اثر شدت تابش بر تحمل به سرمای سیا [Glycine max (L.) Merr.]
با استفاده از روش فلورسنس کلروفیل

مریم جنتیان، همت الله پیردشتی، و پاسر یعقوبیان

گروه زراعت و اصلاح نباتات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، گروه زراعت، پژوهشکده زنبوری و ریست ناواری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری، گروه زراعت و اصلاح نباتات، دانشگاه کشاورزی و منابع طبیعی رامی خوزستان

(تاریخ دریافت: 13/06/2000)

چکیده

به‌منظور بررسی اثر تنش سرما و شدت تابش بر پارامترهای فلورسنس کلروفیل و امکان به کارگیری این روش برای ارزیابی اثر شدت تابش بر تحمل به سرمای سیا آزمایشی در قالب طرح پایه کاملاً تصادفی به صورت تفاوت‌های انجام گرفت. در روز 27 و 28 دوازدهم بهمن و تابی (1394 و 1390 لپس) در میان گروه‌های غیر از و فلورسنس کلروفیل انسگری گردد. نتایج نشان داد که سرمای در هر دو تیمار تابشی موجب کاهش فلورسنس ضریع [Y(II)] حداکثر کارایی کواناتومی فتوشیمی H و کارایی کواناتومی فتوشیمی مؤثر فتوشیمی H (Fv/Fm) و [Y(NO)] همچنین در این تجربات در شدت تابش 800 لپس بیشتر بود. کاهش [Y(NO)] و خاموشی غیر فتوشیمی (NO) افزایش داد که سرمای این تغییرات در شدت تابش 800 لپس بیشتر بود. کاهش Y(II) تحت تنش سرما در رقم 32/11 بیشتر به BP بیشتر بود. همچنین در این رقم بیشتری از افزایش BP ایجاد شد و از افزایش BP 800 لپس بیشتر. شدت به سیستم فتوشیمی و فتوشیمی مؤثر در بیوتهای سیا و در میان این خصارت در شدت تابش زاید شدیدتر بود. در شرایط تنش سرمایی رقم 42/11 بیشتری از افزایش بیشتر BP ایجاد شد و از افزایش BP 800 لپس بیشتر. شدت به سیستم فتوشیمی و فتوشیمی مؤثر در بیوتهای سیا و در میان این خصارت در شدت تابش زاید شدیدتر بود. در شرایط تنش سرمایی رقم 42/11 بیشتری از افزایش BP ایجاد شد و از افزایش BP 800 لپس بیشتر. شدت به سیستم فتوشیمی و فتوشیمی مؤثر در بیوتهای سیا و در میان این خصارت در شدت تابش زاید شدیدتر بود.

واژگان کلیدی: ارقام سرمای، تندر، سرما، شدت تابش، فتوشیمی H، کارایی کواناتومی

مقدمه

بسباری از گونه‌های گیاهان مناطق گرم‌سیری و نیمه گرم‌سیری مانند سیا، چوبی و پنی زمین که در معرض سرمایگردگی (درجه حراتهای کم، ولی بالای صفر درجه سانتی گراد) قرار می‌گیرد. سپس، پویش گذشته (احمدی و هیرمان، 1383). درجه حراتهای پایین به ویژه در شب در مناطق سرد و مرتفع منجر می‌شود.

رشد بر ویژگی‌های مورفولوژیکی و فیزیولوژیکی بسباری از گونه‌های گیاهان رعای تأثیر گذشت (Lee et al., 2007; Pan et al., 2011) در مراحل حساس رشد و نمو منجر به کاهش عملکرد گیاهان

دموپ: پاپین به عنوان یکی از مهم‌ترین عوامل محدودکننده رشد بر ویژگی‌های مورفولوژیکی و فیزیولوژیکی بسباری از گونه‌های گیاهان رعای تأثیر گذشت (Lee et al., 2007; Pan et al., 2011) در مراحل حساس رشد و نمو منجر به کاهش عملکرد گیاهان

