تأثیر سایه بر خصوصیات مورفو-فیزیولوژیک و محتوای اساسن زنوتیپ‌های مختلف از سه گونه نعناع

هاجر رامی دهقی، جمشید رزمجوی، محمد رضا سربنیان و احمدزادی
گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
(تاریخ دریافت: 2/3/1397، تاریخ پذیرش نهایی: 7/1397)

چکیده:
تنمای یکی از مهم‌ترین گیاهان دارویی و مطبوع نیست، با این حال تأثیر سطح سایه بر تولید و اساس نعناع شناخته شده است. لذا این پروژه به هدف بررسی تأثیر سطوح مختلف سایه‌ای بر تولید سبزی و اساس نعناع انجام شد. به همین منظور آزمایشی در طبق سال‌های 1391-1392 در فضای باز مزرعه چه اندی دانشگاه سنیت اصفهان، در قالب طرح کاملاً تصادفی در 3 تکرار و 4 بیوت گلدانی انجام شد. نتایج ها شامل: 5 سطح نعناع (آفتاب کامل(شاهد)، 100، 50 درصد نعناع و سایه 0) به عوامل مهیت و زنوتیپ (کرج، هدان، اصفهان (گونه پوپه M. piperita، طبس، قورین و گونه M. spicata) تحت شرایط 1. افزایش حجم گلدان در زنوتیپ کرج در سایه 0-20 درصد نعناع، وزن ترشحات ادامه گلوله بر گونه است. 2. در زنوتیپ اصفهان، در سطح بهره‌برداری، گلوله بر گونه است. 3. در زنوتیپ اصفهان در سطح بهره‌برداری، گلوله بر گونه است. 4. در زنوتیپ اصفهان در سطح بهره‌برداری، گلوله بر گونه است. 5. در زنوتیپ اصفهان در سطح بهره‌برداری، گلوله بر گونه است.

کلمات کلیدی: تنمای فلکی، تنمای سایه‌ای، سایه‌های مختلف، کمک‌ساز اساسن

مقدمه:
تأثیر یکی از گیاهان دارویی مهمی است که همواره در طول زمان مورد توجه و استفاده بشر قرار گرفته است. تغییر کیفی

towzamand2017@cc.iut.ac.ir
تریب عوامل محیطی زندگی و غیر زنده بر پارامترهای رشد و عملکرد اساسن و ترکیبات آن تأثیر می‌گذارد (Clark et al., 1980). بخشی از انرژی خورشید که توسط چشم انسان قابل مشاهده می‌باشد در طول موجی بین 700 تا 700 نانومتر قرار دارد و تشعشع فنال‌رسی تریس توسط PAR (MONTEITH et al., 1959) رنگ‌گذاری فنال‌رسی جذب نمی‌شود و از طریق سطح برگ، معنی‌کردن سطح یا برگ‌های غده می‌کند، که عمده‌ترین نور سبز ااست. بیشتر نورهای قرمز و آبی توسط کارولفیل جذب می‌شود. نورهایی که از برگ‌های بالایی برگ می‌کنند برگ‌های
که در سایه قرار دارند اهمیت زیادی دارند. کربن‌سوز سطح برگ، غده‌های نمکی (salt glands)، و وضعیت اپیدرم برگ، بر
کیفیت نور که به رشد و توسعه گیاه ارتباط دارد، به نسبت نور قرمز (680 تا 780 نانومتر) اثبات دارد که
این نسبت حدود 11/5 می‌باشد (Holmes et al., 1977).

گیاهان از طریق رشد طولانی و توانای تبرگ ها تغییر تغییر می‌کنند از واکنش به ناخوراپیاری طولی طی سه ماهگزاره به تغییر کیفیت نوری (Franklin, 2001) در شاریاب برای بودن تابش و زن خشک مشخص برگ ها (به دلیل طولی نور در سطح برگ و میانگیر) کم می‌شود (Prioul et al., 1980). برگ های شاد استعداد پیشرفت برای رشد عوامل بیماری زای
قارچی از خود نشان می‌دهند و همچنین تحلیل کمتری به نش
های محیطی مانند تشخیص خشکی کیویان، از خود
نشان می‌دهند (Pessarakli 2008). این تغییرات نرمی‌کنن، به
عنوان پاسخ انتقال از سایر در گیاهان مشاهده شده است زیرا
آنها در موانندی قرار دارند در گیاهان درمانگر در
برن می‌شود و درون گیاهان نمکی گیاهان دیده می‌شود
واریته‌های متمایل به نسبت کمتر از یکم

(Allard et al., 1991). های حساس تحت تأثیر قرار می‌گیرند (139).

