اثر شدت تابش بر تحمل به سرمای‌سوزی بوسیله زایمان‌های سبز [Glycine max (L.) Merr.]

با استفاده از روش فلورسنس کلروفیل

مريم جتابیان، همت الله پیردشتی 1 و یارسی یعقوبیان

1 گروه زراعت و اصلاح نباتات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، گروه زراعت، پژوهشکده زنبوریوک و رست فناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری، گروه زراعت و اصلاح نباتات، دانشگاه کشاورزی و منابع طبیعی رامی خورستان (تاریخ دریافت: 13/11/99 تاریخ پذیرش نهایی: 13/1/100)

چکیده:

به منظور بررسی اثر شدت سرمای و شدت تابش بر پارامترهای فلورسنس کلروفیل و امکان به کارگیری این روش برای ارزیابی اثر شدت تابش در تحمل سرما در گیاه سویا آزمایشی در قالب طرح پایه کاملاً تصادفی به صورت فاکتوریال اکت (آرا. غریبی و ک. ام. گرهی) در روز 32 و 33، و BP سویا در گلخته و شرایط ملطوب شرعی کشت شده و پس از 7 هفته، به مدت 12 روز تحت تیمارهای دمایی (بیش و 28 درجه سانتی‌گراد) و تابشی (1000 و 8000 لوسک) قرار گرفتند. نتایج نشان داد که شدت سرما در هر دو تیمار تابشی موجب کاهش فلورسنس منعی (Fv/Fm) حداکثر کارایی کوانتمی فتوسیستم II (Fv/Fm) و کارایی کوانتمی فتوسیستم I و II (Fv/Fm) تحت تنش سرمای در رقمنهایی، سبز و سبز کننده (Fv/Fm) تحت تنش سرما در این رقمنهایی (Fv/Fm) و انتی‌پرایش Y(NO) تحت تنش سرمای در این رقمنهایی (Fv/Fm) و انتی‌پرایش Y(NO) تحت تنش سر

[بی‌شما متن نوشته نشانی دریافت نشده است]
به اختلال در سوخت و ساز و رشد سیستم شده و گسترش آن را بر محدودیت مواردی می‌سازد (Van Heerden et al., 2003) و (1981) Jackson و Hume اساس گزارش حداکثر درجه حرارت هسته سانتی گراد مانع از تشکیل غلاف در سیستم مورد.

در این میان اگر سرم همراه با شدت تابش زیاد رخ دهد خسارت ناشی از آن شدیدتر خود یکو با این وجود، گیاهان رشد یافته در مناطق مزئع گلاب در معرض شدت تابش با و در دمای پایین قرار دارند (Streb et al., 2003) طبیعتاً با شرایط آب و هواهای این منطق سازگار شده و دارای مکانیسم‌های حفاظتی کارآمدی می‌باشد (Koerner, 2003). حاصل که گیاهان رشد یافته در مناطق کم از همان در زمان و فضای ناحیه نشین سرم، انتقال دهنده سرم نشود در نتیجه ارثی اضافه از طریق گل اکسپلکت در مطالعات متعدد تابش شده است که انتقال‌گری فلورسانس کارافول برگ‌ها، روشه‌های طبیعی برای مطالعه فلورسانس کارافول و ارزیابی وضعیت فیزیولوژیک (Behra و همکاران (2002) از این روش در گدام تحت نشان خشک و نشان نشین زیاد، (Maxwell و Johnson, 2005) در گامه درخت تحت خواب خود شد (1387) بیان داشتند که نشان دمای پایین در گیاهان حساس به سرم حتی تحت شرایط مزئع تابش نیز می‌تواند نشان دهنده گیاهان کاریکاتوری می‌باشد (1389) در تجربه اختلال در فعالیت‌های فلورسانس کارافول تحت تأثیر دمای پایین باعث کاهش ساخت کروبی‌های قابل استفاده برای تویل احیای مایع شده می‌شود (Zamski و Schaffer, 1996; Ort, 2002) در گیاهان انرژی حاصل از تابش بعد از جذب به‌وسیله مولکول‌های کارافول برگ، در طول زنگیره اندازه الکترون می‌تواند و برای اجرای فلورسانس کارافول (Fluorescence) مصرف می‌گردد و انرژی اضافی با به‌صورت گرم هدی می‌رود (فرآیند غیر فتوشیمیایی) یا به‌صورت نشین قرمز بر اثر داده می‌شود که فلورسانس کارافول نامیده می‌شود.
پژوهش در باغ سال 1392 در گلخانه تحقیقاتی و شرایط کنترل شده پژوهشکده زنبیل و زیست‌فناوری طریصان، واقع در دانشگاه علوم کشاورزی و منابع طبیعی ساری به صورت فاکتوریل در قالب طرح کاملاً تصادفی به اجرا درآمد. تیمارهای آزمایشی شامل دو رقم سویا (۲۶ و BP) و سطح دمای (شامل شاهد (۲۸ درجه سانتی گراد) و تن سرمایه) و (نیم درجه سانتی گراد) و دو طبقات نسبت نسبت (۸۰۰۰ و ۶۰۰۰ لیوکس) بود. بروز نیاز سیاهی با محوله هیپرکارت سمتی یک درصد به مدت ۵ دقیقه پدیده و در پای یا آب مطق شست و شو و گردی. تعداد شکر بعد بذر در گلخانه‌های به قطع و ارتفاع ۱۲ سانتی‌متر و در عمق دو سانتی‌متری خاک کشت گردید. گل‌های با مدت ۲۰ روز در شرایط مطلوب رشدی (دمای ۲۸ درجه سانتی گراد و دوره تابستان ۱۵ ساعت) نگهداری شد. میزان عناصر اصلی آزمایشی به مدت ۱۲ روز به اندازه‌های شرکت SPG30000 نور صنعتی متغیر بود. از این نشان سرمایه و تابی انداره‌گیری پاتوماهای فلورسنس کلروفیلی در آخرین برگ (PAM 2500-Walz) و (Genty و بر اساس روش وسایل (1989) صورت گرفت. بدین منظور، برگ‌ها با استفاده از کیفهای مخصوص برگ (2300-B, Walz) به مدت ۲۰ دقیقه در ترکیه قرار گرفتند. فلورسنس حادثاتی (Fo) به همراه مراکز و ویگنی باز فتوسیستم II. توسط ناش تهیه شده با ابزار فیزیکی بالایی (Fm) و باتی بالاس، تولید (۰.۱ mmol m⁻² s⁻¹) اشباع ناش (8000 μmol m⁻² s⁻¹) به مدت ۵ دقیقه در برگ‌های سازگار با تکنیک حساس با هدایت گاز. در محله بعد نوبت منی سفید رنگ (۶۸۵ μmol m⁻² s⁻¹) به صورت متوسط به برگ npq بانیه دید و بعد از آن میزان فلورسنس پایدار (Fo) ثبت و مجدداً بالاس اشباع ناش (8000 μmol m⁻² s⁻¹)
(Klughammer and Schreiber, 2008)

