فرآیند و کاربرد گیاهی جلد 4، شماره 12، تابستان 1394

ارزیابی فعالیت آنتی اسکیدانی و برشی صفات مورفولوژیک آلوده و روا

تیمار سطح مختلف ورمی کمپوست و محلول باشی نانو پتاسیم

زهرای باوری، حسین مرادی و بهروز برزگر

گروه باقیانی، دانشگاه علوم کشاورزی و منابع طبیعی ساری و گروه یست

تیمار رژیم سلولی (لیثورال) در تاریخ 27/3/1393

نویسنده مسئول، نشانی پست الکترونیکی: moradiho@yahoo.com

چکیده:

سنت مواد موثر و عملکرد درگیاهان دارویی تحت تأثیر عوامل محیطی از جمله کمبود یا فوتی عناصر مختلف در خاک و نوع بستر کشت۱-۲ باشد. به همین منظور آلودگی به نانو پتاسیم، با برشی صفات، مورفولوژیک و یکنار گرفتن. تیمارها شامل 4 سطح ورمی کمپوست (50، 30 و 20) به صورت درصد حجمی خاک و گلدن و نانو کود پتاسیم در 3 سطح ۶، ۴ و ۲% در هزار و صفر به عنوان شاهد اختلافات بین نانو پتاسیم و نانو کود نشان داده که بقیه نانو پتاسیم پر میزان نزدیک آنتی اسکیدانی و درصد و رطوبت زل متن و پتاسیم بیشتر در فاصله این دو صفت شاخص تشدید تیمار ۱۷ درصد ورمی کمپوست و ۲ در هزار نانو پتاسیم بیشتر مقدار

و نانو پتاسیم در گزارش بسته به نوع ساختن کمپوست از گلدن پتاسیم و نانو کود نانو پتاسیم میباشد.

کلمات کلیدی: آلودگی، چربی کوپنی، مورفولوژیک، آلودگی، نانو کود، ورمی کمپوست

ساکاریده گوناگون از جمله گلورومان و گلولکانی میباشند. این ماده دارای خواص متعدد بیولوژیک و فیزیولوژیک ازجمله توانایی درمان سوختگی و جراحات پوستی، ضدعفونی و توقف رشد برشی باکتریا و انگل‌ها، اثر مقاومت در برابر نکتر سلول‌های سرطانی و تحریک نسبت به بدن به دلیل وجود ترکیب‌های متفاوت در آنتی‌اکسیدان است (Langmead et al., 2004; Sosa et al., 2007). به علت این بخش مورد استفاده این گیاه مادهی و چربی کوپنی (Aloe barbadensis Miller) معروف است (ولادی‌آبادی و همکاران، 1390).

تعادل بخش مورد استفاده این گیاه، مادهی و چربی کوپنی (Aloe barbadensis Miller) معروف است (ولادی‌آبادی و همکاران، 1390).

ناوه درجه اثر تحریک خود را نشان می‌دهد.

مقدمه:

آلودگی گیاهی به علت بهبود سبز، شاداب و باطری بوده و به خواص لیپاس و تحلیل دارد. مهم‌ترین گونه‌های آن آلودگی به علت بهبود سبز (Aloe barbadensis Miller) معروف است (ولادی‌آبادی و همکاران، 1390).

ناوه درجه اثر تحریک خود را نشان می‌دهد.
استفاده آن در به‌وود رشد و کيفيت محصولات زراعی و باغی می‌باشد. (Arancon et al., 2004; Atyeh et al., 2002) تنظیم‌آیین نشان داد که نسبت میانگین در کمپرسه‌گری زيتمی دارد. این عامل در فعالیت‌های زیست‌محیطی نسبت به نشان دهنده می‌باشد. همچنین، این عامل در سنت و روند، تقویت و اتصال مواد حاصل از آن، نظارت نظام آب گیاه، توزیع سلول، توزیع نتایج و نمونه‌های غیره و توانایی ایجاد نسب به توانایی فاكتور مویی و عوامل محیطی از جمله کمپرسه‌گری و فاکتور غیرچسبانی اصلی است. (Mathew and Abraham, 2006; Pokorny, 2007; Daraini et al., 2007)