در سطح برگ و طول دمک بر نیز افزایش می‌دهد (Codd et al., 1985). گیاهان دربی مخلوط شده در منابعی
های نابین نمی‌می‌باشد. مواد ویژه اگر چه اساساً با هدایت فرآیندهای زئینیکی
ساخته می‌شوند وی ساخته‌ای اگر بار برای پرورش تأثیر
عوامل محیطی قرار می‌گیرد. کاهش شدت روان‌سنج میزان
استروئیدها اگل کن موجود در گیاه آبیابی‌می‌باشد. اما در میزان
مواد ویژه‌ی مذکور در گیاه سبز دنیگری (ناتورژی) همین گونه تغییر اجای نمی‌کند (انگلیسی، 1379). در آزمایش‌های
همه‌کاران (1995) در بررسی نادر دو سطح نور
نوی و سطح طبیعی و سطح‌های مختلف شامل 8 و 12 ساعت بر روی در ترکیب بر روی طبیعی و سطح شدت
بر روی 200 میکروون نور بر مر مربع بر نتیجه نگرفته‌ها، بر رشد
و ترکیب اساسی گیاهی پدیدا زیستی دریافت همی‌شده. همی‌شده، و شیمی این
اخته‌ی دریافت که ترکیبی به گیاهان نمایی می‌شود (Hassani Malayeri et al., 2010). مطالعه اقیمت
می‌باشد. بر روی در مطالعه Mentha arvensis L. var. piperascensa
روی در دو مطالعه بی‌روی بررسی قرار داده‌کنن، مختلف
شامل 8 و 12 ساعت بر روی در ترکیب بر روی طبیعی و سطح
بر روی 200 میکروون نور بر مر مربع بر نتیجه نگرفته‌ها، بر رشد
و ترکیب اساسی گیاهی پدیدا زیستی دریافت همی‌شده. همی‌شده، و شیمی این
اخته‌ی دریافت که ترکیبی به گیاهان نمایی می‌شود (Hassani Malayeri et al., 2010). مطالعه اقیمت
می‌باشد. بر روی در مطالعه Mentha arvensis L. var. piperascensa
روی در دو مطالعه بی‌روی بررسی قرار داده‌کنن، مختلف
شامل 8 و 12 ساعت بر روی در ترکیب بر روی طبیعی و سطح
بر روی 200 میکروون نور بر مر مربع بر نتیجه نگرفته‌ها، بر رشد
و ترکیب اساسی گیاهی پدیدا زیستی دریافت همی‌شده. همی‌شده، و شیمی این
اخته‌ی دریافت که ترکیبی به گیاهان نمایی می‌شود (Hassani Malayeri et al., 2010). مطالعه اقیمت
می‌باشد. بر روی در مطالعه Mentha arvensis L. var. piperascensa
روی در دو مطالعه بی‌روی بررسی قرار داده‌کنن، مختلف
شامل 8 و 12 ساعت بر روی در ترکیب بر روی طبیعی و سطح
بر روی 200 میکروون نور بر مر مربع بر نتیجه نگرفته‌ها، بر رشد
و ترکیب اساسی گیاهی پدیدا زیستی دریافت همی‌شده. همی‌شده، و شیمی این
اخته‌ی دریافت که ترکیبی به گیاهان نمایی می‌شود (Hassani Malayeri et al., 2010). مطالعه اقیمت
می‌باشد. بر روی در مطالعه Mentha arvensis L. var. piperascensa
روی در دو مطالعه بی‌روی بررسی قرار داده‌کنن، مختلف
شامل 8 و 12 ساعت بر روی در ترکیب بر روی طبیعی و سطح
بر روی 200 میکروون نور بر مر مربع بر نتیجه نگرفته‌ها، بر رشد
و ترکیب اساسی گیاهی پدیدا زیستی دریافت همی‌شده. همی‌شده، و شیمی این
اخته‌ی دریافت که ترکیبی به گیاهان نمایی می‌شود (Hassani Malayeri et al., 2010). مطالعه اقیمت
می‌باشد. بر روی در مطالعه Mentha arvensis L. var. piperascensa
روی در دو مطالعه بی‌روی بررسی قرار داده‌کنن، مختلف
شامل 8 و 12 ساعت بر روی در ترکیب بر روی طبیعی و سطح
بر روی 200 میکروون نور بر مر مربع بر نتیجه نگرفته‌ها، بر رشد
و ترکیب اساسی گیاهی پدیدا زیستی دریافت همی‌شده. همی‌شده، و شیمی این
اخته‌ی دریافت که ترکیبی به گیاهان نمایی می‌شود (Hassani Malayeri et al., 2010). مطالعه اقیمت
می‌باشد. بر روی در مطالعه Mentha arvensis L. var. piperascensa
روی در دو مطالعه بی‌روی بررسی قرار داده‌کنن، مختلف
شامل 8 و 12 ساعت بر روی در ترکیب بر روی طبیعی و سطح
گلخانه انتقال داده شده. در ده‌های دوم فروردین ۱۳۹۲ مجدداً به مزرعه برگ‌داری شده و پس از کود دهی تیمارها از آن‌ها اردویت شده و به مدت ۳ ماه اعمال گردید و در نهایت در اول شهریور ماه برداشت شد. وزن ت‌ر و خشک ریشه، وزن ت‌ر و خشک ادامه هواپیمای (گرم) اندام‌های گیرش. میزان محصول Lichtenhaler برگ‌ها با استفاده از روش و هم‌کاران (۱۹۸۷) سنجیده شد؛ به این ترتیب که ۱/۰ گرم از بافت از اکل برگ‌ها به کمک از این مایع در هر چهار چهارم سانتیمتری شد بعد از اینکه نمونه‌ها به خوی یوردر شدن و سپس نگهداری شدند، با استناد ۸۰ درصد، به حجم ۵ سی‌سی رسانده شد. پس از صاف کردن نمونه‌ها با کاغذ صاف و آب و نان در طول موج اسکات اکسیژن‌ترم‌ریز در استدفا استخراج بین استفاده‌های (۲/۷ - ۲/۸9) A_{450-490} μΕ/m (الم) accetone / mg leaf
Cb = ۲/۱۰۵۰ A_{450-490} μΕ/m (الم) accetone / mg leaf
Cx+c = (۱/۱۰۰۰ A_{450-490} μΕ/m (الم) accetone / mg leaf
Cb = ۲/۱۰۵۰ A_{450-490} μΕ/m (الم) accetone / mg leaf
a = محصول کارولفیل
b = محصول کارولفیل ایستاد.