<table>
<thead>
<tr>
<th>معلم</th>
<th>شناسه</th>
<th>فلوروپلاتس منغیر</th>
<th>حداکثر کربناتی فلوتوسیستم II</th>
<th>کربناتی فلوتوسیستم I و مؤثر فلوتوسیستم II</th>
<th>کربناتی فلوتوسیستم II</th>
<th>فلوتوسیستم II</th>
<th>فلوتوسیستم II</th>
<th>فلوتوسیستم II</th>
<th>فلوتوسیستم II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fm-Fo</td>
<td>Fv</td>
<td>Variable fluorescence</td>
<td>Maximum photochemical quantum yield of photosystem II</td>
<td>Effective photochemical quantum yield of photosystem II</td>
<td>Quantum yield of regulated non-photochemical</td>
<td>Quantum yield of non-regulated non-photochemical</td>
<td>Fm/Fm</td>
<td>Fm/Fm</td>
<td>Fm/Fm</td>
</tr>
<tr>
<td>(Fm-Fo)/Fm</td>
<td>Fv/Fm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Fm’-F)/Fm’</td>
<td>Y(II)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Fv/Fm’)/(Ft/Fm)</td>
<td>Y(NPQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ft/Fm</td>
<td>Y(NO)</td>
<td>Non-photochemical quenching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fm-Fm/Fm’</td>
<td>NPQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>جدول 2</th>
<th>میانگین میزان اثر تیمارها مورد بر پاراتریاهای فلوتوسیستم کربنیل در گیاه سویا</th>
</tr>
</thead>
<tbody>
<tr>
<td>ضریب ضخیم تغییرات</td>
<td>XLV</td>
</tr>
<tr>
<td>شدت تابش (Watt)</td>
<td>(درصد)</td>
</tr>
<tr>
<td>رقم (V)</td>
<td>1</td>
</tr>
<tr>
<td>سرما (C)</td>
<td>1</td>
</tr>
<tr>
<td>درجه آزادی</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>فرمول</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6.8</td>
<td>0.0</td>
</tr>
<tr>
<td>6.7</td>
<td>0.0</td>
</tr>
</tbody>
</table>

** غیر معنی‌دار. * به ترتیب معنی‌دار در صفحه احتمال پنجم و یکم درصد.**

شدت ناش: کاهش فلوتوسیستم حداکثر را به دنبال داشته شد. واکنش فلوتوسیستم حداکثر (Fm) نسبت به شدت سرمای specified، عكس فلوتوسیستم حداکثر به و در در جوامع سازنده در 2008 و 800 لوکس، فلوتوسیستم حداکثر (Fm) به صورت معنی‌داری نسبت به شاهد (به ترتیب حدود 0.27 و 33 درصد) افزایش داد. این وجود، میزان افزایش آن در شدت ناش (0.07 لوکس) نسبت به شدت تابش کم (200 لوکس) بیشتر بود. همچنین در تیمار شاهد (بدون شدت سرما) افزایش
اثر شدت نابی بر تحمیل به سرمای سویا (Glycine max (L.) Merr.)

