بررسی تأثیر نشانی و همبستگی اندوفاوت نتویفوپیوم بر رشد

Lolium perenne

شاخص‌های رشد و جذب نیکل در گیاه

مريم صالحی، لیلا شیبانی، محمد رضا سیبعلیان، مجید شریفی تهرانی

گروه زیست شناسی، دانشکده علوم، دانشگاه شهید بهشتی، بهمن‌رود، ارگون رزمایش و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

اصفهان 81136

(تاریخ دریافت: 1392/04/13، تاریخ پذیرش نهایی: 1392/07/07)

چکیده:
گیاه چنین ساله با گروه مهمی از اندوفاوت‌ها، Neotyphodium با گروه مهمی از Lolium perenne رابطه همبستگی دارد.

متن مورد استفاده در فارغ‌التحصیلی ۳ ماه بعد از اعمال تیمار به صورت ۰، ۳۰، ۹۰ و ۱۸۰ میلی‌گرم نیکل در هر کیلوگرم خاک شاخس‌های رشد شام الگوی خشک و طول ریشه و اندام‌هایی، تعداد پنجه و سایر جذب نیکل در ریشه و اندام‌هایی در هر گلدان اندازه‌گیری شد. پس از ۳ ماه آزمایش گیاهان کاهش معنی‌دار در رشد توده ریشه و اندام‌های و گیاهان با و بدون اندازه‌گیری در تیمار ۱۸۰ مشاهده شد و نشان داد کاهش نتیجه داد. این پژوهش نشان داد که اندازه‌گیری ربط بین اندازه‌گیری رشد توده نیکل در ریشه و اندام‌هایی در هر دو جمعیت همراه با افزایش نیکل در خاک اندازه‌گیری شده است. پهپاد اندازه‌گیری در هر دو جمعیت لولیوم علمی می‌تواند به عنوان یکی از عوامل اصلی کاهش نتیجه‌های خاک افزایشی منعی است. به مبنای نتایج این مطالعه، جمعیت اول را به سبب تولید پنجه بیشتر و جذب بیشتر نیکل در اندام‌هایی خاصیت مناسبی بر به جهت کشت در شرایط تنش معروف کرد.

واژه‌های کلیدی: اندوفاوت، رای گراس، نتویفوپیوم، نیکل

لیست مکمل:

1. Poaeae
2. Pooidae
3. Festucoideae
4. Poeaeae
5. Neotyphodium
6. Acremonium
7. Neotyphodium
8. Festucoideae
9. Pooidae
10. Poaeae

نویسنده مسئول، نشانی پست الکترونیکی:
lshabani@gmail.com
موجود در علف های چمنی و با غلظت، تمام جرخه‌های این سرده می‌توانند در دامنه‌های مختلف میزان علائم بیماری‌زا در میزان ایجاد رابطه همزمانی، همچنین علائم بیماری‌زا در میزان ایجاد نمی‌کنند (Bacon et al., 1997). اعیان خصوصیات مطلوب زراعی و افزاش مقاومت به نشانه‌های محسوسی از آثار مهم فاری اندوکافیت برای گیاهان مزیت‌مند بوده و به روش‌ها، مقاومت در برای شرایط ناسالم محیطی نظر خشکی، Marks and (1996; Eerens et al., 1998; Malinowski and Belesky, 2000; Ren et al., 2006)

برخی از پژوهش‌های فلزات سنگین، همچنین نیکل (Ni²⁺) نقش مهمی در برخی عفان‌های متابولیکی در گیاهان دارند. ولی افزایش غلظت‌های سولفات آنها برای تمام سولفات زند (چه گیاهی و چه جانوری) ضروری و سوی است. از طرفی غلظت‌های زیاد این فلزات (بیش از حد آسیب‌ها) باعث ایجاد مشکلاتی در بروز برخی صفات و شاخص‌های گیاهان می‌شود (Malik et al., 2003).

در زیرنی، تأثیر انوکافیت در مقاومت یا فلزات سنگین 

گزارشات اندکی وجود دارد. سلیمانی و همکاران (1388) گزارش کردند که گیاهان دارای انوکافیت نسبت به گیاهان بدون انوکافیت توانایی بیشتری در جدای کادومی از خاک و تعمیق آن را داشته و آن‌ها بیشتر ندانند آفتابی (Malinowski et al., 1999) مقاومت گراس به آلومینیوم (1388) آرسنیکی (سلیمانی و همکاران) و همچنین کادومیوم (Soleimani et al., 2010) در توجه همزیستی با انوکافیت 

گزارش شده است.