این آزمایش در سال‌های ۱۳۹۲–۱۳۹۴ در دانشگاه صنعتی اصفهان، در مزرعه باغ‌های اناری دانشکده کشاورزی گونه Mentha longifolia L. و Mentha piperita L. فنلی، انجام شد. به این ترتیب که ۷۰ گل‌دان خوراکی تعداد سه دور ریزوم با حدود ۱۰ سانتی‌متر طول و حاوی در سالهای هواپیمای وزن پلاسم مزرعه باغ اناری دانشکده کشاورزی تهیه، و کشت شد. این زننده‌ها یکی از مناطق مختلف ایران جمع آوری شده بود (جدول ۱).

تیمار‌های شامل ۵ سطح سایه به عنوان منحنی شمار: ۸۰–۳۰۰ μΕ/m²sec (۴/۳۰–۳/۴۰)، ۴۰۰–۸۰۰ μΕ/m²sec (۳/۴۰–۴/۸۰)، ۸۰۰–۱۴۷۰ μΕ/m²sec (۴/۸۰–۱/۷۰) و آفت‌کامل به عنوان شاد (۱/۸۰–۵/۰۰) بوده‌که با کمک دستگاه نورسنج (لوكس‌مت) مدل A (۲/۱۰۰۰ بوده که با کمک دستگاه تیپیس گونه) مدل TES-۱۳۳۴ تیمار‌های بین این میان در مزرعه اجرای شد.

دانشکده آقایان باید باید به عنوان شاد در طول موج سایه در درون هر سطح سایه تیمار تشکیل داده شد. تیمارهای بین ۹ زننده نمونه گنجانده شد. آزمایش در قابل طرح کامل یاد کننده‌به یاد تیمار و ۳ تیمار در ۵ محیط سایه اجرا شد. تجربه آماری داده‌ها مطلوب با تجزیه مربوط به مدت محیط انجام شده است. زمان کشت برای شرایط ۱۳۹۱ که ریزوم‌ها به شکلی قابل استفاده بود و از آن‌ها به‌زیان جدا شد.
جدول 1- مشخصات زیوتیپ های سه گونه نتایج مورد استفاده

<table>
<thead>
<tr>
<th>گونه</th>
<th>زیوتیپ</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. longifolia</td>
<td>ن.139</td>
</tr>
<tr>
<td>M. piperita</td>
<td>ن.139</td>
</tr>
<tr>
<td>M. spicata</td>
<td>ن.139</td>
</tr>
</tbody>
</table>

نوعی ژنتیکی و توالی زندگی رشد گیاهان طبیعی، که در طول سالهای مختلف روشنایی رشد می‌کنند (با استفاده از سرورگه‌های ترسیمی و نقشه‌های نما). در این جدول به‌عنوان نمونه داده‌های مربوط به زیوتیپ M. longifolia از سال 1390 و گونه M. piperita از سال 1391 و گونه M. spicata از سال 1392 آورده شده است.

نتایج و بحث:
جدول تجزیه و ارائه صفات نشان داد که اثرات متقابل در صورت معمولی در میان گونه‌های مورد آزمون قرار گرفته. برای انجام محاسبات و رسم شکل‌ها از نرم‌افزار اکسل (نسخه 2007) استفاده شد.

خود نشان دادند (جدول 5): تغییرات در زاویه و همکاران (1386) و نیز نیکان و همکاران (1387) به این نتیجه رسیدند که تنها گیاه در شرایط افزایش نور (توری که به طور مصنوعی اضافه شده است) قرار گرفت، نسبت به تیمار‌های طبیعی رشد و زیست توده بیشتری را تولید کرد. در شرایط کم‌بود نور فتویت کمتر شده و در نتیجه سرعت کشت گیاهان سطح برگ کمتر از سرعت زوال آنها بوده و مقادیر مواد ذخیره کربوهیدرات گیاه نسبت به سطح برگ کاهش می‌یابد و لی مقدار کربوهیدرات مورد نیاز برای شروع به کار افزایش می‌یابد (Hamrick et al. 1990). ورن نسبت به شاهد کمترین وزن خشک این گیاه را تولید کرد.

میانگین نتایج از سال 1390 و 1391 بر اساس گزارش و White (2007) از نظر وزن نوزاد و وزن خشک اندام (M. longifolia 1984) افزایش داشته است. افزایش وزن نوزاد اندام هواپیما (M. spicata 1985) افزایش می‌دهد و وقتی شدت نور زیاد می‌شود، مقدار ماهی خشک دارد. در صورت افزایش نور به سطح ولی و همکاران (Faus et al., 2005) نشان دادند که میانگین وزن نوزاد اندام در زنوتیپ B. از گونه میانگین 0.68 گرم و زنوتیپ شماره ده M. piperita وزنی متوسط 0.79 گرم داشت.

جدول تجزیه و ارائه صفات نشان داد که اثر سایه،
جدول 2 - تجربه واریانس و زنده‌گیری میانگین اثرات سایه بر وزن تریه، وزن خشک ریشه و وزن خشک اندام هواپیما، وزن تریه، وزن خشک ریشه و وزن خشک اندام هواپیما تحت سطح تحقیق مختلف سایه و زنوتیپ های نمونه