شکل 1–اثر متقابل نش سرمای حساسیت به گلخانه فلوروسانس حساسیت (a)، فلوروسانس حساکر (b)، فلوروسانس حساکر (c)، حداکثر کاراکتر کوانتوم فتومیسم II (d)، فلوروسانس پایدار (e) و خاموشی غیر فتوشیمیایی (f) در گیاه سویا.

مطالعه بیشترین کاهش در Fv/Fm و Fv می‌تواند به سرمای سویا در فتوشیمیای هسته‌ای منجر به افزایش پارامترهای فلوروسانس پایدار (Fp) و خاموشی غير فتوشیمیایی (NPQ) در هر دو شرایط نابی گردد. به طوری که این افزایش در شدت نابی کم و زیاد برابر به Fp در حدود 30 و 50 درصد و برای NPQ به ترتیب حدود 38 درصد و 1/1 برای بود (شکل 1-e و 1-f). در پژوهش حاضر کاراکتر کوانتوم فتوشیمیایی مؤثر در علامت شدت نابی بر پارامترهای فتوشیمیایی می‌باشد.
برخوردار بود (شکل 3-a و c). واکنش هدفگر کارایی کیانی کنتنیم همچنین کارایی Y(II) فتوسیستم II تعیین شده کیانی [Y(NPQ)] II کیانی گریفتوسیستمی نشته کیانی [Y(NO)] II تمایل تأخیر کیانی سرما و شدت تابش قرار گرفتند (شکل 2). در هر دو بیمار تابشی مورد مطالعه کیانی، سرما میزان Y(II) را کاهش داد به طوری که این کاهش از حدود 26 درصد دو بیمار تابشی 2000 لیکس به حدود 75 درصد در تیمار 8000 لیکس رسید. همچنین در هر دو سطح تابش Y(NPQ) کاهش یافته در BP و Y(NO) به ترتیب حدود 81 و 86 درصد و 3/73 و 2/73 درصد (bindung) همراه بود.

برهmkش سرما و رقم: در هر دو بیمار مورد مطالعه (320 و 390/3 درصد) و در هر دو بیمار BP و میزان Y(NPQ) به ترتیب حدود 45 و 2/8 درصد و افزایش Y(NO) به ترتیب حدود 1/5 و 60 درصد بود. برهمکش شدت تابش و رقم: در پهلوه حاضر، افزایش Y(II) افزایش Y(NPQ) و Y(NO) به ترتیب حدود 1/5 و 60 درصد بود. برهمکش شدت تابش و رقم: در پهلوه حاضر، افزایش Y(II) افزایش Y(NPQ) و Y(NO) به ترتیب حدود 1/5 و 60 درصد بود.
آثر شدت تابش بر تحمیل به سرمای سویا (Glycine max (L.) Merr.)

شکل ۴ - اثر شدت سرمای پارامترهای فلورسنس کلروفیل Y(NO) و Y(NPQ) و Y(NO) در دو رقم سویا

جدول ۳ - پارامترهای فلورسنس کلروفیل

<table>
<thead>
<tr>
<th>شدت نابی (لوكس)</th>
<th>NPQ</th>
<th>Ft</th>
<th>Fv/Fm</th>
<th>Fv</th>
<th>Fm</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۴۷</td>
<td>۱/۰۴</td>
<td>۱/۱۹</td>
<td>۰/۸۸</td>
<td>۰/۴۰</td>
<td>۷/۴۸</td>
</tr>
<tr>
<td>۸۰</td>
<td>۱/۱۶</td>
<td>۱/۰۵</td>
<td>۳/۳۸</td>
<td>۵/۸۴</td>
<td>۸/۰۰</td>
</tr>
<tr>
<td>۲۰۰</td>
<td>۱/۱۲</td>
<td>۱/۰۹</td>
<td>۳/۳۴</td>
<td>۲/۶۲</td>
<td>۴/۰۰</td>
</tr>
<tr>
<td>۲۰۰</td>
<td>۱/۱۱</td>
<td>۱/۱۱</td>
<td>۴/۸۹</td>
<td>۳/۱۰</td>
<td>۴/۵۴</td>
</tr>
</tbody>
</table>

پارامترهای کوارتموی غرفشوشیمایی مؤثر فلورسنس II Y(NPQ) و کوارتموی غرفشوشیمایی نظیم‌شده [Y(NO)] II