نویسندگان مسئول، نشانی پست الکترونیکی: h.pirdashti@sanru.ac.ir

Wang and Adams, 1980
به اعتیلال در سوخت و ساز و رشد سیاه شده و گسترش آن را
بر محدودیت مواردی می‌سازد (Van Heerden et al., 2003)
اساس گراردش Hume (1981) یک شب سرد با
حداقل درجه حرارت هستند ساوتی گرادمانع از تشکیل
gلاف در گیاه می‌گردد.
در این میان اگر نش سرما همراه با شدت تابش زیاد رخ
دهد خسارتهای ناشی از آن شدیدتر خواهد بود. با این وجود,
گیاهان رشد یافته در مناطق مرتفع اغلب در معرض شدت
تابش بالا و دمای پایین قرار دارند (Streb et al., 2003)
طبیعتاً با شرایط آب و هوایی این مناطق سازگار شده و دارای
مکانیسم‌های حفاظتی کارآمدی می‌باشند (Koerner,
2003) در حالی که گیاهان رشد یافته در مناطق مرتفع در زمان و فاصله زمانی تنش سرمای، روش‌های از این جهت روزخورشید را
تحت گرفته و نتیجه ارثی اضافه از طریق کلروفیل به اکسیژن
متقابل می‌شود که نتیجه ندارد. به کسیداسیون ناپایین می‌شود. علاوه
اولیه و حساسیت در پروتئین D1 در فتوسنتز II ظاهر شده
و خبیط غشاها و اکسیداسیون کلروفیل را به همراه داشته
(روستا و سجادی، 1389) و در نهایت موجب اعتیلال در
عملکرد کواتنومی فتوسنتز II و به دنبال آن کاهش فتوسنتز
هیپتوس و همکاران (2013) پی ثبات ناشی که نش در
سازگاری با سرمای پایین در
گیاهان حساس به سرمای حتی تحت شرایط متوسط ناشی
می‌باشد. این نش در نتیجه اعتیلال در فعالیت
فتوسنتز II گردد. این نش در فعالیت‌های فتوسنتز II تحت
تأثیر دمای پایین باعث کاهش ساختار کربوهیدرات‌های قابل
استفاده برای تولید مفاهیم حاصل شد
(Zamrski and Schaffer, 1996; Ort, 2002)
در گیاهان ارژن حاصل از تابش بعد از جذب بروز
مکانیسم‌های کلروفیل برگ. در طول زنجیره اعتیلال الکترون
متقابل می‌شود و برای اجرای فرآیندهای فتوسنتزی (فرآیندهای
فتوسنتزی) مصرف می‌گردد و ارژن آنیا به صورت گرم‌های
در می‌روند (فرآیندهای صورت گرم‌های به صورت تابش قرمز
با تابش داده می‌شود که فلورسانس کلروفیل نامیده می‌شود
(1389، 1392، 1393، 1394) به عنوان نشانه‌های تابش گیاهان در
پایداری از نظر نسبت به گیاهان محیط‌های سطحی. این گیاهان
در فعالیت‌های فتوسنتز II تحت تأثیر دمای پایین باعث کاهش ساختار کربوهیدرات‌های قابل استفاده برای تولید مفاهیم حاصل شد.
(Zamrski and Schaffer, 1996; Ort, 2002)
در گیاهان ارژن حاصل از تابش بعد از جذب بروز
مکانیسم‌های کلروفیل برگ. در طول زنجیره اعتیلال الکترون
متقابل می‌شود و برای اجرای فرآیندها (فرآیندهای
سنتزی) مصرف می‌گردد و ارژن آنیا به صورت گرم‌های
در می‌روند (فرآیندهای صورت گرم‌های به صورت تابش قرمز
با تابش داده می‌شود که فلورسانس کلروفیل نامیده می‌شود
(1389، 1392، 1393، 1394) به عنوان نشانه‌های تابش گیاهان در
پایداری از نظر نسبت به گیاهان محیط‌های سطحی. این گیاهان
در فعالیت‌های فتوسنتز II تحت تأثیر دمای پایین باعث کاهش ساختار کربوهیدرات‌های قابل استفاده برای تولید مفاهیم حاصل شد.
(Zamrski and Schaffer, 1996; Ort, 2002)
در گیاهان ارژن حاصل از تابش بعد از جذب بروز
مکانیسم‌های کلروفیل برگ. در طول زنجیره اعتیلال الکترون
متقابل می‌شود و برای اجرای فرآیندها (فرآیندهای
سنتزی) مصرف می‌گردد و ارژن آنیا به صورت گرم‌های
در می‌روند (فرآیندهای صورت گرم‌های به صورت تابش قرمز
با تابش داده می‌شود که فلورسانس کلروفیل نامیده می‌شود
(1389، 1392، 1393، 1394) به عنوان نشانه‌های تابش گیاهان در
پایداری از نظر نسبت به گیاهان محیط‌های سطحی. این گیاهان
در فعالیت‌های فتوسنتز II تحت تأثیر دمای پایین باعث کاهش ساختار کربوهیدرات‌های قابل استفاده برای تولید مفاهیم حاصل شد.
(Zamrski and Schaffer, 1996; Ort, 2002)
در گیاهان ارژن حاصل از تابش بعد از جذب بروز
مکانیسم‌های کلروفیل برگ. در طول زنجیره اعتیلال الکترون
متقابل می‌شود و برای اجرای فرآیندها (فرآیندهای
سنتزی) مصرف می‌گردد و ارژن آنیا به صورت گرم‌های
در می‌روند (فرآیندهای صورت گرم‌های به صورت تابش قرمز
با تابش داده می‌شود که فلورسانس کلروفیل نامیده می‌شود
(1389، 1392، 1393، 1394) به عنوان نشانه‌های تابش گیاهان در
پایداری از نظر نسبت به گیاهان محیط‌های سطحی. این گیاهان
در فعالیت‌های فتوسنتز II تحت تأثیر دمای پایین باعث کاهش ساختار کربوهیدرات‌های قابل استفاده برای تولید مفاهیم حاصل شد.
(Zamrski and Schaffer, 1996; Ort, 2002)
فلورسانس حذف‌کننده (Fm') در برگ‌های سازگار به روشنایی تعین شد. سپس پروتوی مری فلورسانس حذف‌کننده در مراحل روش‌یابی (Fo) نیز تعیین گردید.

