تأثیر سایه بر خصوصیات مورفولوژیک و محتوای اساسن زنوتیپ‌های مختلف از سه گونه نعنع

مقدمه

تناغیکی از گیاهان دارویی مهمی است که همواره در طول زمان مورد توجه و استفاده بشر قرار گرفته است. تناغیکی گیاهانی است که با غلبه بر چهار محور (اساسن) و این گیاه می‌باشد. به‌طوری‌که برای گرفتن عرق و اساسن مصرف می‌شود (خوشنویسی همراه، 1385). اساسن این گیاه در دسته‌بندی‌های تالیفی گیاهان می‌باشد. به‌طوری‌که برای گرفتن عرق و اساسن مصرف می‌شود (خوشنویسی همراه، 1385). اساسن این گیاه در دسته‌بندی‌های تالیفی گیاهان می‌باشد. به‌طوری‌که برای گرفتن عرق و اساسن مصرف می‌شود (خوشنویسی همراه، 1385). اساسن این گیاه در دسته‌بندی‌های تالیفی گیاهان می‌باشد. به‌طوری‌که برای گرفتن عرق و اساسن مصرف می‌شود (خوشنویسی همراه، 1385). اساسن این گیاه در دسته‌بندی‌های تالیفی گیاهان می‌باشد. به‌طوری‌که برای گرفتن عرق و اساسن مصرف می‌شود (خوشنویسی همراه، 1385). اساسن این گیاه در دسته‌بندی‌های تالیفی گیاهان می‌باشد. به‌طوری‌که برای گرفتن عرق و اساسن مصرف می‌شود (خوشنویسی همراه، 1385). اساسن این گیاه در دسته‌بندی‌های تالیفی گیاهان می‌باشد. به‌طوری‌که برای گرفتن عرق و اساسن مصرف می‌شود (خوشنویسی همراه، 1385). اساسن این گیاه در دسته‌بندی‌های تالیفی گیاهان می‌باشد. به‌طوری‌که برای گرفتن عرق و اساسن مصرف می‌شود (خوشنویسی همراه، 1385). اساسن این گیاه در دسته‌بندی‌های تالیفی گیاهان می‌باشد. به‌طوری‌که برای گرفتن عرق و اساسن مصرف می‌شود (خوشنویسی همراه، 1385). اساسن این گیاه در دسته‌بندی‌های تالیفی گیاهان می‌باشد. به‌طوری‌که برای گرفتن عرق و اساسن مصرف می‌شود (خوشنویسی همراه، 1385). اساسن این گیاه در دسته‌بندی‌های تالیفی گیاهان می‌باشد. به‌طوری‌که برای گرفتن عراق و اساسن مصرف می‌شود (خوشنویسی همراه، 1385). اساسن این گیاه در دسته‌بندی‌های تالیفی گیاهان می‌باشد. به‌طوری‌که برای گرفتن عراق و اساسن مصرف می‌شود (خوشنویسی همراه، 1385). اساسن این گیاه در دسته‌بندی‌های تالیفی گیاهان می‌باشد. به‌طوری‌که برای گرفتن عراق و اساسن مصرف می‌شود (خوشنویسی همراه، 1385). اساسن این گیاه در دسته‌بندی‌های تالیفی گیاهان می‌باشد. به‌طوری‌که برای گرفتن عراق و اساسن مصرف می‌شود (خوشنویسی همراه، 1385). اساسن این گیاه در دسته‌بندی‌های تالیفی گیاهان می‌باشد.
ترتب عوامل محیطی زندگی و غیر زندگی یو پارامترهای رشد و عملکرد اساسی و ترکیبات آن تأثیر مهم گزارش‌ها (Clark et al. 1980) به یادگیری از انرژی خورشیدی که توسط چشم انسان قابل مشاهده می‌باشد، در طول متوسط 700 تا 800 نانومتر قرار و تشعشع فعال ناحیه PAR (T) نام دارد (Monteith et al. 1959) توسط PAR رنگ‌دانی به فوتونی جذب نیم‌شود و از طریق سطح برگ، معکس می‌شود یا از برگ‌های یک کننک، که عمدتاً نور سیز است. بیشتر نوه‌های فرم و آب توسط کاروانی جذب می‌شود. نوری که از برگ‌های بالایی یا در برکه‌های که در سایه قرار دارند به‌همین‌زیاده دارد. کرکه‌های سطح برگ، غده‌های نمکی (salt glands) و وضعیت ایلیدرم برگ، بر کارگیری نور که به رشد و توسعت گیاه ارتباط دارد، به نسبت نور قرمز (670 تا 700 نانومتر) 800 نانومتر است (Holmes et al. 1977). این نسبت حدود 1/15 می‌باشد.

گیاهان از طریق رشد طولانی و نازک تر نیازت بر گر، ها تغییر تحقیصی معنی‌داری از زبان با حالها و افزایش طولی شدن بی‌گروه به ناحیه کیفیت نوری سطح (Franklin 2008). در شرایط پایین بودن نانک، وزن خشک مخصوص برگ ها به دلیل طول یا برگ و میانگره) می‌شود (Prioul et al. 1980). برگ‌های به سیره استفاده بیشتر برای ورود عوامل برهم‌زاوی‌های ذخیره شده از خود نباید عوامل به همین‌همگیری به نشانده می‌دانند نشان برخی ارقام برای نهایت کنار گرفته شده در مقاله شد نیز برکه شده می‌توانست به این نظر نباید عوامل سایر ارقام برای نهایت کنار گرفته شده (Pessarakli 2008). این تغییرات فنی‌بی‌ها، به عنوان نویسنده‌ای از سایر در گیاهان شناخته شده و زیرا آنها نویسنده‌ای از سایر در گیاهان شناخته شده باشد. توان ملاحظه‌ای در ارتباط به حضور گیاهان مجوزی در بین گونه‌ها و درون گونه‌های گیاهان دیده می‌شود (Allard et al. 1991).