پژوهش‌های اولیه در زمینه‌های نقش این فلزات سنگین

همزیستی با گیاهان در زمینه آلودگی، به سمت آلومینیوم می‌گردد. نتایج این پژوهش‌ها نشان داده است که همزیستی فاری‌های انوکافیت با نشانه‌های منجر به افزایش تحمیل گیاه به سمت آلومینیوم در خاک می‌گردد. یکی از دلایل این امر، کلیت‌شندن آلومینیوم با 

"Lolium perenne" در این پژوهش در جمع‌یاد از گونه گیاهی که بومی ایران بوده و مناطق شمالی و غربی ایران جمع (E⁺) اوری شده بودن با و بدون انوکافیت (E⁻). مورد استفاده قرار گرفتند. هدف Neotyphodium lolii فاری‌های انوکافیت از گیاهان E⁺ و ایجاد گیاهان E⁻ از آنها قبل) با استفاده از دو قارچ فلکورک و پرپیکتزرول (Sabzial and Mirlohi, 2010). پنج‌گاه‌ای این گیاهان از مزرعه‌های دیگر ساخته شده که در دانشگاه صنعتی اصفهان به گلخانه‌های پزشکی گذاشته شده و شرکتی از این گیاهان در مامای 6 ماه در محیط گلخانه‌های آب و میدانی پاک و تنکبندی یافته‌اند. قبل از کشت گیاهچه‌ها اطمینان از حضور یا عدم حضور قارچ‌های انوکافیت در هر پنجه به روش سالن و همکاران و با روش رنگ آمیزی غلاف برق با رنگی

Saha et al., 1988

10 پنجه از گیاهان مادری جدید شده و به گلخانه‌های پلاستیکی (وری) حاوی خاک و شربت نسبت 3 به 1 و آبی به 4 سطح کنترل، 90 و 180 میلی‌گرم بر کیلوگرم نیکل انتقال داده شد.
پنجه‌ها جدید هر گیاه با در نظر گرفتن اندامه و تعداد برقی‌ها و طول ریشه‌های برابر برای کشت اصلی از گیاه‌های مادر انتخاب شدند. برای شناسایی غلت مقدار نیاز از ماده‌بندی در هر کیلوگرم خاک (متاسب با وزن گلدان) NiCl2•6H2O محسوب گردید و مقدار بندی در آب مفارش حل شد. محلول بندی آب به خاک اسرپر گردید و پس از خشک شدن خاک، برای کشت گیاهان مورد استفاده قرار گرفت (قبل از انسداد، با استفاده از روش هضم آسیابی و دستگاه طیف سنی جذب اتمی (GBC 932 AB PLUS) غلطه بند خاک اطمینان حاصل شد.

3 ماه بعد از اعمال تیمار، در هر گلدان، وزن تر و خشک‌ساز هوازی (علف) به صورت زیر اندازه‌گیری شد: ابتدا گیاه‌های جدید با گیاه‌های قدیمی که در محل طوف قرار داشته‌اند و ریشه‌های آنها با کور فلزی که در ورودی این نوع ریشه‌ها از محل طوف به حسب تعداد اینگونه تیمار، هر یک از نمونه‌ها، بعد از قرار گرفتن در بافت‌های کاغذی، به مدت 48 ساعت در آن 65 درجه سانتی‌گراد خشک و سپس بر حسب تغییرات مذکور جمع‌آوری شدند. از همین مقدار طول ادامه‌هایی از محل طوف تا نوار برگ‌های خاک به طور دوباره و امکان‌پذیر شد تا ابتدا ریشه‌ها و تعداد گیاه‌های پس از قطع ریشه‌ها از محل طوف به حساب تعداد این نوع ریشه‌ها از محل طوف به حساب دستانه‌ها و حساب تعداد این نوع ریشه‌ها از محل طوف به حساب دستانه‌ها و حساب ریشه‌های در هر گلدان به حسب سانتی‌گراد، در هر گلدان و در نظر گرفتن اندامه و تعداد برقی‌ها و طول ریشه‌های برابر برای کشت اصلی از گیاه‌های مادر انتخاب شدند. برای شناسایی غلت مقدار نیاز از ماده‌بندی در هر کیلوگرم خاک (متاسب با وزن گلدان) NiCl2•6H2O محسوب گردید و مقدار بندی در آب مفارش حل شد. محلول بندی آب به خاک اسرپر گردید و پس از خشک شدن خاک، برای کشت گیاهان مورد استفاده قرار گرفت (قبل از انسداد، با استفاده از روش هضم آسیابی و دستگاه طیف سنی جذب اتمی (GBC 932 AB PLUS) غلطه بند خاک اطمینان حاصل شد.

تجزیه و تحلیل آماری: این آزمایش به صورت فاکتوریل یک رقم با آزمایش بر جامعه ۴۹-

بررسی تأثیر نتش نیکل و همستی انادوفاتی توزین‌نیکلی بر پریچ‌های...
شكل 1- برهمکنش نیکل، فارق و جمعیت بر وزن تر انداز می‌شود در گیاه‌های لولیوم. مقادیر، میانگینی از 3 تکرار مستند. حروف غیر مشابه نشان‌دهنده اختلاف معنی‌دار در سطح احتمال 5 درصد بین تیمارها می‌باشند.