<table>
<thead>
<tr>
<th>نوع تغییرات</th>
<th>وزن خشک ریشه (گرم در گلدان)</th>
<th>وزن تریه (گرم در گلدان)</th>
<th>وزن خشک اندام هواپیما (گرم در گلدان)</th>
<th>سایه</th>
<th>تکرار*سایه (خطا)</th>
<th>زنوتیپ</th>
<th>زنوتیپ*سایه</th>
</tr>
</thead>
<tbody>
<tr>
<td>آبی</td>
<td>8424/54</td>
<td>48/594</td>
<td>277/11</td>
<td>4</td>
<td>0.007</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>سایه</td>
<td>12343/202</td>
<td>204/367</td>
<td>41/71</td>
<td>10</td>
<td>0.016</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>سایه</td>
<td>124/5/5</td>
<td>245/5/2</td>
<td>265/5/8</td>
<td>9</td>
<td>0.038</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>سایه</td>
<td>3347/34</td>
<td>46/327</td>
<td>195/4/6</td>
<td>32</td>
<td>0.006</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>خطا</td>
<td>24/99</td>
<td>18/685</td>
<td>80</td>
<td>80</td>
<td>0.001</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

در هر ستون میانگین هایی که حداکثر یک حرف مشترک هستند، براساس آزمون LSD در سطح 0.05 درصد اختلاف معنی‌دار ندارند.

جدول 3 - مقایسه میانگین اثرات سایه بر روی وزن تریه، وزن خشک ریشه و وزن خشک اندام هواپیما تحت سطح مختلف سایه

<table>
<thead>
<tr>
<th>نوع سایه</th>
<th>وزن خشک ریشه (گرم در گلدان)</th>
<th>وزن تریه (گرم در گلدان)</th>
<th>وزن خشک اندام هواپیما (گرم در گلدان)</th>
</tr>
</thead>
<tbody>
<tr>
<td>آبی</td>
<td>40/74</td>
<td>150/94</td>
<td>277/11</td>
</tr>
<tr>
<td>سایه</td>
<td>35/23</td>
<td>173/192</td>
<td>274/24</td>
</tr>
<tr>
<td>سایه</td>
<td>46/32</td>
<td>213/416</td>
<td>279/53</td>
</tr>
<tr>
<td>سایه</td>
<td>57/12</td>
<td>254/345</td>
<td>285/93</td>
</tr>
<tr>
<td>خطا</td>
<td>12/13</td>
<td>24/16</td>
<td>24/52</td>
</tr>
</tbody>
</table>

در هر ستون میانگین هایی که حداکثر یک حرف مشترک هستند، براساس آزمون LSD در سطح 0.05 درصد اختلاف معنی‌دار ندارند.

نتایج سایه بر خصوصیات مورفوفیزیولوژیک و محتوا اساسن زنوتیپ...
جدول 5: مقایسه میانگین اثرات میدمان سطح سایه و زنوتیپ‌های تیغه بر روی وزن تر اندام هواپیمایی، وزن تر ریشه و وزن خشک اندام هواپیمایی و وزن خشک ریشه

<table>
<thead>
<tr>
<th>عامل آزمایش</th>
<th>سطح سایه</th>
<th>زنوتیپ</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن تر اندام هواپیمایی (کرم در کلدن)</td>
<td>وزن تر اندام هواپیمایی (کرم در کلدن)</td>
<td>وزن خشک اندام هواپیمایی (کرم در کلدن)</td>
</tr>
<tr>
<td>كرچ</td>
<td>64 کرم</td>
<td>35/25</td>
</tr>
<tr>
<td>همدان</td>
<td>30/78</td>
<td>55/16</td>
</tr>
<tr>
<td>اصفهان</td>
<td>49/11</td>
<td>30/78</td>
</tr>
<tr>
<td>طبس</td>
<td>90/30</td>
<td>49/11</td>
</tr>
<tr>
<td>قزوین</td>
<td>75-1</td>
<td>90/30</td>
</tr>
<tr>
<td>شاهد</td>
<td>10-3</td>
<td>75-1</td>
</tr>
<tr>
<td>بجنورد</td>
<td>15-6</td>
<td>10-3</td>
</tr>
</tbody>
</table>

پژوهش در دوره پایان‌نامه ۱۳۹۴، دانشگاه آزادی ایران، کالج توانان و جامعه‌سازی، آزمون.
در هر سمت میانگین‌ها که حاصل دارای یک حرف مشترک هستند، بر اساس آزمون LSD در سطح 0.05 درصد اختلاف معنی‌دار تناکد.

<table>
<thead>
<tr>
<th>کربن CString</th>
<th>سر افزایش سطح</th>
<th>نرخ</th>
<th>میزان</th>
<th>نرخ</th>
<th>میزان</th>
<th>نرخ</th>
<th>میزان</th>
<th>نرخ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

زنجیبی و اثر متقابل آنها در سطح احتمال 1 درصد معنی‌دار است. تیمار 20 درصد سایه 10/171 ون نر زن‌های افزایش داد و با افزایش سطح سایه، وزن نر زن‌های کاهش چشم‌گیر پیدا کرد به طوری که سایه 80-90 درصد وزن نر زن‌های کاهش داد وزن خشک روند زن سایه 200-300 درصد نسبت به آفتگان کاملاً/ افزایش فاقد. با ادامه افزایش سطح سایه وزن خشک روند نسبت به آفتگان کاملاً کاهش می‌یابد. در سایه 80-90 درصد نسبت به شاهد وزن خشک روند کاهش یافته بود. کربن بین‌شیرین وزن نر خشک روند را تولید کرد است وزن نر و خشک روند را تولید نموده است. مقایسه میانگین الگات متقابل سایه وزن نر نشان می‌دهد که زنجیبی کربن در 20 درصد بیشتر وزن نر و خشک روند را تولید نموده است.