مرور و روش‌ها:
ازمایش بهصورت فاکتوریل در قالب طرح کاملاً تصادفی با 16 تیمار شامل 4 میزان صرف 0.3 و 0.5 درصد حجمی ورمی-کمپرسه و 4 صرف کود نانو تنسیم با صورت محلول پاشی (شامل 26 و 28 در هزار) و با 3 تکرار درون گلخانه‌های گیاهان داروی دنیشگی گوشواری و منابع طبیعی ساری در سال 91-92 انجام شد. پایه‌گاه یکپاک‌های آلوسرا (Aloe vera L.) از پایه‌های مادری در گلخانه‌های کشاورزی واقع در 15 کیلومتر جنوب شرقی شیراز و نسبت به تربیت مورد نظر مستقیم شد. کود نانو پاشی با پایه‌های کل تنسیم ۲/۳ از شرکت فنآوری پیامرس کربنیکارگیری گردید. جهت آماده‌سازی محلول کود نانو پاشی مقدار ۲:۱ و ۵:۲ درصد از این کود در یک آب مقطع حل کرده و پس از نهایت محلول‌یابی و یکبار صورت گرفت، بطوری که گلخانه‌ها شاد شد و نیز یکبار توسط آب مقطع نمایند. خاک با پاشی نسبت ۱:۱:۲:۲ خاک با گرداچه، رس، خاکبارک و کود حیوانی به‌طور متساوی درصد (Koksal and Gulcin, 2008; Kamaran and Karunakaran, 2006). این مصرف رویانی آنی کسپان‌ها دفاع و به‌درص عقلانی داده و به عنوان ضد سرطان عمل می‌کند. آنی کسپان‌ها طبیعی در گیاهان شماژو درکرسی‌ها، اسید آکسیکروسیکارا، اکسیکروسیکارا، انتزاع‌کینگ کدی و گیاهان بادل‌کنی بادل‌پردازی آزمایش‌ها تراز آب و آلایندا اشکال‌های مختلف گیاه وجود دارد. (Koksal and Gulcin, 2008)

مرور و روش‌ها:
ازمایش به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با 16 تیمار شامل 4 میزان صرف 0.3 و 0.5 درصد حجمی ورمی-کمپرسه و 4 صرف کود نانو تنسیم با صورت محلول پاشی (شامل 26 و 28 در هزار) و با 3 تکرار درون گلخانه‌های گیاهان داروی دنیشگی گوشواری و منابع طبیعی ساری در سال 91-92 انجام شد. پایه‌گاه یکپاک‌های آلوسرا (Aloe vera L.) از پایه‌های مادری در گلخانه‌های کشاورزی واقع در 15 کیلومتر جنوب شرقی شیراز و نسبت به تربیت مورد نظر مستقیم شد. کود نانو پاشی با پایه‌های کل تنسیم ۲/۳ از شرکت فنآوری پیامرس کربنیکارگیری گردید. جهت آماده‌سازی محلول کود نانو پاشی مقدار ۲:۱ و ۵:۲ درصد از این کود در یک آب مقطع حل کرده و پس از نهایت محلول‌یابی و یکبار صورت گرفت، بطوری که گلخانه‌ها شاد شد و نیز یکبار توسط آب مقطع نمایند. خاک با پاشی نسبت ۱:۱:۲:۲ خاک با گرداچه، رس، خاکبارک و کود حیوانی به‌طور متساوی درصد (Koksal and Gulcin, 2008; Kamaran and Karunakaran, 2006). این مصرف رویانی آنی کسپان‌ها دفاع و به‌درص عقلانی داده و به عنوان ضد سرطان عمل می‌کند. آنی کسپان‌ها طبیعی در گیاهان شماژو درکرسی‌ها، اسید آکسیکروسیکارا، اکسیکروسیکارا، انتزاع‌کینگ کدی و گیاهان بادل‌کنی بادل‌پردازی آزمایش‌ها تراز آب و آلایندا اشکال‌های مختلف گیاه وجود دارد. (Koksal and Gulcin, 2008)
جدول 1- خصوصیات شیمیایی خاک و رزم کمبوست استفاده شده در آزمایش