بحث

پایه‌های آزمایش حاضر بانگر افراش میزان فلورسنس حداکثر اثر شدت سرمای در هر دو سطح نابی (۲۰۰۰ و ۱۴۷)
شکل ۵- اثر میزان تابش بر پارامترهای $Y(\text{NO})$, $Y(\text{NPQ})$ و $Y(\text{II})$ در دور رقم سویا

احیای همه ناقل‌های الکترون و بسته بودن همه مراکز واکنشی انجام می‌شود (Mehta et al., 2011). در شرایط نش، به عمل کم شدن فعالیت کمپلکس تجزیه کننده و کاهش فعالیت فتوسیستم II کاهش می‌یابد (Aro et al., 1993). نتایج مشابهی به‌طور کلی در نش خشکی در گیاه‌های (Zlatev and Ommen, 2004) و لویا (Zlatev, 2009) ثبت شده است. مؤلفه F_v از تناقض $Yordanov, 2004$ گزارش شده است. مؤلفه F_v و F_m محاسبه شده و راهی برای برنامه‌ریزی و بهبود انتخاب عملکرد خوب مکانیسم فلوئورسنس کلروفلی در شرایط نش و کاهش (Baker and Roosenqvist, 2004) سرعت واکنش‌های فتوشیمیایی است توسط بوت واقعیت F_v/F_m غیر معناداره یا آماری (Roosenqvist, 2004) (Baker and Roosenqvist, 2004; Goncalves et al., 2007) می‌باشد.

نتیجه‌های پایین نسبت F_v/F_m ای را کاهش داد. این شاخص نشانگر حداکثر کارایی اثری محکم به دام افتاده بوده و سیب زمین، مراکز واکنشی باز فتوسیستم II است و کاهش آن باعث تعیید فعالیت فتوسیستم II با پاسخ‌گویی کاهشی می‌باشد که با کاهش F_v/F_m می‌شود و همکاران (1995) نیز گزارش دادند که

$Y(\text{II})$ $Y(\text{NPQ})$ $Y(\text{NO})$

در در دو رقم سویا

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0

0.0 0.6 1.0
متری در افزایش نسبت اسلش طیبی (Fv/Fm) در وسط گیاه سبب گردد. به گونه‌ایکه در نمودار Fv/Fm

همچنین در آزمایش نسبت ای افزایش نسبت طبیعی (Fv/Fm) به همکارانی (NADPH) و یو فیتوسیستم II در شرایط نشیب و به دنبال آن افزایش نسبت کلی و فیتوسیستم II در شرایط نشیب. (Denning-Adams and Adams, 1996)

افزایش نسبت اسلش طبیعی (Fv/Fm) به همکارانی (NADPH) و یو فیتوسیستم II در شرایط نشیب و به دنبال آن افزایش نسبت کلی و فیتوسیستم II در شرایط نشیب. (Denning-Adams and Adams, 1996)
مقدار خود از طریق فرآیندهای غیر محبوک و در نتیجه تحمیل بالاتر آن نسبت به BP می‌باشد. این نتایج با تابع بسته آمده از اندازه‌گیری شاخص‌های فیزیولوژیک در همین آزمایش (داده‌ها نشان داده نشده است) همبستگی و مطالبی دارد.

نتیجه‌گیری:
در مجموع تایید نشان داد که همبستگی‌های تاکید به فرآیندهای سرما به تغییرات BP در اثر شرایط در BP (Fv/Fm) II کوانتومی فتوسیستم II در آزمایشاتی به حساب سرما نشان داد. این نتایج با BP نسبت به BP گزارش یافته در اثر نشان می‌دهد. نسبت بیشتر یافته از (Fv/Fm) II که در صورت BP هنگامی که در Fv/Fm اضافه به BP و کاهش حداقل کارایی BP (Fv/Fm) II نسبت به BP افزایش یافته در اثر نشان می‌دهد.

查ک‌کردنی:

تشریح و کشف: تکنیکهای مختلف از جمله به‌خصوص بزرگ‌ساختن BP در اثر Fv/Fm و کاهش کارایی BP (Goncalves et al., 2007; Baker and Estenssoro, 2004) حساس، این دو پارامتر تحت تأثیر تغییرات محیطی تغییرات ممکن است. همچنین افزایش بیشتر BP در BP بیناهی یافته در BP مقاله با BP نسبت به BP گزارش یافته (Goncalves et al., 2007; Baker and Estenssoro, 2004) اضافی از طریق فرآیندهای غیر فتوسیستمی می‌باشد.

از میان BP یا کاهش BP II، BP III، BP IV سرما در برابر BP II می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرма در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

BP II سرما در BP III، BP IV می‌باشد.

PAM fluorometry and the saturation pulse method. PAM Application Notes 1: 27-35.