زنجیبی و اثر متقابل آنها با مقدار کاروتئونید معنی‌دار شد (جدول). مقایسه میانگین داده‌ها نشان می‌دهد که کربن گل‌فست کاروتئونید در سایه 30-20 درصد نسبت به شاهد 44/7٪ افزایش یافته ولی با ادامه افزایش سطح سایه گل‌فست کاروتئونید کاهش در سایه 90-60 درصد محترای کاروتئونید 25/2٪ کاهش یافته بود (جدول 7). زنجیبی کربن بالاتری زنجیبی بین‌شیرین مقدار کاروتئونید را تولید کرد بود (جدول 8). زنجیبی کربن در 20-30 درصد سایه
جدول ۶- تجزیه و تحلیل آزمایش میزان کلروفیل a، کاروتئنید و اساس تحت سطوح مختلف سایه‌پذیری

<table>
<thead>
<tr>
<th>عملکرد اساس</th>
<th>کاروتئنید a</th>
<th>کاروتئنید b</th>
<th>درجه آرامی</th>
<th>نوع بتی</th>
<th>بند</th>
<th>نحوه انجام</th>
</tr>
</thead>
<tbody>
<tr>
<td>سایه</td>
<td>94</td>
<td>98</td>
<td>0.66</td>
<td>10</td>
<td>64</td>
<td>نسبت شکوفا</td>
</tr>
<tr>
<td>نیمه سایه</td>
<td>83</td>
<td>85</td>
<td>0.53</td>
<td>8</td>
<td>33</td>
<td>نسبت شکوفا</td>
</tr>
<tr>
<td>نسبت شکوفا</td>
<td>76</td>
<td>80</td>
<td>0.44</td>
<td>32</td>
<td>80</td>
<td>نسبت شکوفا</td>
</tr>
</tbody>
</table>

جدول ۷- مقایسه میانگین آزمایش بر روی کلروفیل a، کاروتئنید و میزان اساس اندام هواپیمای تحت سطوح مختلف سایه

<table>
<thead>
<tr>
<th>عملکرد اساس</th>
<th>کاروتئنید a</th>
<th>کاروتئنید b</th>
<th>درجه آرامی</th>
<th>نوع بتی</th>
<th>بند</th>
<th>نحوه انجام</th>
</tr>
</thead>
<tbody>
<tr>
<td>سایه</td>
<td>75</td>
<td>78</td>
<td>0.80</td>
<td>20</td>
<td>80</td>
<td>نسبت شکوفا</td>
</tr>
<tr>
<td>نیمه سایه</td>
<td>63</td>
<td>67</td>
<td>0.70</td>
<td>15</td>
<td>70</td>
<td>نسبت شکوفا</td>
</tr>
<tr>
<td>نسبت شکوفا</td>
<td>55</td>
<td>58</td>
<td>0.60</td>
<td>60</td>
<td>60</td>
<td>نسبت شکوفا</td>
</tr>
</tbody>
</table>

جدول ۸- مقایسه میانگین آزمایش سایه کلروفیل a، کاروتئنید و میزان اساس اندام هواپیمای در زنوتیپ‌های مختلف نیمن

<table>
<thead>
<tr>
<th>عملکرد اساس</th>
<th>کاروتئنید a</th>
<th>کاروتئنید b</th>
<th>درجه آرامی</th>
<th>نوع بتی</th>
<th>بند</th>
<th>نحوه انجام</th>
</tr>
</thead>
<tbody>
<tr>
<td>سایه</td>
<td>75</td>
<td>78</td>
<td>0.80</td>
<td>20</td>
<td>80</td>
<td>نسبت شکوفا</td>
</tr>
<tr>
<td>نیمه سایه</td>
<td>63</td>
<td>67</td>
<td>0.70</td>
<td>15</td>
<td>70</td>
<td>نسبت شکوفا</td>
</tr>
<tr>
<td>نسبت شکوفا</td>
<td>55</td>
<td>58</td>
<td>0.60</td>
<td>60</td>
<td>60</td>
<td>نسبت شکوفا</td>
</tr>
</tbody>
</table>

در هر سه میانگین هایی که حداکثر دارای یک حرف مشترک هستند، بر اساس آزمون LSD دارای اختلاف معنی‌دار نیستند.
جدول ۹ - مقایسه میانگین اثرات متقابل سطح سایه و زنوتیپ بر روی کاروتئید b. کاروتئید و میزان اساسن اندام هوازی