فاوند و کارکرد گیاهی جلد 6، شماره 1394 58
گلخانه انتقال داده شدن. درonde دوم فروردین 1392 مجددأ به مزروعی برگدانده شده و پس از کود دهی تیمارها از یک اردهشدن ماه به مدت 3 ماه اعمال گردید و در نهایت در اول شهریور ماه برداشت شد وزن ت، و خشک ریشه، و زن ت، و خشک اندام هواپیمایی (گرم) اندام گیری شد. نیاز محتوای کواروفیل برگ ها استعداد تهیه شده به این ترتیب که 4گرم از نبات 40 گرم گیاه کاربرد دستگاه از پیش انتخاب بین 60 میلیوم لیتر عصاره در میلی گرم وزن بافت نمونه بسته شد.

\[
Ca = \frac{12}{5} A_{170,185} \times \text{ml aceton} / \text{mg leaf}
\]

\[
Cb = \frac{21}{5} A_{313,318} \times \text{mg aceton / mg leaf}
\]

\[
\text{Cx} + \text{C} = \frac{100}{2} A_{340} / (80\text{Ca} \times 50\text{Cb}) / 180\text{xml aceton} / \text{mg leaf}
\]

\[
\text{محتوای کواروفیل} = \text{Ca} + \text{Cb} = \text{Cx}
\]

(ENTICATION) اسپاس گیری به روش تطابق با آب یا دستگاه کواروفیل انجام شد. برای اسپاس گیری از نمونه خشک شده، برای افزایش سطح تهیه برگ با آب مقرطر باید هم‌‌تیمار آسایش شود. به‌صورت تیمار بین 100 گرم پودر آسایش شده که را در بین ریخته و سپس به‌صورت 9، 10 برای وزن پودر شده آب به‌پایین‌افراش شد. زمان اسپاس گیری برای تمام نتایج به 4 ساعت بود. از انتهای برای دانستن وزن ماده خشک به کار رفته برای تهیه اسپاس و وزن اسپاس، درصد محتوای اسپاس و ضرب درصد محتوای اسپاس در وزن خشک شاخصاره، عملکرد اسپاس بسته آمد. تجهیزه واریانس دادههای مرتبه به هر صفت به کمک نرم‌افزار آماری SAS به افزایش ساخت منتو و کاهش تجمع منتوفران و پولیگون منجرشد. وقتی گیاهان اسپاسی در وضعیت روز بلند قرار می‌گیرند (مثلی، مسئله گل و نعناع)، مقدار اسپاسی این گیاهان افزوده‌ها و خواهد شد. طول مدت روش‌های تأثیر به سببی در تولید مواد مورد نظر ناتوانی (امیدبیگیی) 1379.3.

کشت نعناع به هدف تولید اسپاس انجام می‌شود و با توجه به اینکه گیاه بیشتر در سایه انداز درختان کشت می‌شود در این آزمایش به بررسی تأثیر مواد اسپاسی به تولید اسپاس گیاه‌ها مختلف نعناع انجام شد.

مواد و روش‌ها:

این آزمایش در سال های 1392-1393 در دانشگاه، شکنی اصفهان، در مزرعه باغ اداری دانشگاه کشاورزی روي سه ژنتیپ گونه Mentha longifolia L. و سه ژنتیپ نعناع Mentha piperita L. خوراکی انجام شد. به ازای هر گلدن Mentha spicata L. تعداد سه عدد ریزوم با حدود 20 سانتی مت طول و حاوی در سایه هواپیمایی زرم پلاست مزرعه باغ اداری دانشگاه کشاورزی تهیه و کشت شد. این ژنتیپ‌ها قبلاً از مناطق مختلف ایران جمع‌آوری شده بود (جدول 1).

تیمار اصلی شامل 5 سطح سایه به عنوان محیط شامل: 80-90، 70-80، 60-70، 50-60 و 40-50 درصد سایه (sec). 200، 150، 100، 50 و 0 میکروکال کالری (میکروکال کالری، میکروکال کالری، میکروکال کالری، میکروکال کالری، میکروکال کالری) مانند TES-1334 در انتاریو توریه‌ها به روش انجام داده شد. در مزرعه اسپاسی این نمونه گیاه‌ها مورد 3 هکتار شما قرار گرفتند. تعیین فرمی شما 9 ژنتیپ نعناع، گلخانه شده. آزمایش در قالب طرح کاملاً تصادفی با 9 تیمار و 3 تکرار در 5 محیط سایه اجرا شد. تجزیه آماری داده‌ها مطلق با تجهیزه مرکب در چند محیط انجماد شده است. زمان کشت ریزومها شهروی ماه 1391 برود و آیان ماه گلدن‌ها به
جدول 1- مشخصات زمان‌بندی‌های سه گونه نمونه‌ریزی مورد استفاده

<table>
<thead>
<tr>
<th>گونه</th>
<th>زمان‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. longifolia</td>
<td>۶۰/۵۰</td>
</tr>
<tr>
<td>M. piperita</td>
<td>۶۹/۵۰</td>
</tr>
<tr>
<td>M. spicata</td>
<td>۵۸/۶۰</td>
</tr>
</tbody>
</table>

نتایج و بحث:
جدول تجزیه واریانس صفات نشان داد که تأثیر سایه، زمان‌بندی و اثر متقابل آنها بر وزن تا و خشک‌شدن یا هر دوی در سطح ۱ درصد معنی‌دار بود. بر اساس آزمون LSD مورد آزمون قرار گرفته. برای انجام محاسبات و رسم شکل‌ها از نرم‌افزار اکسل (نسخه ۲۰۰۷) استفاده شد.