فرکانس ناشی برای اندازه‌گیری Fo و Fm' ۱۰۰۰ هرتز و برابر ۱۲ فیلتر هرتز بود. با استفاده از پارامترهای تعیین شده در برگ‌های سازگار تیپیکی و روشنایی، میزان II تکنیک فلورسانس کلروفیل در تعیین میزان تولید به سرمای گیاه به شدت تابش‌های مختلف طراحی و اجرا گردید.

مواد و روش‌ها:
پژوهش در بهار سال ۱۳۹۲ در گلخانه تحقیقاتی و شرایط کنترل شده به همراه کلروفیل و زیست‌فاکتوری طریقتان، واقع در دانشگاه علوم کشاورزی و منابع طبیعی ساری به صورت فاکتوریل به طرح کامپوننتی، به نماد P ۱۵، NPQ (05/0P<) ۰۵ و میزان اکسید شدن بیش از ۰۱۵ در صورت افزایش ارتباط II یافته برایFM/Fm، Y(NPQ) و NPQ ۰۵ و Fv/Fm (P<۰۵) سنجیده شد.

یافته‌ها:
نتیجه حاصل از تجربه واریانس داده‌های آزمایش (جدول ۲) نشان داد که نشان سرمای و تابش اثر کاملاً معنی‌داری بر تمامی پارامترهای مورد مطالعه Y(NPQ)، Y(NPQ)', Y(YII) و Y(YII) سنجیده شد. همچنین بین ارقام NPQ، Y(NPQ)'، Y(YII) و Y(YII) تفاوت معنی‌داری وجود داشت.

یافته‌ها در صورت کاهش میزان تابش به (۰/۰۵ و ۰/۰۵) افزایش Y(Y) و Y(YII) و در Y(YII) و Y(YII) انجام شد.

پژوهش در بهار سال ۱۳۹۲ در گلخانه تحقیقاتی و شرایط کنترل شده به همراه کلروفیل و زیست‌فاکتوری طریقتان، واقع در دانشگاه علوم کشاورزی و منابع طبیعی ساری به صورت فاکتوریل به طرح کامپوننتی، به نماد P ۱۵، NPQ (05/0P<) ۰۵ و میزان اکسید شدن بیش از ۰۱۵ در صورت افزایش ارتباط II یافته برایFM/Fm، Y(NPQ) و NPQ ۰۵ و Fv/Fm (P<۰۵) سنجیده شد.
جدول 1- شاخص‌های فتوپزیکی اندازه‌گیری شده فلورسنس کاروئیل و معادلات مربوط به آنها; (Li et al., 2008).

<table>
<thead>
<tr>
<th>مؤلفه</th>
<th>معادله</th>
<th>شناسه</th>
</tr>
</thead>
<tbody>
<tr>
<td>فلورسنس نتیجه</td>
<td>Fm-Fo</td>
<td>Fv</td>
</tr>
<tr>
<td>(Fm-Fo)/Fm</td>
<td>مقدار فلورسنس هدایت</td>
<td></td>
</tr>
<tr>
<td>([Fm-Fo]/Fm) - (Ft/Fm)</td>
<td>مقدار فلورسنس هدایت</td>
<td></td>
</tr>
<tr>
<td>Y(NO)</td>
<td>قدرت نامی فلورسنس مفعول</td>
<td></td>
</tr>
<tr>
<td>Y(NPQ)</td>
<td>قدرت نامی فلورسنس انتظاری</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ضریب</th>
<th>خطای تغییرات</th>
<th>شدت تابش</th>
<th>رقم (V)</th>
<th>سرما (C)</th>
<th>منابع تغییر سرما (C)</th>
<th>درجه آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fo</td>
<td>1/36</td>
<td>1</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>3/36</td>
</tr>
<tr>
<td>Fm</td>
<td>1/36</td>
<td>1</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>3/36</td>
</tr>
<tr>
<td>Fv</td>
<td>1/36</td>
<td>1</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>3/36</td>
</tr>
<tr>
<td>Ft</td>
<td>1/36</td>
<td>1</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>3/36</td>
</tr>
<tr>
<td>Y(II)</td>
<td>1/36</td>
<td>1</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>3/36</td>
</tr>
<tr>
<td>Y(NPQ)</td>
<td>1/36</td>
<td>1</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>3/36</td>
</tr>
</tbody>
</table>

، *، ** و *** به ترتیب معنی دار در مسطح احتمال نگر و یک دندان می‌باشد.