<table>
<thead>
<tr>
<th>عامل آزمایش</th>
<th>کاروتئید b</th>
<th>عامل آزمایش</th>
<th>کاروتئید b</th>
</tr>
</thead>
<tbody>
<tr>
<td>سطح سایه زنوتیپ</td>
<td>(میلی گرم بر کغم وزن تر)</td>
<td>(میلی گرم بر کغم وزن تر)</td>
<td>(میلی گرم بر کغم وزن تر)</td>
</tr>
<tr>
<td>۱۲/۱۰۳</td>
<td>۰/۴۱</td>
<td>۱۲/۱۰۳</td>
<td>۰/۴۱</td>
</tr>
<tr>
<td>۱۳/۳۰</td>
<td>۱/۱۲</td>
<td>۱۳/۳۰</td>
<td>۱/۱۲</td>
</tr>
<tr>
<td>۲۷/۵۰</td>
<td>۱/۷۶</td>
<td>۲۷/۵۰</td>
<td>۱/۷۶</td>
</tr>
<tr>
<td>۲۸/۸۴</td>
<td>۱/۳۶</td>
<td>۲۸/۸۴</td>
<td>۱/۳۶</td>
</tr>
<tr>
<td>۳۰/۵۱</td>
<td>۲/۶۱</td>
<td>۳۰/۵۱</td>
<td>۲/۶۱</td>
</tr>
<tr>
<td>۳۱/۲۲</td>
<td>۳/۷۲</td>
<td>۳۱/۲۲</td>
<td>۳/۷۲</td>
</tr>
<tr>
<td>۳۳/۳۱</td>
<td>۴/۹۴</td>
<td>۳۳/۳۱</td>
<td>۴/۹۴</td>
</tr>
<tr>
<td>۳۴/۴۴</td>
<td>۵/۵۶</td>
<td>۳۴/۴۴</td>
<td>۵/۵۶</td>
</tr>
<tr>
<td>۳۶/۷۳</td>
<td>۶/۵۳</td>
<td>۳۶/۷۳</td>
<td>۶/۵۳</td>
</tr>
<tr>
<td>۳۷/۰۴</td>
<td>۷/۰۵</td>
<td>۳۷/۰۴</td>
<td>۷/۰۵</td>
</tr>
<tr>
<td>۳۷/۱۵</td>
<td>۸/۶۵</td>
<td>۳۷/۱۵</td>
<td>۸/۶۵</td>
</tr>
<tr>
<td>۳۸/۴۵</td>
<td>۹/۴۴</td>
<td>۳۸/۴۵</td>
<td>۹/۴۴</td>
</tr>
<tr>
<td>۴۰/۵۰</td>
<td>۱/۰۰</td>
<td>۴۰/۵۰</td>
<td>۱/۰۰</td>
</tr>
<tr>
<td>۴۱/۲۲</td>
<td>۱/۰۴</td>
<td>۴۱/۲۲</td>
<td>۱/۰۴</td>
</tr>
<tr>
<td>۴۲/۰۵</td>
<td>۱/۰۵</td>
<td>۴۲/۰۵</td>
<td>۱/۰۵</td>
</tr>
<tr>
<td>۴۳/۰۲</td>
<td>۱/۰۶</td>
<td>۴۳/۰۲</td>
<td>۱/۰۶</td>
</tr>
<tr>
<td>۴۴/۱۵</td>
<td>۱/۰۷</td>
<td>۴۴/۱۵</td>
<td>۱/۰۷</td>
</tr>
<tr>
<td>۴۵/۰۵</td>
<td>۱/۰۸</td>
<td>۴۵/۰۵</td>
<td>۱/۰۸</td>
</tr>
<tr>
<td>۴۶/۴۵</td>
<td>۱/۰۹</td>
<td>۴۶/۴۵</td>
<td>۱/۰۹</td>
</tr>
<tr>
<td>۵۰/۵۰</td>
<td>۱/۱۰</td>
<td>۵۰/۵۰</td>
<td>۱/۱۰</td>
</tr>
<tr>
<td>۵۱/۳۰</td>
<td>۱/۱۱</td>
<td>۵۱/۳۰</td>
<td>۱/۱۱</td>
</tr>
<tr>
<td>۵۲/۱۵</td>
<td>۱/۱۲</td>
<td>۵۲/۱۵</td>
<td>۱/۱۲</td>
</tr>
<tr>
<td>۵۳/۱۵</td>
<td>۱/۱۳</td>
<td>۵۳/۱۵</td>
<td>۱/۱۳</td>
</tr>
<tr>
<td>۵۴/۲۰</td>
<td>۱/۱۴</td>
<td>۵۴/۲۰</td>
<td>۱/۱۴</td>
</tr>
<tr>
<td>۵۵/۱۵</td>
<td>۱/۱۵</td>
<td>۵۵/۱۵</td>
<td>۱/۱۵</td>
</tr>
<tr>
<td>۵۶/۶۰</td>
<td>۱/۱۶</td>
<td>۵۶/۶۰</td>
<td>۱/۱۶</td>
</tr>
<tr>
<td>۵۷/۵۰</td>
<td>۱/۱۷</td>
<td>۵۷/۵۰</td>
<td>۱/۱۷</td>
</tr>
<tr>
<td>۵۸/۴۵</td>
<td>۱/۱۸</td>
<td>۵۸/۴۵</td>
<td>۱/۱۸</td>
</tr>
<tr>
<td>۵۹/۳۰</td>
<td>۱/۱۹</td>
<td>۵۹/۳۰</td>
<td>۱/۱۹</td>
</tr>
<tr>
<td>۶۰/۲۵</td>
<td>۱/۲۰</td>
<td>۶۰/۲۵</td>
<td>۱/۲۰</td>
</tr>
<tr>
<td>۶۱/۲۰</td>
<td>۱/۲۱</td>
<td>۶۱/۲۰</td>
<td>۱/۲۱</td>
</tr>
<tr>
<td>۶۲/۱۵</td>
<td>۱/۲۲</td>
<td>۶۲/۱۵</td>
<td>۱/۲۲</td>
</tr>
<tr>
<td>۶۳/۱۰</td>
<td>۱/۲۳</td>
<td>۶۳/۱۰</td>
<td>۱/۲۳</td>
</tr>
<tr>
<td>۶۴/۰۵</td>
<td>۱/۲۴</td>
<td>۶۴/۰۵</td>
<td>۱/۲۴</td>
</tr>
<tr>
<td>۶۵/۰۰</td>
<td>۱/۲۵</td>
<td>۶۵/۰۰</td>
<td>۱/۲۵</td>
</tr>
</tbody>
</table>
در هر سنت میانگین‌هایی که حاصل دارای یک حرف مشترک هستند، براساس آزمون LSD در سطح 0.05 هندسه اختلاف معنی‌دار دارند.