جدول تجزیه واریانس صفات نشان داد که تأثیر سایه، زمان‌بندی و اثر متقابل آنها بر وزن تا و خشک‌شدن یا هر دوی در سطح ۱ درصد معنی‌دار بود. بر اساس آزمون LSD مورد آزمون قرار گرفته. برای انجام محاسبات و رسم شکل‌ها از نرم‌افزار اکسل (نسخه ۲۰۰۷) استفاده شد.

جدول تجزیه واریانس صفات نشان داد که تأثیر سایه، زمان‌بندی و اثر متقابل آنها بر وزن تا و خشک‌شدن یا هر دوی در سطح ۱ درصد معنی‌دار بود. بر اساس آزمون LSD مورد آزمون قرار گرفته. برای انجام محاسبات و رسم شکل‌ها از نرم‌افزار اکسل (نسخه ۲۰۰۷) استفاده شد.

(نسخه ۹/۲) انجام شد و میانگین اثرات مقابل در صورت معنی‌دار بودن بر اساس آزمون LSD در سطح ۱ درصد مورد آزمون قرار گرفتند. برای انجام محاسبات و رسم شکل‌ها از نرم‌افزار اکسل (نسخه ۲۰۰۷) استفاده شد.

(۱۳۸۷) در سطح ۱ درصد معنی‌دار بود. بر اساس آزمون LSD مورد آزمون قرار گرفته. برای انجام محاسبات و رسم شکل‌ها از نرم‌افزار اکسل (نسخه ۲۰۰۷) استفاده شد.

خود نشان دادند (جدول ۵). قلی زاده و همکاران (۱۳۸۳) و این نتایج و همکاران نور (۱۳۸۸) به طور مصنوعی اضافه شده است. قرار گرفت، نسبت به تیمار تور طبیعی رشد و زیست توجه بیشتری را تولید کرد. در شرایط کمبود نور فتوستات کمتر شده و در نتیجه سرعت کشت‌گاه سطح بزرگ کمتر از سرعت زوال آنها بوده و مقدار مواد ذخیره کربوهیدرات گیاه نسبت به سطح بزرگ کاهش می‌یابد و لی مقدار کربوهیدرات مورد نیاز برای رشد گیاه افزایش می‌یابد (Hamrick et al. 1990). وزن خشک ساقه اصلی و برگ‌های ساقه های فرعی نتایج زایی در طول دوره روش‌نامه بیشتر، افزایش چشمگیری (Hassani Malayeri et al., 1990) بر اساس گزارش White و Ghasemi (۱۹۸۴). افزایش شدید نور وزن تا و خشک‌شدن اندازه هواپیمای را افزایش می‌دهد. وقیت شدید نور زیاد می‌شود، مقدار ماده خشک از هر واحد ماده تیغ‌ها افزایش می‌یابد. در این باید ها تجمع مواد ساختاری و کربوهیدرات بیشتر می‌شود (۱۳۸۸) در مطالع‌های (Faust et al., 2005) نشان داد که میانگین وزن تا و خشک‌شدن در زمان‌بندی یک از آن گونه می‌باشد M. spicata ۶۸/۵۰ گرم و زمان‌بندی شماره ده M. piperita وزنی معادل ۵/۶/۹ گرم داشت.
جدول ۲- تجزیه واریانس و وزن تر وزن خشک اندام هاوی، وزن تر و وزن خشک ریشه تحت سطح مختلف سایه و زنوتیپ های نعاع

<table>
<thead>
<tr>
<th>مورد تغییرات</th>
<th>سایه</th>
<th>تکرار سایه (خطا)</th>
<th>زنوتیپ</th>
<th>تکرار زنوتیپ سایه (خطا)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سایه</td>
<td>۴</td>
<td>۱۰</td>
<td>۸</td>
<td>۳</td>
</tr>
<tr>
<td>حسالُ</td>
<td>۱۷۵</td>
<td>۱۳۷</td>
<td>۲۱۰</td>
<td>۲۰۸</td>
</tr>
<tr>
<td>آظازی</td>
<td>۱۸۰</td>
<td>۱۶۰</td>
<td>۱۳۰</td>
<td>۱۴۰</td>
</tr>
<tr>
<td>حسالُ</td>
<td>(متوسط)</td>
<td>(متوسط)</td>
<td>(متوسط)</td>
<td>(متوسط)</td>
</tr>
<tr>
<td>۹۸/۴</td>
<td>۷۹/۱</td>
<td>۷۵/۹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴۸/۴</td>
<td>۷۹/۱</td>
<td>۷۵/۹</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در هر ستون میانگین هایی که حداکثر دارای یک حرف مشترک هستند، بر اساس آزمون LSD در سطح ۵ درصد اختلاف معنی‌دار ندارند.