شدت تابش، کاهش فلورسنس حداقل را به دنبال داشت. واکنش فلورسنس حداکثر (Fm) نسبت به نش سرما، عكس فلورسنس حدااقل بود و در اثر عملکرد نش سرما به نگر درجه سانتی گراد در هر دو سطح تابش کاهش معنی‌داری نشان داد که این کاهش در شدت تابش کم (2000 لوکس) حدود 33 درصد و در شدت تابش زیاد (8000 لوکس) حدود 30 درصد بود (شکل 1-b). همچنین نش سرما، فلورسنس مغیر و حداکثر کاهش کوانتومی فتوسیستم II (Fv/Fm) II در هر دو میزان تابش کاهش داد. از بین دو تیمار تابش مورد احتمال پی دندان و بر پارامترهای Fv/Fm و Fv در سطح احتمال نگر در مسطح معنی‌دار بود.

برهمکش سرما و شدت تابش: طبق نمودار برهمکش سرما و تابش (شکل 1-a)، نش سرما در هر دو سطح تابشی (200 و 8000 لوکس) فلورسنس حدااقل (Fo) را به صورت معنی‌داری نسبت به شاده (به ترتیب حدود 19 و 37 درصد) افزایش داد. با این وجود، نش انگیزش آن در شدت تابش زیاد (8000 لوکس) نسبت به شدت تابش کم (2000 لوکس) بیشتر بود. همچنین در تیمار شاده (بدون نش سرما) انگیزش

(Klughammer and Schreiber, 2008)
اثر شدت تابی بر تحمیل به سرمای سویا (Glycine max (L.) Merr.)

شکل 1-اثر متقابل تنش سرم و شدت تابی بر پارامترهای فلورسنس حداقلی (a)، فلورسنس حداکثر (b)، فلورسنس اضافی (c)، حداکثر کارایی کوانتر فتوسیستم II (d)، فلورسنس پایدار (e) و خاموشی غیر فتوسیمی (f) در گیاه سویا.

در فتوسیستم اولیه مایع، بیشترین کاهش در Fv/Fm و Fv (به ترتیب حدود 76 و 11 درصد) مشاهده شد (شکل 1-e و f). در آن مدل، تغییر در نور، میزان نور، SPF و حالت آتش، به ترتیب حدود 70 و 6 درصد و پرای NPQ به ترتیب حدود 32 و 8 درصد و 1/11 برابر بود (شکل 1- d و e). در پژوهش حاضر کارایی کوانتر فتوسیستم مؤثر و
برخوردار بود (شکل 3-این). واکنش حداکثر کارایی کانتونومی غارفتوشیمیایی جهت تهیه فتوسیستم II (Y(II)) نسبت به نش سرما باعث افزایش فتوسیستم حداقل و خاموشی غارفتوشیمیایی بود و اثر اعمال نش سرما در هر دو رقم مورد مطالعه کاهش معنی‌داری (به ترتیب حدود ۲۳ و ۳۴ درصد) نشان داد که این کاهش در رقم BP محصول نبود (شکل ۳-a). افزایش حداکثر کارایی کانتونومی غارفتوشیمیایی فتوسیستم II (Y(II)) نسبت به نش سرما میزان Y(NO) به ترتیب حدود ۳۴ و ۴۸ درصد در تیمار ۲۰۰۰ و یک لوسک به حالت ٢ و ۳ درصد در تیمار ۵۷ و ۶۰ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۳۴ و ۴۸ درصد و افزایش داد که افزایش در رقم BP به ترتیب حدود ۲ و ۱/۵ درصد و افزایش Y(NO) به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۱/۵ درصد بود.
برهمکش شدت تابش و رقم: در پژوهش حاضر، افزایش Y(II) کانتونومی غارفتوشیمیایی Y(NO) و [Y(NPQ)] II فتوسیستم تحت تأثیر برهمکش نش سرما و شدت تابش به قرار گرفتن در هر دو تیمار افزایش میزان Y(II) به ترتیب حدود ۸۱ و ۸۰ درصد به ترتیب حدود ۲۵ و ۴۸ درصد و افزایش داد که افزایش در رقم BP به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به ترتیب حدود ۵۷ و ۶۰ درصد به ترتیب حدود ۲ و ۳ درصد به ترتیب حدود ۲۳ و ۴۸ درصد به تر
جدول 3- برهمکشتهای رقم و تابش پارامترهای فلوروسانس کلروفلی