| جدول ۹-۳ | | | | | | |
|----------|----------|----------|----------|
| ۸/۵۴۳۹ ۱ /۲۷ ۰۴۰ | ۸/۲۸ ۱۰۴ ۰۱۷ ۰۸ | ۸/۵۴ ۱۴۶ ۰۸ |
| ۹/۵۵ ۱۰۰ ۱۱ | ۱ /۲۷ ۰۴۰ | ۸/۵۴ ۱۴۶ ۰۸ |
| ۸/۵۴ ۱۴۶ ۰۸ | ۸/۵۴ ۱۴۶ ۰۸ | ۸/۵۴ ۱۴۶ ۰۸ |
| ۸/۵۴ ۱۴۶ ۰۸ | ۸/۵۴ ۱۴۶ ۰۸ | ۸/۵۴ ۱۴۶ ۰۸ |
| ۸/۵۴ ۱۴۶ ۰۸ | ۸/۵۴ ۱۴۶ ۰۸ | ۸/۵۴ ۱۴۶ ۰۸ |
| ۸/۵۴ ۱۴۶ ۰۸ | ۸/۵۴ ۱۴۶ ۰۸ | ۸/۵۴ ۱۴۶ ۰۸ |
| ۸/۵۴ ۱۴۶ ۰۸ | ۸/۵۴ ۱۴۶ ۰۸ | ۸/۵۴ ۱۴۶ ۰۸ |
| ۸/۵۴ ۱۴۶ ۰۸ | ۸/۵۴ ۱۴۶ ۰۸ | ۸/۵۴ ۱۴۶ ۰۸ |
| ۸/۵۴ ۱۴۶ ۰۸ | ۸/۵۴ ۱۴۶ ۰۸ | ۸/۵۴ ۱۴۶ ۰۸ |
| ۸/۵۴ ۱۴۶ ۰۸ | ۸/۵۴ ۱۴۶ ۰۸ | ۸/۵۴ ۱۴۶ ۰۸ |
| ۸/۵۴ ۱۴۶ ۰۸ | ۸/۵۴ ۱۴۶ ۰۸ | ۸/۵۴ ۱۴۶ ۰۸ |
| ۸/۵۴ ۱۴۶ ۰۸ | ۸/۵۴ ۱۴۶ ۰۸ | ۸/۵۴ ۱۴۶ ۰۸ |

مادون قرمز آن را مهار می‌کند (۱۹۹۹). در آزمایشی درگ، نشان داده شد که نور قرمز سنتر با کاروتین را در تریچه تحریک می‌کند (۱۹۸۷). وجود کورنیک آن در گروه تاثیرگذار نشان می‌دهد، می‌باشد که افزایش بیان‌едак تأثیرگذار نشان می‌دهد. اگر افزایش سطح سیاهی به عنوان ایجاد یا به همراه بیان‌داده‌ها نشان دهنده نور قرمز به مادون قرمز می‌شود، منجر به تحریک رنگدانه‌ها از جمله کاروتئونید شد.

در این بررسی تأثیر دوباره سایه مختلف و زننده‌های مختلف بر مقدار محتوای کروفلی a در سطح اختلاف ۱ درصد تفاوت معنی‌دار وجود دارد ولی اثر متقابل آنها معنی‌دار نیست (جدول ۱). مقایسه میانگین داده‌ها نشان داد که در سایه ۷۲/۳ درصد مقدار محتوای کروفلی a نسبت به شاهد و در سایه ۸۰ درصد مقدار محتوای کروفلی a نسبت به شاهد به کاهش داده شده. افزایش افزایش سطح سیاهی این مقدار کاهش یافت و در سایه ۸۰ درصد مقدار محتوای کروفلی a نسبت به شاهد ۴۲ درصد. کاهش داشته (جدول ۱) مقایسه میانگین داده‌های حاصل از زننده‌های مختلف نشان دهنده این است که به طور مستقیم هم کروفلی سیلیکون (chl) و هم فرم فعل اکسیژن آفساب (chl) (دار ۱۹۹۹) را خاموش می‌کند. ۲. سیلیکون‌ها تبدیل بالا بر کرنش و بیولوژی‌ها و آنتی‌گونتین ایکس‌سی انجام می‌دهند و باعث خاموشی کاروتئونید (chl) می‌گردد (رده‌بندی: Kozuka et al., ۲۰۰۵). تابیت نور شدت باعث می‌شود که انواع اکسیژن کروفلی سیلیکون (chl) و اکسیژن‌های افزایشی در طول تشکیل کروفلی سیلیکون (chl) باعث می‌شود. آفساب به خوبی اکسیژن اندازه‌گیری در کروفلیست شود. حفاظت نوری با تحریک کروفلیت‌ها هم‌مراتب است که علت آن دریافت کوئنتی می‌باشد. با توانایی بالا از کروفلیت پیک تابیت در شرایط نشیده نور اضافی می‌باشد. نتایج‌های در سطح ۲۵ درصد مایع به‌طور مستقیم با کروفلیت a و هم بین‌شیرین‌ترین میزان کروفلیت دیده شد. در نور شدت برخی اضافه کامل به دلیل محافظت کروفلیت از کروفلیت، مقدار ۰ در کاهش یافت و Cohen که می‌شود (۱۹۶۴). در مطالعه ای همکاران (۱۹۷۲) نشان داده که نور قرمز سنتر کروفلیت‌ها را تحریک کرده و رشد یافته در این شرایط افزایش می‌یابد. نور قرمز پیوست کروفلیت‌های در گروه رشدی‌ها تحریک و نور.
ترکیه واریانس صفات نشان دهنده این است که تأثیر سباهی، زنوتیب و اثر متقابل آنها بر میزان محادی کارکرده گیاه در سطح احتمال 1 درصد معنی‌دار دارد (جدول 8). مقایسه میانگین داده‌های نشان دهنده که با افزایش سباهی میزان کارکرده گیاه کاهش می‌یابد به طوری که سباهی 90-۶۰ درصد ۵۲٪ میزان کارکرده ۹ کاهش داد (جدول ۸). پیشرفتی میزان محادی کارکرده ۹ در زنوتیب b کمتری مقادیر آن در زنوتیب بی‌جوده دیده شد (جدول ۸). مقایسه میانگین داده نشان دهنده این است که پیشرفتی میزان محادی کارکرده گیاه افزایش اصفهان در افتراق کامل و میزان کمتری کاهش دارد. تفاوت اینکه نشان دهنده این است که میزان محادی کارکرده گیاه کاهش دارد. وقتی شدت نور خیلی زیاد باشد، بر اساس جذب انتزاع زیاد، کارکرده واقعی در مرکز واکنش کارکرده هیلای سباهی (Wittmann et al., 2001) و گیاه رونویتی در نور تراکم رنگی‌های کم‌تری دارد (Bertamivina et al., 2006). در آزمایش دیگری و همکاران (2009) نیز این که کاهش میزان کارکرده گیاه را که با افزایش بیماری سباهی حاصل می‌شود را گزارش نموده‌اند. آنها معتقد هستند که با افزایش بیماری سباهی کارکرده گیاه می‌یابد. پژوهش‌های دیگر نشان داده‌اند که تغییر آرایش کارکرده‌ساز در درون سلول میزان کارکرده را تحت تأثیر قرار می‌دهد. منظور این است که در شرایط سباهی خلاصه بر اینکه میزان کارکرده کم شده و سیستمی برگه‌های کاهش می‌یابد. کارکرده‌ساز ها هم عمدی نیز در نیکائین و مواد دیواره سلولی قرار می‌گیرند (Todd et al., 2005).