جدول ۳- مقایسه میانگین اثرات سایه بر روی وزن تر اندام هاوی، وزن خشک اندام هاوی، وزن تر و وزن خشک ریشه تحت سطح مختلف سایه

<table>
<thead>
<tr>
<th>مورد تغییرات</th>
<th>سایه</th>
<th>وزن تر اندام هاوی (گرم در گلدان)</th>
<th>وزن خشک اندام هاوی (گرم در گلدان)</th>
<th>وزن تر ریشه (گرم در گلدان)</th>
<th>وزن خشک ریشه (گرم در گلدان)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سایه</td>
<td>۴</td>
<td>۱۵۰/۴</td>
<td>۵۸/۷</td>
<td>۶۲/۴</td>
<td></td>
</tr>
<tr>
<td>حسالُ</td>
<td>۱۱۷/۷</td>
<td>۵۷/۸</td>
<td>۵۷/۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>آظازی</td>
<td>۱۸۷</td>
<td>۵۸/۷</td>
<td>۵۷/۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>حسالُ</td>
<td>(متوسط)</td>
<td>(متوسط)</td>
<td>(متوسط)</td>
<td>(متوسط)</td>
<td></td>
</tr>
<tr>
<td>۶۶/۴</td>
<td>۵۷/۸</td>
<td>۵۷/۱</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴۸/۴</td>
<td>۵۷/۸</td>
<td>۵۷/۱</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در هر ستون میانگین هایی که حداکثر دارای یک حرف مشترک هستند، بر اساس آزمون LSD در سطح ۵ درصد اختلاف معنی‌دار ندارند.
جدول ۵: مقایسه میانگین اثرات مقابل سطح سایه و زنوبیپ‌های تجویز بر روی وزن تر اندام هواپی، وزن تر ریشه، وزن خشک اندام هواپی و وزن خشک ریشه

<table>
<thead>
<tr>
<th>عامل آماری</th>
<th>سطح سایه (کمتر در کلیان)</th>
<th>وزن تر اندام هواپی</th>
<th>وزن تر ریشه</th>
<th>وزن خشک اندام هواپی</th>
<th>وزن خشک ریشه</th>
</tr>
</thead>
<tbody>
<tr>
<td>کرج</td>
<td>15/48 e</td>
<td>48/94 f</td>
<td>159/146 g</td>
<td>176/65 h</td>
<td>233/44 i</td>
</tr>
<tr>
<td>حمدان</td>
<td>20/26 b</td>
<td>18/49 c</td>
<td>158/83 d</td>
<td>153/80 e</td>
<td>233/44 i</td>
</tr>
<tr>
<td>اصفهان</td>
<td>33/91 b</td>
<td>18/94 c</td>
<td>135/18 a</td>
<td>134/6 a</td>
<td>233/44 i</td>
</tr>
<tr>
<td>طبس</td>
<td>41/45 f</td>
<td>49/92 d</td>
<td>48/22 a</td>
<td>48/22 a</td>
<td>233/44 i</td>
</tr>
<tr>
<td>شاهد</td>
<td>41/45 f</td>
<td>49/92 d</td>
<td>48/22 a</td>
<td>48/22 a</td>
<td>233/44 i</td>
</tr>
</tbody>
</table>

20-50%

40-50%
|- | | | | | | |
|---|---|---|---|---|---|
| ۱۶/۱۴| ۶/۰۹| ۴۴/۰۸| ۲۲/۷۲| قریون|
| ۱۸/۲۳| ۶/۳۱| ۳۷/۱۶| ۱۰/۳| ۷-۱|
| ۱۸/۳۲| ۵/۱۹| ۲۹/۲۶| ۱۰/۳| ۱-۲|
| ۱۹/۵۶| ۱۰/۲۳| ۹/۰۹| ۱۹/۵۶| بجوتورد|
| ۱۷/۸۰| ۸/۱۹| ۴۹/۱۶۰| ۳۱/۹۳| ۱۱-۲|
| ۲/۳۰۰| ۲/۳۴| ۲۰/۲۴| ۹/۰۲| کرح|
| ۱/۶۴| ۱/۲۹| ۴/۲۰| هماند|
| ۲/۴۰| ۲/۸۰| ۱۲/۷۶| اسفهان|
| ۱/۸۲| ۱/۷۰| ۸/۳۱| طبس|
| ۱/۴| ۱| ۲/۷۹| قریون/۸۸-۹۰% سایه|
| ۸/۹۲| ۷/۶۰| ۲۵/۶۳| ۱۷۳/۶۳| ۷-۱|
| ۲/۲۱| ۱/۷۱| ۸/۶۷| ۱-۲|
| ۹/۴۰| ۶/۳۸| ۵۴/۳۷| ۱۱-۳|
| ۳/۴۰| ۱/۰۳| ۱۱/۴۵| بجوتورد|

در هر سرتون میانگین ۰.۱۴ که حداکثر دارای یک حرف مشترک می‌باشد، بر اساس آزمون LSD در سطح ۰.۰۵ درصد اختلاف معنی‌دار ندارند.