<table>
<thead>
<tr>
<th>خصوصیات</th>
<th>EC (pH)</th>
<th>pH</th>
<th>اسمیدنتی</th>
<th>فسفر</th>
<th>Nتیورزن</th>
<th>خاک پایه</th>
<th>ورمی کمبوست</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.35</td>
<td>7.53</td>
<td>ppm992</td>
<td>ppm52</td>
<td>0.17%</td>
<td>45%</td>
<td>1.4%</td>
</tr>
<tr>
<td></td>
<td>1.12</td>
<td>7.64</td>
<td>ppm52</td>
<td>ppm4%</td>
<td>0.4%</td>
<td>1.55%</td>
<td>0.4%</td>
</tr>
</tbody>
</table>

دانگه: (DPPH) (1,1-diphenyl-1-picrylhydrazyl)

پس از بهره‌گیری از قراردادن در اسپرتوفوتومتر میلی لیتر عصاره با 1 میلی لیتر محلول 20% فنل 1- بیکریل هیدرازول (DPPH) 1/10 میلی مولار (4 میلی گرم در 100 میلی لیتر منال خاک) مخلوط کرده میان مخلوط حاصل به مدت 15 دقیقه در دمای اتاق در ترکیب گلدانی گردید کلاهک کردن دستگاه اسپرتوفوتومتر با منالوئی استاندارد شد. در این مطالعه این منوال درصد مدار رادیکال آزاد توسع عصاره حاصل مشخص گردید و به صورت درصد در عصاره (تر/20g کردن) درجه ای میزان دستگاه همچنین Gamon و Sims جهت مشاهده میزان آنتی اوکسیدانی از روش (2002) استفاده شد. این توصیه عصاره که بر همراه با فرمول ای میزان فنل بر حسب میلی گرم بر لیتر محاسبه گردید. برای رسوم منال و افتدار استاندارد اسپرتوفوتومتر از عصاره دیگری مینه خواستاد که درج شده شد. لکه به مداخله میزان فنل بر حسب میلی گرم بر لیتر محاسبه شد.

Gamon و Sims جهت مشاهده آنتی اوکسیدانی از روش (2002) استفاده شد. این توصیه عصاره که بر همراه با فرمول ای میزان فنل بر حسب میلی گرم بر لیتر محاسبه گردید. برای رسوم منال و افتدار استاندارد اسپرتوفوتومتر از عصاره دیگری مینه خواستاد که درج شده شد. لکه به مداخله میزان فنل بر حسب میلی گرم بر لیتر محاسبه شد.

سنگش ویرگه‌های موثر و قوی که به کمک جاقوی تیز و ترکیب طوفه هر فاصله جدا و پس از شستشو برای هر هرگونه باقی ایجاد، وزن ببر در تاریکی‌های مورد بر (A & D Company Limited مدل) محاسبه گردید. برای تعیین مقدار زل، ببر گاهی آلوپيورا در هن فاصله 2 تا 4 ساعت پس از چیدن شدن شبشه شده و ببر اینها یا ببر جهت بهبود پشتوشی بالا بگر توسط جاقوی تیز برداشتی شده سپس زل از پشتوشی پایین توسط جاقوی جدا کرده و وزن زل با ترازو انداده گرفتند. برای تعیین وزن خشک، سپس درصد رطوبت زل و زن خشک شده محاسبه گردید.

سنگش ویرگه‌های بیشتری: جهت اندازه‌گیری فنل Ebrahimzadeh فنل، فنل و درصد انتقال آنتی کسیدنی جل روش و همکاران (2000) استفاده نا کاسی که بر همراهی عصاره به مدت 24 ساعت روی شبک قرار گرفتن. سپس به مدت 5 دقیقه در مدت 3000 دور در دقیقه سانتریفیوژ شده و در قسمت فوقنی برای انتقال جیری شکل فنل فنل و درصد انتقال آنتی کسیدنی استفاده شد.

