلاف‌دهی
- F6 = مصرف خاک کاربرد + محلولپاش در محلهی شاخه‌دهی
- F7 = مصرف خاک کاربرد + محلولپاش در محلهی غلاف‌دهی

- A1 = شرایط بندی تنش عضوی
- A2 = شرایط بندی غلاف‌دهی
- A3 = شرایط بندی شاخه‌دهی

جدول 6- تجزیه‌ واریانس سوئیف پرتویی تحت تأثیر فاکتورهای مورد بررسی

| فعالیت ویژه آزمین پراکسیداز |
|-----------------|-------------|-------|----------------|-------------|-------|----------------|-------------|-------|----------------|-------------|-------|----------------|-------------|-------|----------------|-------------|-------|----------------|-------------|
| 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 |
| 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 |
| 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 | 0.10/17 |

۳۰۸ و ۳۰۹ به‌ترتیب عدد اختلاف معنی‌دار و اختلاف معنی‌دار در سطح اختلال 0/185 و 0/185
جدول 7- مقایسه‌ی میانگین‌های صفات بیوشیمیایی تحت تأثیر سطوح تیمار کود آمن (U mg⁻¹ Prot)

<table>
<thead>
<tr>
<th>سطح تیمار کود آمن</th>
<th>فعالیت ویژه آنزیم کاتالاز</th>
<th>فعالیت ویژه آنزیم پراکنسایز (U mg⁻¹ Prot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>221 𝑄</td>
<td>68/82 𝑑</td>
</tr>
<tr>
<td>F2</td>
<td>25/2 𝑡, 𝑏</td>
<td>89/33 𝒂, 𝒄</td>
</tr>
<tr>
<td>F3</td>
<td>24/8/5 𝑧</td>
<td>47/98 𝒂, 𝒄</td>
</tr>
<tr>
<td>F4</td>
<td>28/21 𝑟</td>
<td>45/69 𝑑</td>
</tr>
<tr>
<td>F5</td>
<td>27/0/5 𝑎, 𝑏</td>
<td>80/37 𝜀</td>
</tr>
<tr>
<td>F6</td>
<td>30/4/5 𝑎, 𝑏</td>
<td>54/36 𝜀</td>
</tr>
<tr>
<td>F7</td>
<td>32/7/4 𝒉</td>
<td>13/6 𝒓</td>
</tr>
<tr>
<td>F8</td>
<td>33/7/4 𝒉</td>
<td>10/5/4 𝒙</td>
</tr>
</tbody>
</table>

میانگین‌های هر ستون که دارای یک حرف مشترک باشند فاقد اختلاف معنی‌دار در سطح 0/05 بر اساس آزمون چند دانه‌ای دانکن–ساخستگی هستند.

جدول 8- مقایسه‌ی میانگین‌های صفات بیوشیمیایی تحت تأثیر آنتی‌متیبل سطوح رژیم رطوبتی و کود آمن (U mg⁻¹ Prot)

<table>
<thead>
<tr>
<th>آنتی‌متیبل رژیم رطوبتی و کود آمن</th>
<th>فعالیت ویژه آنزیم کاتالاز (U mg⁻¹ Prot)</th>
<th>فعالیت ویژه آنزیم پراکنسایز</th>
<th>دانکن‌می‌باشند</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1F1</td>
<td>97/4/9 𝑄</td>
<td>57/17 𝜀, 𝜇, 𝑑</td>
<td>A1F1</td>
</tr>
<tr>
<td>A1F2</td>
<td>74/2/7 𝑄</td>
<td>47/85 𝐼, 𝑘</td>
<td>A1F2</td>
</tr>
<tr>
<td>A1F3</td>
<td>12/3/6 𝑄</td>
<td>84/21 𝑑, 𝜀</td>
<td>A1F3</td>
</tr>
<tr>
<td>A1F4</td>
<td>14/0/7 𝑄</td>
<td>12/3/6 𝑒, 𝜀</td>
<td>A1F4</td>
</tr>
<tr>
<td>A1F5</td>
<td>14/0/7 𝑄</td>
<td>12/3/6 𝑑, 𝜀</td>
<td>A1F5</td>
</tr>
<tr>
<td>A1F6</td>
<td>16/0/7 𝑄</td>
<td>12/3/6 𝑒, 𝜀</td>
<td>A1F6</td>
</tr>
<tr>
<td>A1F7</td>
<td>16/0/7 𝑄</td>
<td>12/3/6 𝑒, 𝜀</td>
<td>A1F7</td>
</tr>
<tr>
<td>A1F8</td>
<td>34/4/7 𝑑</td>
<td>60/4/7 𝒇</td>
<td>A1F8</td>
</tr>
<tr>
<td>A2F1</td>
<td>18/1/7 𝑏</td>
<td>11/7/7 𝑎</td>
<td>A2F1</td>
</tr>
<tr>
<td>A2F2</td>
<td>23/4/7 𝑑</td>
<td>9/0/7 𝑒</td>
<td>A2F2</td>
</tr>
<tr>
<td>A2F3</td>
<td>14/6/7 𝑑</td>
<td>9/0/7 𝑒</td>
<td>A2F3</td>
</tr>
<tr>
<td>A2F4</td>
<td>50/4/7 𝑒</td>
<td>30/4/7 𝑒, 𝜀</td>
<td>A2F4</td>
</tr>
<tr>
<td>A2F5</td>
<td>37/0/7 𝑑</td>
<td>50/4/7 𝑒, 𝜀</td>
<td>A2F5</td>
</tr>
<tr>
<td>A2F6</td>
<td>50/4/7 𝑑</td>
<td>13/2/7 𝑎</td>
<td>A2F6</td>
</tr>
<tr>
<td>A2F7</td>
<td>50/4/7 𝑑</td>
<td>13/2/7 𝑎</td>
<td>A2F7</td>
</tr>
<tr>
<td>A2F8</td>
<td>50/4/7 𝑑</td>
<td>13/2/7 𝑎</td>
<td>A2F8</td>
</tr>
</tbody>
</table>