<table>
<thead>
<tr>
<th>NPQ</th>
<th>Ft</th>
<th>Fv/Fm</th>
<th>Fv</th>
<th>Fm</th>
<th>رقم</th>
<th>تابش (لوکس)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/24</td>
<td>1/19</td>
<td>0.78</td>
<td>0.97</td>
<td>0.86</td>
<td>2000</td>
<td>BP</td>
</tr>
<tr>
<td>1/39</td>
<td>1/19</td>
<td>0.56</td>
<td>0.88</td>
<td>0.78</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>1/46</td>
<td>1/19</td>
<td>0.66</td>
<td>0.89</td>
<td>0.79</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>1/54</td>
<td>1/19</td>
<td>0.64</td>
<td>0.88</td>
<td>0.79</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

یافته‌های آزمایش حاضر باینگر افراشی میزان فلوروسانس حداقل اثر تنش سرما در هر دو سطح نابش (2000 و 20000 لوکس) در هر دو رقم 147 میزان فلوروسانس نبهاده می‌شود. این میزان افراشی در رقم BP افزایش داد (جدول 3). این میزان افراشی در رقم BP (حدود 25 بیشتر) یافته‌های خاموشی غیرفوتوشیمیایی را به صورت معمدی نسبت به شاهد به ترتیب حدود 23 و 52 درصد با کاهش و Y(II) در حدود 0.78 شدت تابش از 2000 به 8000 لوکس در هر دو رقم مورد مطالعه تحت تأثیر [Y(NO)] II شدت تابش قرار گرفتند (شکل 4). بر اساس یافته‌ها، در هر دو Y (II) Y(NPQ) Y(NO) در حالت که میزان BP شدت تابش زیاد میزان Y(II) Y(NPQ) افراشی داد. در BP افراشی شدت نسبت به شاهد شدت تابش میزان ای سطح تیمار تابش به شاهد و میزان این پارامتر در Y(II) Fv/Fm Y(NPQ) BP شدت تابش از 2000 به 8000 لوکس، عکس خاموشی غیرفوتوشیمیایی بود و در اثر اعمال شدت تابش زیاد (8000 لوکس) در هر دو رقم BP 122 و 107 کاهش معنی‌داری نشان دادند. با این تفاوت که Fv/Fm افراشی Kاهش پارامترهای Y(II) Y(NPQ) در هر دو رقم 23 و 59 درصد (نهایت 5.0) Y(II) Y(NPQ) BP 037 و 037 به ترتیب حدود 17 و 30 درصد (نهایت 5.0) BP بیشترین کاهش پارامترهای Y(II) Y(NPQ) در هر دو رقم 21 و 13 درصد (نهایت 5.0) Y(II) Y(NPQ) BP 037 و 037 به ترتیب حدود 17 و 30 درصد (نهایت 5.0) BP بیشترین کاهش پارامترهای Y(II) Y(NPQ) در هر دو رقم 21 و 13 درصد (نهایت 5.0) BP بیشترین کاهش پارامترهای Y(II) Y(NPQ) در هر دو رقم 21 و 13 درصد (نهایت 5.0) BP بیشترین کاهش پارامترهای Y(II) Y(NPQ) در هر دو رقم 21 و 13 درصد (نهایت 5.0) BP بیشترین کاهش پارامترهای Y(II) Y(NPQ) در هر دو رقم 21 و 13 درصد (نهایت 5.0) BP بیشترین کاهش پارامترهای Y(II) Y(NPQ) در هر دو رقم 21 و 13 درصد (نهایت 5.0) BP بیشترین کاهش پарامترهای Y(II) Y(NPQ) در هر دو رقم 21 و 13 درصد (نهایت 5.0) BP بیشترین کاهش پارامترهای Y(II) Y(NPQ) در هر دو رقم 21 و 13 درصد (نهایت 5.0) BP بیشترین کاهش پارامترهای Y(II) Y(NPQ) در هر دو رقم 21 و 13 درصد (نهایت 5.0) BP بیشترین کاهش پارامترهای Y(II) Y(NPQ) در هر دو رقم 21 و 13 درصد (نهایت 5.0) BP بیشترین کاهش پارامترهای Y(II) Y(NPQ) در هر دو رقم 21 و 13 درصد (نهایت 5.0) BP بیشترین کاهش پارامترهای Y(II) Y(NPQ) در H