زئوتیپ و اثر متقابل آنها در سطح احتمال ۱ درصد معنی‌دار است. تبیمار ۲۰ درصد سایه ۱/۷۱٪ وزن نر ریشه افراشی داد و با افراشی سطح سایه، وزن نر ریشه کاهش چشمگیری پیدا کرد. وزن نر بیشتر افراشی طبیعی، وزن نر ریشه ۹/۱٪ کاهش داد. وزن خشک ریشه نیز در سایه ۲۵ درصد نسبت به آفتان کامل، ۷۷٪ افراشی یافت. با ادامه افراشی سطح سایه، وزن خشک ریشه نسبت به آفتان کامل کاهش می‌یابد. در سایه ۸۰-۹۰ درصد، وزن نر ۹۰/۸٪ نسبت به سایه و وزن نر خشک ریشه کاهش یافته بود. کرنگ بیشترین وزن نر و خشک ریشه را تولید کرده است و زئوتیپ طبس نیز کمترین وزن نر و خشک را تولید نموده است. مقایسه میانگین اثرات متقابل سایه و زئوتیپ نشان می‌دهد که زئوتیپ کرح در ۲۰ درصد بیشترین وزن نر ریشه و قریون در سایه ۸۰-۹۰ درصد کمترین وزن نر ریشه و قریون را تولید نموده است. زئوتیپ کرح در سایه ۸۰-۹۰ درصد بیشترین وزن خشک ریشه و زئوتیپ قریون در سایه ۸۰-۹۰ درصد کمترین وزن خشک ریشه را تولید کرده اند. یک از فاکتورهای محیطی مهم که اثر مثبتی در تولید وزن نر است، رنک و میزان نرخ الکل در ارضی ایجاد می‌کند که در طی زمان تولید وزن نر را افزایش می‌دهد.
جدول 6 - تغییرات واریانس میزان کلروفیل a، کلروفیل b، کاروتئین و اساس تحت سطوح مختلف سایه نرخ‌های نعمت

<table>
<thead>
<tr>
<th>عملکرد اساس</th>
<th>کاروتئین</th>
<th>درصد داراد</th>
<th>کلروفیل a</th>
<th>درجه آردر</th>
<th>معنی تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>سایه</td>
<td>24/20</td>
<td>3/10</td>
<td>8/32</td>
<td>1/5</td>
<td>1/3</td>
</tr>
<tr>
<td>نیمه سایه</td>
<td>24/20</td>
<td>3/10</td>
<td>8/32</td>
<td>1/5</td>
<td>1/3</td>
</tr>
<tr>
<td>نیمه نسیه</td>
<td>24/20</td>
<td>3/10</td>
<td>8/32</td>
<td>1/5</td>
<td>1/3</td>
</tr>
</tbody>
</table>

*عمد وجود اختلاف معنی‌دار *، اختلاف معنی‌دار در سطح احتمال 0.05 اختلاف معنی‌دار در سطح احتمال 0.01

جدول 7 - مقایسه میانگین وزن سایه بر روی کلروفیل a، کلروفیل b، کاروتئین و میزان اساس اندام هواپیمای تحت سطوح مختلف سایه

<table>
<thead>
<tr>
<th>عملکرد اساس</th>
<th>کاروتئین</th>
<th>درصد داراد</th>
<th>کلروفیل a</th>
<th>درجه آردر</th>
<th>معنی تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>سایه</td>
<td>24/20</td>
<td>3/10</td>
<td>8/32</td>
<td>1/5</td>
<td>1/3</td>
</tr>
<tr>
<td>نیمه سایه</td>
<td>24/20</td>
<td>3/10</td>
<td>8/32</td>
<td>1/5</td>
<td>1/3</td>
</tr>
<tr>
<td>نیمه نسیه</td>
<td>24/20</td>
<td>3/10</td>
<td>8/32</td>
<td>1/5</td>
<td>1/3</td>
</tr>
</tbody>
</table>

در هر سری میانگین‌هایی که حداکثر دارای یک حرف مشترک هستند، بر اساس آزمون LSD در سطح 5 درصد اختلاف معنی‌دار دارند.

جدول 8 - مقایسه میانگین وزن کلروفیل a، کلروفیل b، کاروتئین و میزان اساس اندام هواپیمای در زننی‌های مختلف سایه

<table>
<thead>
<tr>
<th>عملکرد اساس</th>
<th>کاروتئین</th>
<th>درصد داراد</th>
<th>کلروفیل a</th>
<th>درجه آردر</th>
<th>معنی تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>سایه</td>
<td>24/20</td>
<td>3/10</td>
<td>8/32</td>
<td>1/5</td>
<td>1/3</td>
</tr>
<tr>
<td>نیمه سایه</td>
<td>24/20</td>
<td>3/10</td>
<td>8/32</td>
<td>1/5</td>
<td>1/3</td>
</tr>
<tr>
<td>نیمه نسیه</td>
<td>24/20</td>
<td>3/10</td>
<td>8/32</td>
<td>1/5</td>
<td>1/3</td>
</tr>
</tbody>
</table>

*عمد وجود اختلاف معنی‌دار *، اختلاف معنی‌دار در سطح احتمال 0.05 اختلاف معنی‌دار در سطح احتمال 0.01

در هر سری میانگین‌هایی که حداکثر دارای یک حرف مشترک هستند، بر اساس آزمون LSD در سطح 5 درصد اختلاف معنی‌دار دارند.