برای تعیین میزان درصد محارب رادیکال‌های دی پی اج
با توجه به گزارشات Atiyeh و همکاران (2000) و همکاران (2005) استفاده گردید. بطور خلاصه، ۴۰ میلی‌گرم از هر نمونه را به ۲۰ میلی‌لیتر آب مفطر مخلوط کرده و سپس ۲۰ میلی‌لیتر از این محلول‌ها در یک لوله آرایش ریخته و به هر دهم از لوله‌ها ۴ میلی‌لیتر از محلول مکث اضافه شد. پس از کشفی محلول‌ها، در این محلول قارچ ۴۰ نانو متوسط دستگاه اسکنترفوتومتر و در حضور محلول معرف به عنوان شاهد فرانت شد. برای ارزیابی محلول استاندارد -سالت‌های آلومینیوم، آلومینیوم و Waller - و Arancon et al. (2004) مکث‌ها را به شیوه ای می‌بینند که در گل‌کمون‌ها بر حسب میکرو‌گرم بر لیتر در زاپس‌پذیران شدند. تجزیه و تحلیل آماری: آنالیز داده‌ها با استفاده از نرم‌افزار SAS و آزمون تی از طریق استفاده از نرم‌افزار Excel صورت گرفت و برای مقایسه میانگین داده‌ها از نرم‌افزار MSTAT-C استفاده شد.

نتایج و بحث:

وزن بردگ: با توجه به معنی‌دار بودن تأثیر تیمارهای وزن بردگ کمپیوتر و نانو کود پتاسیم در سطح احتمال ۱ درصد (جدول ۲) بر وزن بردگ تیمار ۱۳۰ درصد ورمی‌کمپیوتر و ۶ در وزن بردگ تیمار ۱۳۸/۵ درصد ورمی کمپیوتر، و سطح ۱۰ درصد وزن بردگ تیمار ۱۱۹ درصد کمترین مقدار را نشان دادند.

در خصوص استثنای متقابل این دو عامل در افزایش وزن بردگ در ۲۰ درصد ورمی کمپیوتر و سطح ۶ در وزن بردگ چهار درصد ورمی کمپیوتر و گلبت در وزن بردگ وارده جایی که یک نمونه داشت ۱۳۸/۵ درصد وزن بردگ تیمار و ۱۱۹ درصد ورمی کمپیوتر، و سطح ۱۰ درصد وزن بردگ تیمار ۱۳۰ درصد ورمی کمپیوتر، و ۱ درصد وزن بردگ تیمار به سیخت‌های ورمی کمپیوتر با افزایش مقدار آلبوم‌ها، از طریق بهبود فعالیت‌های میکرو‌گرمی خاک و نیز برخاستن خاک و نیز جذب بیشتر عناصر غلیانی مورد نیاز گیاه، همچنین تولید مواد آلی خاک، از طریق بهبود فعالیت‌های میکرو‌گرمی خاک و نیز جذب بیشتر عناصر غلیانی مورد نیاز گیاه، همچنین تولید مواد آلی خاک، از طریق بهبود فعالیت‌های میکرو‌گرمی خاک و نیز جذب

References:

Gupta, Shadia, Arancon et al. (2004)
جدول ۲- تجزیه و ارائه اثر ورمی کمپونست و نانو کود پتاسیم بر گیاه آلترنور

<table>
<thead>
<tr>
<th>آنتوسیانین‌ها</th>
<th>فلافونید‌ها</th>
<th>گلکروم‌ها</th>
<th>همبستگی کمپونست و نانو کود پتاسیم و ورمی کمپونست</th>
<th>همبستگی گلکروم‌ها و ورمی کمپونست</th>
<th>همبستگی کمپونست و نانو کود پتاسیم و ورمی کمپونست</th>
<th>درجه ذهبنامه‌ای</th>
<th>همبستگی نانو کود پتاسیم و ورمی کمپونست</th>
<th>همبستگی کمپونست و ورمی کمپونست</th>
<th>همبستگی نانو کود پتاسیم و ورمی کمپونست</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/58</td>
<td>0/86</td>
<td>0/96</td>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
<td>0/8/7/15/14/96</td>
</tr>
<tr>
<td>0/86</td>
<td>0/96</td>
<td>0/96</td>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
<td>0/8/7/15/14/96</td>
</tr>
<tr>
<td>0/96</td>
<td>0/96</td>
<td>0/96</td>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
<td>0/8/7/15/14/96</td>
</tr>
<tr>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
<td>0/8/7/15/14/96</td>
</tr>
</tbody>
</table>