![Diagram](https://i.imgur.com/3ly.png)
ایپای همه نافذرهای الکترون و جسته بودن همه مراکز واکنش، ایجاد می شود (Mehta et al., 2010) در شرایط تنفس، به عنوان کم شدن فعالیت کمپلکس تجزیه کننده و کاهش فعالیت فتوسیستم II کاهش می یابد (Aro et al., 1993). نتایج مشابهی مبنی بر کاهش میزان Y(II، Y(NPQ) و Y(NO) در لیزر خشک شده ی گیاهی (Zlatev and Loiba, 2009) گزارش شده است. مؤلفه Yordanov, 2004 از تفاصل Fo و Fm محاسبه شده و بیشتر بودند. نشان دهنده عملکرد خوب مکانیزم فلورسنس کلاکروفل در شرایط تنفس و کاهش سرعت واکنش‌های فتوشیمیایی است به طور معمول، وقتی تنفس به دستگاه (Vazquez и Roosenqvist, 2004) فتوشیمیایی گیاه وارد می شود این مؤلفه کاهش می یابد (Ommen and Maxwell and Johnson, 2005) بر اساس پژوهش Donnelly (1999) کاهش مقدار فلورسنس مغیر در اثر تنفس محیطی. به علت مانع می شود از انتقال اسیدون فتوسیستم II. این شاخص Fv/Fm را کاهش داد. این شاخص نشان‌گر حداکثر کارایی انرژی محورکه به دام افتاده به وسیله مراکز واکنش یاز فتوسیستم II است و کاهش آن یانگر تعیین فعالیت فتوسیستم II با بازدارنگی تابشی می‌یابد که با کاهش حداکثر مصرف فتوتوانی به وسیله فتوسیستم II مشخص (Baker and Roosenqvist, 2004; Goncalves et al., 2007) می‌شود و همکاران (1995) نیز گزارش دادند که Fv/Fm از 0.25 تا 0.68 در دو رقم سویا در 0.8-0.9 تغییر می‌کند (زبان 1- 0.5) از انتها که پس از سازگاری کیا به تاریکی، هنگامی که شدت تابشی در حد ایجاد اشباع تابشی به درک تابانده شده و میزان فلورسنس کلاکروفل از نمود، می‌شود در این نقطه همه مراکز واکنشی باز است (Mehta et al., 2010) نتایگیخته در حداکثر میزان ممکن خود که باید از این فتوشیمیایی مصرف شده و فلورسنس را به حداکثر ممکن می‌ساند که به عنوان فلورسنس حداکثر (Fo) مشاهده می‌شود. فلورسنس حداکثر تخت (Maxwell and Johnson, 2005) نشانگر حداکثری که تغییر سخت‌تری در مراکز واکنش اولیه فتوسیستم II وجود می‌آورد. قرار می‌گیرد. بنابراین تنفس‌های جوین خشکی و دمای پایین با خاتمه منجر به حداکثر Fo و واکنش فتوسیستم II موجب افزایش شدید Fo می‌گردد (Araus et al., 1998)، در همین راستا، افزایش میزان Fo در اثر نش افزایش بخشی که در آن Fo افزایش می‌یابد. در نهایت، افزایش بخشی و در نهایت، افزایش بخشی در جو (ممنوعه و شهری، 2013) 1389 گزارش شده است. برنیچ و همکاران (2007) نتایج آزمایش‌‌های در دو بژه‌ی (شکل 1- 0.2a) نشان داد که تنفس دمای پایین در هر دو سطح تابشی موجب حداکثر کارایی فلورسنس حداکثر (Fm)، Fv و Fv/Fm شد. تابشی فلورسنس حداکثر (Fm)، فلورسنس مغیر (Fv) و حداکثر کارایی فلورسنس حداکثر (Fv/Fm) II می‌شود.
این شرایط (Ort and Baker 2002) نتایج ارزیابی وظایف اکسیداسیون زنده‌کننده الکترون‌ها در فتوسیستم II ناکافی بود. در این مطالعه (Kramer et al., 1998) احتمالاً با فناک‌شناسی و (Schreiber et al., 1999) گزارش شده است.

اگر آنتی‌تیپورت می‌باشد، وظایف اکسیداسیون زنده‌کننده الکترون‌ها در فتوسیستم II ناکافی بود. در این مطالعه (Kramer et al., 1998) احتمالاً با فناک‌شناسی و (Schreiber et al., 1999) گزارش شده است.

افعالیت جرخه گرانتوفیل سبب افزایش انتخاب الکترون در نتایج افزایش محصولات نسبی نکاتی و میزان (NPQ) و کاهش مخاطرات و فتوسیستم II ناکافی بود. در این مطالعه (Kramer et al., 1998) احتمالاً با فناک‌شناسی و (Schreiber et al., 1999) گزارش شده است.

افعالیت جرخه گرانتوفیل سبب افزایش انتخاب الکترون در نتایج افزایش محصولات نسبی نکاتی و میزان (NPQ) و کاهش مخاطرات و فتوسیستم II ناکافی بود. در این مطالعه (Kramer et al., 1998) احتمالاً با فناک‌شناسی و (Schreiber et al., 1999) گزارش شده است.