کندنی نه تر عمل می‌نماید. در شرایط نش نیز از کارپلاست
محافظت می‌کند (رلهادری، 1390). سیستم فتوستیزی به دو
طریق توسط کاروتئین ها می‌توانند به محدوده: β کاروتئین
بالاترین و زننیه 11-12 در سایه 0-10 درصد کمترین مقدار
کاروتئین را داشته (جدول 9). کاروتئین ها هم چنین به
برای اینکه به عنوان پیگمن‌های دیروافت
جدول 9 - مقایسه میانگین اثرات متقابل سطح سایه و ژنتیک بر روی کارتوتوئید a کارتوتوئید b کارتوتوئید (میانگین بر میان گرم وزن تر) عامل آزمایش (میانگین بر میان گرم وزن تر)

<table>
<thead>
<tr>
<th>عامل آزمایش</th>
<th>کارتوتوئید a</th>
<th>کارتوتوئید b</th>
<th>کارتوتوئید</th>
<th>سطح سایه</th>
<th>ژنتیک</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/18 نیم</td>
<td>1/64 نیم</td>
<td>1/64 نیم</td>
<td>2/51 نیم</td>
<td>1/64 نیم</td>
<td>3/23 نیم</td>
</tr>
<tr>
<td>18/1 نیم</td>
<td>1/64 نیم</td>
<td>1/64 نیم</td>
<td>2/51 نیم</td>
<td>1/64 نیم</td>
<td>3/23 نیم</td>
</tr>
<tr>
<td>3 ظرفی</td>
<td>1/64 نیم</td>
<td>1/64 نیم</td>
<td>2/51 نیم</td>
<td>1/64 نیم</td>
<td>3/23 نیم</td>
</tr>
<tr>
<td>4/5 کلی</td>
<td>1/64 نیم</td>
<td>1/64 نیم</td>
<td>2/51 نیم</td>
<td>1/64 نیم</td>
<td>3/23 نیم</td>
</tr>
<tr>
<td>6/6 کلی</td>
<td>1/64 نیم</td>
<td>1/64 نیم</td>
<td>2/51 نیم</td>
<td>1/64 نیم</td>
<td>3/23 نیم</td>
</tr>
<tr>
<td>8/8 کلی</td>
<td>1/64 نیم</td>
<td>1/64 نیم</td>
<td>2/51 نیم</td>
<td>1/64 نیم</td>
<td>3/23 نیم</td>
</tr>
<tr>
<td>10/10 کلی</td>
<td>1/64 نیم</td>
<td>1/64 نیم</td>
<td>2/51 نیم</td>
<td>1/64 نیم</td>
<td>3/23 نیم</td>
</tr>
<tr>
<td>12/12 کلی</td>
<td>1/64 نیم</td>
<td>1/64 نیم</td>
<td>2/51 نیم</td>
<td>1/64 نیم</td>
<td>3/23 نیم</td>
</tr>
<tr>
<td>14/14 کلی</td>
<td>1/64 نیم</td>
<td>1/64 نیم</td>
<td>2/51 نیم</td>
<td>1/64 نیم</td>
<td>3/23 نیم</td>
</tr>
<tr>
<td>16/16 کلی</td>
<td>1/64 نیم</td>
<td>1/64 نیم</td>
<td>2/51 نیم</td>
<td>1/64 نیم</td>
<td>3/23 نیم</td>
</tr>
<tr>
<td>18/18 کلی</td>
<td>1/64 نیم</td>
<td>1/64 نیم</td>
<td>2/51 نیم</td>
<td>1/64 نیم</td>
<td>3/23 نیم</td>
</tr>
<tr>
<td>20/20 کلی</td>
<td>1/64 نیم</td>
<td>1/64 نیم</td>
<td>2/51 نیم</td>
<td>1/64 نیم</td>
<td>3/23 نیم</td>
</tr>
<tr>
<td>22/22 کلی</td>
<td>1/64 نیم</td>
<td>1/64 نیم</td>
<td>2/51 نیم</td>
<td>1/64 نیم</td>
<td>3/23 نیم</td>
</tr>
<tr>
<td>24/24 کلی</td>
<td>1/64 نیم</td>
<td>1/64 نیم</td>
<td>2/51 نیم</td>
<td>1/64 نیم</td>
<td>3/23 نیم</td>
</tr>
<tr>
<td>26/26 کلی</td>
<td>1/64 نیم</td>
<td>1/64 نیم</td>
<td>2/51 نیم</td>
<td>1/64 نیم</td>
<td>3/23 نیم</td>
</tr>
<tr>
<td>28/28 کلی</td>
<td>1/64 نیم</td>
<td>1/64 نیم</td>
<td>2/51 نیم</td>
<td>1/64 نیم</td>
<td>3/23 نیم</td>
</tr>
<tr>
<td>30/30 کلی</td>
<td>1/64 نیم</td>
<td>1/64 نیم</td>
<td>2/51 نیم</td>
<td>1/64 نیم</td>
<td>3/23 نیم</td>
</tr>
</tbody>
</table>

توجه: مقدار بیشتر نشان می‌دهد که سطح سایه یا ژنتیک اثرات متقابل را رقم‌گذاری کرده‌اند.
مادون قرمز آن را مهار می‌کند (1999). در آزمایشی دیگر نشان داده شد که نور قرمز سنجاقی تا کاروتین را در تریبه تحریک می‌کند (1987). وجود نور شدید در گرمای ناپایین بیوسنتز رنگدانه‌ها را با مشکل مواجه می‌کند لذا وجود مقدار کمی سایه باعث افزایش بیوسنتز رنگدانه‌ها از جمله کاروتونیدها گردید. اماده‌ای آنتی‌اکسیدان سطح سایه به علت اینکه سایه باعث کاهش نسبت نور قرمز به مادون قرمز می‌شود، منجر به تحریک رنگدانه‌ها از جمله کاروتونید شد.