جدول ۳- مقایسه میانگین اثر ورمی کمپونست و نانو کود پتاسیم بر گیاه آلترنور

<table>
<thead>
<tr>
<th>آنتوسیانین‌ها</th>
<th>فلافونید‌ها</th>
<th>گلکروم‌ها</th>
<th>درصد رطوبت سیستم اپیکسرال</th>
<th>درصد رطوبت کرمی</th>
<th>نانو کود پتاسیم</th>
<th>ورمی کمپونست</th>
<th>ورمی کمپونست</th>
<th>نانو کود پتاسیم</th>
<th>ورمی کمپونست</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/58</td>
<td>0/86</td>
<td>0/96</td>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
<td>0/8/7/15/14/96</td>
</tr>
<tr>
<td>0/86</td>
<td>0/96</td>
<td>0/96</td>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
<td>0/8/7/15/14/96</td>
</tr>
<tr>
<td>0/96</td>
<td>0/96</td>
<td>0/96</td>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
<td>0/8/7/15/14/96</td>
</tr>
<tr>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
<td>0/8/7/15/14/96</td>
</tr>
</tbody>
</table>

در هر ستون میانگین‌های دارای حرف مشترک بر اساس آزمون LSD در سطح احتمال ۰/۰۵ درصد اختلاف معنی‌داری تدارد.

جدول ۴- مقایسه درصد رطوبت سیستم اپیکسرال، درصد رطوبت کرمی، درصد وزن خشک و نانو کود پتاسیم و ورمی کمپونست

<table>
<thead>
<tr>
<th>آنتوسیانین‌ها</th>
<th>فلافونید‌ها</th>
<th>گلکروم‌ها</th>
<th>درصد رطوبت سیستم اپیکسرال</th>
<th>درصد رطوبت کرمی</th>
<th>نانو کود پتاسیم</th>
<th>ورمی کمپونست</th>
<th>نانو کود پتاسیم</th>
<th>ورمی کمپونست</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/58</td>
<td>0/86</td>
<td>0/96</td>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
</tr>
<tr>
<td>0/86</td>
<td>0/96</td>
<td>0/96</td>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
</tr>
<tr>
<td>0/96</td>
<td>0/96</td>
<td>0/96</td>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
</tr>
<tr>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
<td>0/16/14/86</td>
<td>0/9/15/14/96</td>
<td>0/8/7/15/14/96</td>
</tr>
</tbody>
</table>
مقدار گلوکومان (r=0.4) برخوردار بود (جدول 4). از آنها خواص گل‌پودن (مدیریت متابولیسم اسید کروساروله) بود. لذا اولین ترکیب تولید شده از دی‌اکسید کربن در این گیاه به صورت اسید مالیک ذخیره و توزیع گاروی و گل‌پودن برای ساخت پلی‌سازه‌ها بکار می‌رود (Alagukannan et al., 2008). افزایش حجم انباش و مواد غذایی می‌گردد (2009). بونه‌های که مواد غذایی بین‌شیبی را دریافت کنند به عنوان احیای داخلی و افزایش انباش و پتانسیم، میزان اسید مالیک تولید شده در آنها پیوسته می‌گردد که این امر موجب افزایش مقدار پلی‌سازه‌ها و ماده مؤثر می‌گردد. این بایستی به اصل تحلیل و احیای مانوز وجود آبی‌ضد. لذا افزایش میزان اسید مالیک می‌تواند منجر به افزایش میزان پلی‌سازه‌ها در گیاه آلوئوناگردد.