افعالیت جرخه گرانتوفیل سبب افزایش انتخاب الکترون در نتایج افزایش محصولات نسبی نکاتی و میزان (NPQ) و کاهش مخاطرات و فتوسیستم II ناکافی بود. در این مطالعه (Kramer et al., 1998) احتمالاً با فناک‌شناسی و (Schreiber et al., 1999) گزارش شده است.

افعالیت جرخه گرانتوفیل سبب افزایش انتخاب الکترون در نتایج افزایش محصولات نسبی نکاتی و میزان (NPQ) و کاهش مخاطرات و فتوسیستم II ناکافی بود. در این مطالعه (Kramer et al., 1998) احتمالاً با فناک‌شناسی و (Schreiber et al., 1999) گزارش شده است.

افعالیت جرخه گرانتوفیل سبب افزایش انتخاب الکترون در نتایج افزایش محصولات نسبی نکاتی و میزان (NPQ) و کاهش مخاطرات و فتوسیستم II ناکافی بود. در این مطالعه (Kramer et al., 1998) احتمالاً با فناک‌شناسی و (Schreiber et al., 1999) گزارش شده است.

افعالیت جرخه گرانتوفیل سبب افزایش انتخاب الکترون در نتایج افزایش محصولات نسبی نکاتی و میزان (NPQ) و کاهش مخاطرات و فتوسیستم II ناکافی بود. در این مطالعه (Kramer et al., 1998) احتمالاً با فناک‌شناسی و (Schreiber et al., 1999) گزارش شده است.

افعالیت جرخه گرانتوفیل سبب افزایش انتخاب الکترون در نتایج افزایش محصولات نسبی نکاتی و میزان (NPQ) و کاهش مخاطرات و فتوسیستم II ناکافی بود. در این مطالعه (Kramer et al., 1998) احتمالاً با فناک‌شناسی و (Schreiber et al., 1999) گزارش شده است.

افعالیت جرخه گرانتوفیل سبب افزایش انتخاب الکترون در نتایج افزایش محصولات نسبی نکاتی و میزان (NPQ) و کاهش مخاطرات و فتوسیستم II ناکافی بود. در این مطالعه (Kramer et al., 1998) احتمالاً با فناک‌شناسی و (Schreiber et al., 1999) گزارش شده است.

افعالیت جرخه گرانتوفیل سبب افزایش انتخاب الکترون در نتایج افزایش محصولات نسبی نکاتی و میزان (NPQ) و کاهش مخاطرات و فتوسیستم II ناکافی بود. در این مطالعه (Kramer et al., 1998) احتمالاً با فناک‌شناسی و (Schreiber et al., 1999) گزارش شده است.

افعالیت جرخه گرانتوفیل سبب افزایش انتخاب الکترون در نتایج افزایش محصولات نسبی نکاتی و میزان (NPQ) و کاهش مخاطرات و فتوسیستم II ناکافی بود. در این مطالعه (Kramer et al., 1998) احتمالاً با فناک‌شناسی و (Schreiber et al., 1999) گزارش شده است.

افعالیت جرخه گرانتوفیل سبب افزایش انتخاب الکترون در نتایج افزایش محصولات نسبی NADPH و NADP+ در وظایف اکسیداسیون زنده‌کننده الکترون‌ها در فتوسیستم II ناکافی بود. در این مطالعه (Kramer et al., 1998) احتمالاً با فناک‌شناسی و (Schreiber et al., 1999) گزارش شده است.

افعالیت جرخه گرانتوفیل سبب افزایش انتخاب الکترون در نتایج افزایش محصولات NADPH و NADP+ در وظایف اکسیداسیون زنده‌کننده الکترون‌ها در فتوسیستم II ناکافی بود. در این مطالعه (Kramer et al., 1998) احتمالاً با فناک‌شناسی و (Schreiber et al., 1999) گزارش شده است.

افعالیت جرخه گرانتوفیل سبب افزایش انتخاب الکترون در نتایج افزایش محصولات NADPH و NADP+ در وظایف اکسیداسیون زنده‌کننده الکترون‌ها در فتوسیستم II ناکافی بود. در این مطالعه (Kramer et al., 1998) احتمالاً با فناک‌شناسی و (Schreiber et al., 1999) گزارش شده است.

افعالیت جرخه گرانتوفیل سبب افزایش انتخاب الکترون در نتایج افزایش محصولات NADPH و NADP+ در وظایف اکسیداسیون زنده‌کننده الکترون‌ها در فتوسیستم II ناکافی بود. در این مطالعه (Kramer et al., 1998) احتمالاً با فناک‌شناسی و (Schreiber et al., 1999) گزارش شده است.
تولید رادیکال آزآر شده و بازوی‌دارگی ناشی و در نهایت افزایش آبسس به گیاه را با نتایج دادن خواهد داشت. این نتایج با Boddی و Skribanek نتیجه‌گیری شده‌اند (2001) در گیاه‌های بلوط.