در این بررسی تأثیر به‌ساده‌سازی مختلف و زوئیپه‌ها متفاوت بر مقدار محیطی کاروتین a در سطح احتمال 1 درصد مقایسه می‌کنیم. نشان داده شد که نزدیک (جدول 1)، مقدار محیطی داده‌ها نشان داد که در سایه و گرمای ناپایین a نسبت به شاهد، 50% افزایش پیدا کرد. با ادامه افزایش سطح سایه این مقدار کاهش ناپذیر و سایه به سایه 80 درصد محیطی کاروتین a نسبت به شاهد 30% کاهش داشت (جدول 7، مقایسه میانگین داده‌ها). حال حاضر از زوئیپه‌ها مختلف نشان دهنده این است که به طور مستقیم هم کاروتین سه نایب (chl3) و هم فرم فعال اکسید (chl1) را کاهش می‌دهد (2). بسیاری از کارکردگذاران و آنتی‌اکسیدان‌های تغییراتی را انجام می‌دهند و باعث حفاظت کلروفیل یک تکانه، می‌گردد (راهدی، 1390). ناب از نور به دلیل تشکیل کلروفیل هزارد نایب (chl1)، به وجود آمده و باعث به یک مقدار منفی انتقال الکترون در کلروفیل است. شوش. حفاظت نوری با تحریک کاروتونید ها همهمه این است که علت آن در پست‌کاتای مضر با پاتسیس بالا از کلروفیل یک نایب در شرایط نشان نور اضافی می‌باشد. نابارین در شرایط 25 درصد سایه هم بیشترین مقدار کاروتین a و هم بیشترین میزان کاروتونید دیده شد. در نور شدید، پیش آنها کامل به دلیل انحراف کاروتونید از کاروتین. مقدار a در کاهش یافته و Cohen کمتر از شود (1964). در مطالعه ای و همکاران (1962) نشان داده که نور قرمز سنجاقی تأثیر کاروتونید ها را تحریک کرده و رشد هم در این شرایط افزایش می‌یابد. نور قرمز بیوسنتز کاروتونید در گوجه رشد‌های تحریک و نور
در سطح احتمال 0.05 درصد، برای درصد محتوای اساسی معنی‌دار شد (جدول 6). با افزایش سطح سایه‌تار های حذفی در میزان محیطات افزایش یافته‌پسا می‌کند. در سایه 0.01 تا 0.1 درصد، درصد محتوای اساسی از 0.54 درصد درصد محتوای اساسی بالاتر در سطح احتمال 0.01 درصد معنی‌دار دارد (جدول 7). مقایسه این میانگین‌ها در سطح احتمال 0.01 درصد، که با افزایش میزان کلروفیل 0.0007 می‌یابد به طوری که سایه 0.01 تا 0.1 درصد جدول 7 می‌باشد (جدول 8). در سطح احتمال 0.01 درصد، برای درصد میزان معنی‌دار شد (جدول 9).

توجهی واریانس صفات نشان دهنده این است که تأثیر سایه و زونوتیپ کم یکسان باشد. زونوتیپ و اثر متقابل آنها در میزان محیطات کلروفیل در سطح احتمال 0.01 درصد معنی‌دار دارد (جدول 8). مقایسه این میانگین‌ها در سطح احتمال 0.01 درصد، که با افزایش میزان کلروفیل 0.0007 می‌یابد به طوری که سایه 0.01 تا 0.1 درصد جدول 7 می‌باشد (جدول 8). در سطح احتمال 0.01 درصد، برای درصد میزان معنی‌دار شد (جدول 9).

به نظر می‌رسد که ممکن است سایه بالاتر از 0.01 درصد، به سطح کلروفیل آسیب وارد کند یا افزایش آن کم کند. گیاهان روندها در سایه به نسبت گیاهان رونده در نور تراکم رنگ‌های کمری‌دار (Wittmann et al., 2001). وقتی شدت نور خیلی زیاد به، عدم جذب انتزی زیاد کلروفیل واقع در مکرو واکنش کلروفیلات غیر عاملی شود (Bertaminia et al., 2006) در آزمایش دیگری Saifuddin و همکاران (2009) نیز این کاهش سنتز کلروفیل را که با افزایش تیمار سایه حاصل می‌شود. در اثر کلروفیلات غیر عاملی غلیمه فاکتوری نور افکت کلروفیل افزایش می‌یابد. پژوهش‌های دیگر نشان داده‌اند که تغییر آریز کلروفیلات در درون سولو میزان کلروفیل را تحت تأثیر قرار می‌دهد. متject این است که در شرایط سایه عالی‌تر از ان نیز کلروفیل کم شده و سیریکین برگ‌ها هم کاهش می‌یابد. کلروفیلات ها هم معمولاً به زردآلو تاش و موانع این سولو فرار می‌گیرند (Todd et al., 2005). Dana et al., 2004)

جدول تجزیه واریانس صفات نشان دهنده این است که اثر سایه و زونوتیپ در سطح احتمال 0.01 درصد و اثر متقابل آنها
نوی معمولی است و بیوسترا انناس بستگی زیادی به رعی های توده دارد. تولید انناس در سه مریم در رب نوزش Roths داده شده است. البته از نظر کنار دادن غله کل این ماده مقدار بود و بیشترین مقدار کل انناس در کل این ماده بود (Li et al. 1996). غله انناس در دوره اول از طول روز، افزایش یافت (Halva et al., 1993). در آزمایش بیشترین عملکرد انناس، تا دو روز شرایط انرژی زنر خشک و افزایش درصد حاصل انناس بود. در دوره اول، رشد، محیط انناسی عملکرد آن افزایش یافت (Letchamo et al., 1995). در دوره گونه Mentha longifolia و M. spicata

منابع:
امید بیگی، ر. (1379) "رهیافت‌های تولید و فرآوری گیاهان دراوی و پیازی از درخت‌های نارنجیسته". حیدری، ف.، زاغی‌نامه‌ساز، س.، جوانپر، ع.، الاباری، م. و دادنیو، ر. (1387) "تأثیر بهره‌وری برای زنر خشک و افزایش درصد حاصل انناس". هالو، پ. (1388) "اصولی از بهبود، انتخابات داشتگاه شیراز". راه‌داری، ب. (1390) "میزان رنگ‌گذاری های فوتوپویزی، فعالیت فوتوپویزی و فلوئوروسنس کارکن" در گیاه تحقیق نور بایا و کم‌بود آب. Mentha piperita L. مجله گیاهان دارویی و معطر ایران 24: 1-9.