Dana et al., 2004

جدول تجزیه واریانس صفات نشان دهنده این است که اثر سباهی و زنوتیب در سطح احتمال 1 درصد و اثر متقابل آنها
شادی‌های مختلفی به این صورت بر اساس اندازه و همچنین تعداد لایه‌ها در میکروسکوپ می‌باشد.

نور معمولی است و بیشتر اساس به بستگی زیادی به رژیم های نوری دارد. تولید اساس در مرم گلی و آویشن رشد داده شده در 15/27% و 100/35٪ از نور کامل نشان داده‌های غلط کلی در 15/27٪ از نور خورشید بالاترین مقدار بود و بیشترین مقدار آویشن در کلی نور کامل بسته‌بندی بود (Li et al, 1996). غلظت اساس در توده‌های نور سیلیستیک روز، افزایش یافته (Halva et al, 1993). در آپیس بیشترین عضای کلی نور مکمل برای زنده‌یافت‌ی 1 بسته‌بندی بود که اثر آپیس ورز خشک و افزایش درصد محیط اساس بود. در پر کرای، مشحولی نسبی عضای کلی نور افزایش یافته (Letchamo et al, 1995) در نتیجه مانند بیشتر در اداره‌ی بهبود می‌گردد.

متجان: امید بیگی، ر. (1379) راهنماهای تولید و فرآوری گیاهان دارویی و پرورش آنها. انتشارات طراحان نانوتکن. خریداری، ف.، زهان، ف.، جوشینگ، ع. آلابار، 1379، و دادوری، ر. (1993) تأثیر نحوه معرفی ریز مذی و Mentha opsippus بر عملکرد و اساس نفع فلفلی و زنده‌یافت در Mentha L. مدل گیاهان دارویی و مطر ایران. 24: 91.1. خوشخوی م، شیبانی ب، روحانی ا، و نفلوی، ع. (1385) اصول غذایی، انتشارات دانشگاه شیراز.

راهدایی، پ. (1390) مننا ترکیبات بهای فوستری و فعالیت آوری از Mentha spicata. Triticum aestivum.

وحیظ میان اکسپرتیست‌های طبیعی ایران 47-54٪. زرگری، ع. (1372) گیاهان دارویی، جلد چهارم، انتشارات دانشگاه تهران.

زرگری، ع. (1385) گیاهان دارویی، جلد پنجم، انتشارات دانشگاه تهران.

اصص شرمشی، س. (1382) پروپاتور و تکثیر گیاهان دارویی، انتشارات مالی اصفهان.

عیسی زاده، ب، رضایی، م. و لیاقت حقیقی، م. (1390) بررسی ویژگی‌های مورفولوژیک و ترکیبات اساس 2.
phytochrome in the natural environment characterization of daylight for studies in
photomorphogenesis and photoperiodism.
growth responses of the Arabidopsis thaliana leaf blade and the petiole during shade avoidance are
Letchamo, W. and Gosselin, A. (1995) Effects of HPS supplemental lighting and soil water levels on
growth, essential oil content and composition of two thyme Thymus vulgaris L. clone selections.
Canadian Journal of Plant Science 75: 231-238.
Mastelic, J. and Jerkovic, I. (2002) Free and Glycosically bound volatiles of Mentha longifolia growing incrotaio. Chemistry and
Natural Product 38: 561-564.
Royal Meteorological Society 85: 386-392.
Proul, J. L., Brangeon, J. and Reyss, A. (1980) Interaction between external and internal conditions in the development of photosynthetic features in a
grass leaf. I. Regional responses along a leaf during and after low-light or high light acclimation. Plant
Physiology 66: 762-769.
photoinhibition of photosynthesis in grapevine Vitis vinifera L. cv. Riesling leaves. Environmental and
Evolutionary Biology 7:693-697.
oil composition of Japanese mint grown in a closed production system. Environment Control in Biology
48: 141-149.
Holmes, M. G. and Smith, H. (1977) The function of