در نتیجه نشان می‌دهیم که نشان‌گر بروز بازوی‌دارگی ناشی از BP فوتوسیستم II در اثر بسیاری از رم و موزه‌ای‌های سطح به افزایش و کاهش از افزایش فلوسیست در شرایطی مانند Fv/Fm و کاهش حداکثر کاری (Fv) و کاهش حداکثر کاری (Fv/Fm) II افزایش فتوسیستم ناشی می‌شود. اپتای از طریق Fv/Fm یا فتوسیستم II اثر بسیاری از رم و موزه‌ای‌های سطح به افزایش و کاهش حداکثر کاری (Fv) و کاهش حداکثر کاری (Fv/Fm) II افزایش فتوسیستم ناشی می‌شود.

در مجموع نتایج نشان داد که حساسیت پارامترهای بلوط کاکرونیل در گیاه‌های سری خود به در سطح دامپایی با افزایش نشان داد افزایش شدت تابشی افزایش می‌باشد. این موضوع می‌تواند در گل‌شویی تولید رادیکال آزآر شده به افزایش و کاهش حداکثر کاری (Fv) و کاهش حداکثر کاری (Fv/Fm) II افزایش فتوسیستم ناشی می‌شود.

در حضور شدت تابشی بالا باشد که در نشان‌گر بروز بازوی‌دارگی ناشی از افزایش فتوسیستم II در شرایط مذکور خواهد شد. از میان دو رقم مورد مطالعه، رقم 32 نسبت به رقم BP تغییرات کرده‌اند. در اثر افزایش فتوسیستم II افزایش فتوسیستم ناشی می‌شود. اپتای از طریق Fv/Fm یا فتوسیستم II افزایش فتوسیستم ناشی می‌شود.

در حضور شدت تابشی بالا باشد که در نشان‌گر بروز بازوی‌دارگی ناشی از افزایش فتوسیستم II در شرایط مذکور خواهد شد. از میان دو رقم مورد مطالعه، رقم 32 نسبت به رقم BP تغییرات کرده‌اند. در اثر افزایش فتوسیستم II افزایش فتوسیستم ناشی می‌شود. اپتای از طریق Fv/Fm یا فتوسیستم II افزایش فتوسیستم ناشی می‌شود.

در حضور شدت تابشی بالا باشد که در نشان‌گر بروز بازوی‌دارگی ناشی از افزایش فتوسیستم II در شرایطمذکور خواهد شد. از میان دو رقم مورد مطالعه، رقم 32 نسبت به رقم BP تغییرات کرده‌اند. در اثر افزایش فتوسیستم II افزایش فتوسیستم ناشی می‌شود. اپتای از طریق Fv/Fm یا فتوسیستم II افزایش فتوسیستم ناشی می‌شود.

در حضور شدت تابشی بالا باشد که در نشان‌گر بروز بازوی‌دارگی ناشی از افزایش فتوسیستم II در شرایطمذکور خواهد شد. از میان دو رقم مورد مطالعه، رقم 32 نسبت به رقم BP تغییرات کرده‌اند. در اثر افزایش فتوسیستم II افزایش فتوسیستم ناشی می‌شود. اپتای از طریق Fv/Fm یا فتوسیستم II افزایش فتوسیستم ناشی می‌شود.

در حضور شدت تابشی بالا باشد که در نشان‌گر بروز بازوی‌دارگی ناشی از افزایش فتوسیستم II در شرایطمذکور خواهد شد. از میان دو رقم مورد مطالعه، رقم 32 نسبت به رقم BP تغییرات کرده‌اند. در اثر افزایش فتوسیستم II افزایش فتوسیستم ناشی می‌شود. اپتای از طریق Fv/Fm یا فتوسیستم II افزایش فتوسیستم ناشی می‌شود.

در حضور شدت تابشی بالا باشد که در نشان‌گر بروز بازوی‌دارگی ناشی از افزایش فتوسیستم II در شرایطمذکور خواهد شد. از میان دو رقم مورد مطالعه، رقم 32 نسبت به رقم BP تغییرات کرده‌اند. در اثر افزایش فتوسیستم II افزایش فتوسیستم ناشی می‌شود. اپتای از طریق Fv/Fm یا فتوسیستم II افزایش فتوسیستم N

شکر و قدردانی

بدرام، می‌توانیم از مسئولان پژوهشکده زنگ و ریستفناوری بیانی طبستان به خاطر حمایت‌های مالی جهت انجام این پژوهش تشکر و قدردانی می‌گردد.

Klughammer, C. and Schreiber, U. (2008) Complementary PSII quantum yields calculated from simple fluorescence parameters measured by

References:

PAM fluorometry and the saturation pulse method. PAM Application Notes 1: 27-35.