روزگری، ع. (1372) "گیاهان دارویی، جلد چهارم، انتشارات دانشگاه نیشابور".
روزگری، ع. (1383) "گیاهان دارویی، جلد پنجم، انتشارات دانشگاه تهران".
صمش‌های سرطان، س. و پورش، طراحی، م. و. (1382) "پورش و طراحی گیاهان دارویی، انتشارات مانی اصفهان".
عباس‌زاده، ب. و رضایی، م. و (1390) "پورش و طراحی گیاهان مورفولوژیک و تکنیک‌های دارویی".}

فته‌ی‌الودی (دوره نوری) طولانیتر نسبت به دوره نوری کوتاه تر نوی معمولی است و بیوسترا انناس بستگی زیادی به رعی های توده دارد. تولید انناس در سه مریم در رب نوزش Roths داده شده است. البته از نظر کنار دادن غله کل این ماده مقدار بود و بیشترین مقدار کل انناس در کل این ماده بود (Li et al. 1996). غله انناس در دوره اول از طول روز، افزایش یافت (Halva et al., 1993). در آزمایش بیشترین عملکرد انناس، تا دو روز شرایط انرژی زنر خشک و افزایش درصد حاصل انناس بود. در دوره اول، رشد، محیط انناسی عملکرد آن افزایش یافت (Letchamo et al., 1995). در دوره گونه Mentha longifolia و M. spicata

منابع:
امید بیگی، ر. (1379) "رهیافت‌های تولید و فرآوری گیاهان دارویی و پیازی از درخت‌های نارنجیسته". حیدری، ف.، زاغی‌نامه‌ساز، س.، جوانپر، ع.، الاباری، م. و دادنیو، ر. (1387) "تأثیر بهره‌وری برای زنر خشک و افزایش درصد حاصل انناس". هالو، پ. (1388) "اصولی از بهبود، انتخابات داشتگاه شیراز". راه‌داری، ب. (1390) "میزان رنگ‌گذاری های فوتوپویزی، فعالیت فوتوپویزی و فلوئوروسنس کارکن" در گیاه تحقیق نور بایا و کم‌بود آب. Mentha piperita L. مجله گیاهان دارویی و معطر ایران 24: 1-9.

روزگری، ع. (1372) "گیاهان دارویی، جلد چهارم، انتشارات دانشگاه نیشابور".
روزگری، ع. (1383) "گیاهان دارویی، جلد پنجم، انتشارات دانشگاه تهران".
صمش‌های سرطان، س. و پورش، طراحی، م. و. (1382) "پورش و طراحی گیاهان دارویی، انتشارات مانی اصفهان".
عバス‌زاده، ب. و رضایی، م. و (1390) "پورش و طراحی گیاهان مورفولوژیک و تکنیک‌های دارویی".
phytochrome in the natural environment characterisation of daylight for studies in
growth responses of the Arabidopsis thaliana leaf blade and the petiole during shade avoidance are
Letchamo, W. and Gosselin, A. (1995) Effects of HPS supplemental lighting and soil water levels on
growth, essential oil content and composition of two thyme Thymus vulgaris L. clonal selections.
Canadian Journal of Plant Science 75: 231-238.
Mastelic, J. and Jercovic, I. (2002) Free and
Glycosically bound volatiles of Thymus vulgaris L. cv. Riesling leaves. Environmental and
Clark, R. J. and Menary R. C. (1980) Environmental
effects on peppermint (Mentha piperita L.) II. effects of temperature on photosynthesis,
photorespiration and dark respiration in peppermint with reference to oil composition. Plant Function &
Evolutionary Biology 7:693-697.
etiolated maize seedlings. Phytochemistry 1: 67-72.
Dai, Y., Shen, Z., Liu, Y., Wang, L., Hannaway D. and
photosynthetic capacity, chlorophyll fluorescence and chlorophyll content of tetrastigma hemsleyanum
SPAD 502 chlorophyll meter readings by changes in irradiance and leaf water status. Agronomy
effects of light-temperature regimes on plant growth
Faust, J. E., Holcombe, V., Rajakapakse, N. C. and Layne,
Physiology. 179: 930-944.
Halva, S., Craker, L. E., Simon, J. E., and Charles, D. J.
(1993) Growth and essential oil in Dill, Anethum
graveolens L. in response to temperature and
photoperiod. Journal of Herbs, Spices & Medicinal
Plants 1: 47-56.
population genetics, breeding, and genetic resources
effects of light period and light intensity on essential
oil composition of Japanese mint grown in a closed
production system. Environment Control in Biology
48: 141-149.
Henschall, J. D. and Goodwin, T. W. (1964) The effect of red and far red light on carotenoid and
Holmes, M. G. and Smith, H. (1977) The function of