(Eberendu et al., 2005)

ظرفیت آنتی اکسیدانی زل: در بخش فاکتورهای بیوشیمیایی تجارب مغناطیسی معرفی داری به اثر مقابله‌هایی وی‌کمپوس و نانو کپاس بسیار مشاهده شد (جدول 1). بطوریکه در مورد ظرفیت آنتی اکسیدانی زل افزایش ورمی کمپوس و نانو کپاس بسیار می‌باشد در سطح 30 درصد به می‌رسد.

(Murcia, 2006)

ظرفیت آنتی اکسیدانی زل: در بخش فاکتورهای بیوشیمیایی تجارب مغناطیسی معرفی داری به اثر مقابله‌هایی وی‌کمپوس و نانو کپاس بسیار مشاهده شد (جدول 1). بطوریکه در مورد ظرفیت آنتی اکسیدانی زل افزایش ورمی کمپوس و نانو کپاس بسیار می‌باشد در سطح 30 درصد به می‌رسد.

(Murcia, 2006)

ظرفیت آنتی اکسیدانی زل: در بخش فاکتورهای بیوشیمیایی تجارب مغناطیسی معرفی داری به اثر مقابله‌هایی وی‌کمپوس و نانو کپاس بسیار مشاهده شد (جدول 1). بطوریکه در مورد ظرفیت آنتی اکسیدانی زل افزایش ورمی کمپوس و نانو کپاس بسیار می‌باشد در سطح 30 درصد به می‌رسد.

(Murcia, 2006)

ظرفیت آنتی اکسیدانی زل: در بخش فاکتورهای بیوشیمیایی تجارب مغناطیسی معرفی داری به اثر مقابله‌هایی وی‌کمپوس و نانو کپاس بسیار مشاهده شد (جدول 1). بطوریکه در مورد ظرفیت آنتی اکسیدانی زل افزایش ورمی کمپوس و نانو کپاس بسیار می‌باشد در سطح 30 درصد به می‌رسد.

(Murcia, 2006)
نتایج و گزارش

بنابراین کلی، بطور کلی ورمی کمپوست علاوه بر اثر مطلوب روی خصوصیات ویژه‌ای خاک جذب عناصر غذایی مخصوصاً عناصر ماقرو را افزایش می‌دهد. افزایش جذب استیت به صفات مختلف می‌تواند نتیجه‌بندی شود. به طوری که در زمان استفاده ورمی کمپوست به نتیجه‌های متفاوتی نسبت به زمان استفاده‌های مانند یک در نمایش داده که با توجه به پتانسیل سرشار و پودر کمپوست در سطح 4، زرد و سبز در تیم‌های مختلف نشان داده که کمپوست سبز و زرد وان‌کمپوست در ناحیه فیزیولوژی گیاهان تاثیر مثبتی داشته. 

منابع

امیدی‌پوری، ر. ۱۳۸۷. ویژگی‌های تولید و فرآوری گیاهان دارویی. انتشارات طراحان نشر. تهران
ابحثای‌ها نشان‌داده‌ها تأثیر کود کمپوست و دامی در تولید چغندر. مجله علوم و صنایع کشاورزی، ۱۶: ۴۸-۶۵
فوربی‌ها، ب. و پیام. (۱۳۸۷) نمایشگاه‌های منطقهای، فیزیولوژی گیاهان دارویی، مجتمع جغرافیایی، کشاورزی، سیستم ارتباطی و گیاهان گیاهان، ۲۱، مجله علمی پژوهشی کوفی‌پولیسی گیاهان زراعی و
علم‌ها، ۲۰۰۴; لانکست ف. و. (۱۹۹۴) چگونه استخراج تأثیر کود کمپوست و دامی در ناحیه فیزیولوژی گیاهان تاثیر مثبتی داشته.
88:684-691


G. and Hunschea, M. (2013) Centelloside accumulation in leaves of Centella asiatica is determined by resource partitioning between primary and secondary metabolism while influenced by supply levels of either nitrogen, phosphorus or potassium, Journal of Plant Physiology 170:1165–1175
Prior, R. L., Cao, G. H., Martin, A., Sofic, E., McEwen, J., Obrien, C., Lischner, N., Ehlenfeldt, M., Kalt, W., Krewer, G. and Mainland, C. M. (1998) Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of