- میانگین‌های هر ستون که حداقل دارای یک حرف مشترک باشند فاقد اختلاف معنی‌دار در سطح احتمال 0/05 بر اساس آزمون چند دانه‌ای دانکن–ساخستگی هستند.

- F1 = عدم کاربرد کود آمن، F2 = مصرف کود آهن بصورت خاک کاربرد، F3 = محلول‌پاشی در مرحلهٔ شاخه‌دهی، F4 = محلول‌پاشی در مرحلهٔ گلدله‌دهی، F5 = محلول‌پاشی در مرحلهٔ شاخه‌دهی و گلدله‌دهی، F6 = مصرف خاک کاربرد در مرحلهٔ غلاف‌دهی، F7 = مصرف خاک کاربرد و محلول‌پاشی در مرحلهٔ غلاف‌دهی

- A1 = شرایط تش خشکی، A2 = شرایط بدون تنش خشکی
می‌باشد. نتایج آزمایش حاضر نشان داد که فاکتور کود آهن نیز بر خاکیت و رشد آزمایشات آن‌المللی پاتریک کالالاز (جدول 7) و با استعمال کود آهن، مقدار انرژی فعالیت 477 (ویژه F7 بیشترین 211 واحد بر میلی‌گرم پروتئین) و تیمار F1 کمترین (7 واحد بر میلی‌گرم پروتئین) مقدار را به خود اختصاص دادند (جدول 7). یکی از دلایل اصلی این است که این آزمیز از دسته پاتریک‌های آهن‌دار محصول می‌شود و در سلول‌های غاهی و جانوری هنگامی که مقدار ماده براکئید بهره‌ور در محیط زیاد باشد، وارده می‌شود (2009). سالاردوی و مجتهدی (2013) و قربانی و بابلان (2014) نیز گزارش کرده‌اند که در صورت کمبود آهن، فعالیت آنتی‌کاسپین‌های نظیر کالالاز و براکی‌پاز کاهش یافته است که با نتایج آزمایش حاضر مطابقت دارد.

توجه‌گیری:

نتایج تحقیق حاضر نشان می‌دهد که تنش خشکی به طور معنی‌داری موجب کاهش مقدار صفات محتوای آب نسبی برق، میزان سیژی‌گرگ، حداکثر کارایی فتوشیمیاً فتوسیستم II سرعت رشد گیاه، شاخص سطح برق و فعالیت ویژه آزمیز کالالاز در گیاه نخود شد. کود آهن نیز اثر معنی‌داری بر میزان سیژی‌گرگ، حداکثر کارایی فتوشیمیاً فتوسیستم II سرعت رشد گیاه، شاخص سطح برق و فعالیت ویژه آزمیز کالالاز و براکی‌پاز کاهش یافته است و سبب افزایش صفات مادرک و گریز در بیماری‌های آهن نوری برق‌های گیاهی نخود سبب کاهش اثرات تنش خشکی شد.

فیزیولوژی ارقام مقاوم و حساس‌گردم و معنی‌داری مناسب

درین مقاومت به خشکی پایان نامه دکتری، دانشگاه فردوسی، مشهد، ایران.

سیگنک، ک. و ساکاسا، ام. (1380). اصلاح حیوانات سرمازده و برای تحمل بر سرما و توجه به نیاز و ع.، نظریه، اه و سلطانی، م. سازمان تحقیقات آموزش و تربیت کشاورزی، تهران.

منابع:

بهرم، م. پهلوان، ر. کریمی، ن. باستانی، ب. (1384). تأثیر مقادیر مختلف کودهای کم صربه آهن و مس بر رشد و عملکرد زنوت‌پاتریک تنوپ تحت شرایط دم‌پوشانه الگوی‌زرا و در لهستان. مجله علوم کشاورزی و منابع طبیعی. 5(113): 300-19.

خزاحه، ح. (1381) اثر تنش خشکی بر عملکرد و خصوصیات
ard areas subject to water stress. Industrial Crops and Products 41: 203–213.