شکل 2- مقایسه میانگین شاخص وزن تر (a) و خشک (b) ریشه در سطح مختلف تیمار نیکل در گیاه‌های لولیوم. حروف غیر مشابه نشان‌دهنده اختلاف معنی‌دار در سطح احتمال 5 درصد بین تیمارها می‌باشد.

شکل 3- برهمکنش نیکل، فارق و جمعیت بر ارتقای آنتامهای گیاه‌های لولیوم. مقادیر، میانگینی از 3 تکرار مستند. حروف غیر مشابه نشان‌دهنده اختلاف معنی‌دار در سطح احتمال 5 درصد بین تیمارها می‌باشند.
نمره 4- برهمکنش نیکل، قارچ و یکی از جمعیت از دیدگاه افرادی و مقایسه میانگینی از 3 تکرار هستند. وجود طرفدار مشابه نشان دهنده اختلاف معنی‌دار در سطح احتمال 0.05 درصد بین تیمارها می‌باشد.

نمره 5- برهمکنش نیکل، قارچ و یکی از جمعیت از دیدگاه افرادی و مقایسه میانگینی از 3 تکرار هستند. وجود طرفدار مشابه نشان دهنده اختلاف معنی‌دار در سطح احتمال 0.05 درصد بین تیمارها می‌باشد.

نتایج این پژوهش نشان داد که میزان جذب نیکل در ریشه و اندام هوایی در هر دو جمعیت همراه با افزایش غلظت نیکل در پسماند خاکی به طور معنی‌داری افزایش یافته‌است (شکل 7 و 8). با توجه به این نتایج، می‌توان به‌طور استحکام از پیگیری، نظارت و دستیابی به میزان جذب نیکل در ریشه و اندام هوایی جهت کنترل این پدیده‌ها و بهبود کیفیت محصولات استفاده کرد.

نتایج این پژوهش نشان داد که میزان جذب نیکل در ریشه و اندام هوایی در هر دو جمعیت همراه با افزایش غلظت نیکل در پسماند خاکی به طور معنی‌داری افزایش یافته‌است (شکل 7 و 8). با توجه به این نتایج، می‌توان به‌طور استحکام از پیگیری، نظارت و دستیابی به میزان جذب نیکل در ریشه و اندام هوایی جهت کنترل این پدیده‌ها و بهبود کیفیت محصولات استفاده کرد.

نتایج این پژوهش نشان داد که میزان جذب نیکل در ریشه و اندام هوایی در هر دو جمعیت همراه با افزایش غلظت نیکل در پسماند خاکی به طور معنی‌داری افزایش یافته‌است (شکل 7 و 8). با توجه به این نتایج، می‌توان به‌طور استحکام از پیگیری، نظارت و دستیابی به میزان جذب نیکل در ریشه و اندام هوایی جهت کنترل این پدیده‌ها و بهبود کیفیت محصولات استفاده کرد.
بحث:
گیاهان دارای اندوفایت بود. جذب نیکل در اندازه‌بیان جمعیت ۱ و در گیاهان قاچوطی اندوفایت به طور معنی‌داری (p<0.05) بیشتر از گیاهان حاوی اندوفایت بود. در جمعیت دوم اندوفایت تاثیر معنی‌داری بر جذب نیکل اندام به داخل نداشت. میزان جذب نیکل در اندازه‌بیان به طور معنی‌داری (p<0.05) در جمعیت ۱ الی ۲ بیشتر از جمعیت دوم بود.
شکل 8- برهمکش نیکل، دارای جمعیت بر جذب نیکل ریشه در گیاههای های لوله‌ای مقدیر، مانگانز از گرداری هستند. حروف غیر مشابه نشان دهنده اختلاف معنی‌دار در سطح احتمال ۵ درصد بین تیمارها می‌باشد.

چنری تاثیر نیکل و هم‌رستی اندازه‌ها تونیفودوم بر رشد و رشد نباتی DNA (۱۹۸۹). همچنین گزارش‌ها نشان می‌دهد غلظت‌های سبب نیکل از طریق تغییر در ساختار غشاء سلول‌های ریشه و کاهش سطح جذب کننده آب، موجب به کاهش پتانسیل آب گیاه شده که تأثیر ملنی بر فرآیندهای فیزیولوژیکی نظر نمی‌کند، نتایج آزمون‌های گزارش در نهایت کاهش رشد گیاه را به دنبال داشته است (۲۰۰۶). (فونتو و همکاران، ۲۰۰۶) از سوی دیگر یکی از علل‌های مهم آسیب بافتی در گیاهان که در معرض فلزات سنگین قرار می‌گیرد، ایجاد نشان ایکسیداسیون است. رادیکالهای اکسیژن عمداً در کلرپلاست و میتکندری تولید می‌شوند و ایجاد آسیب‌های ایکسیداسیون بر جریه نیکلی و نیکلیک ایجاد می‌کند، سبب احتمال در نمودنی‌یونی طبیعی سلول، اختلال در فرآیندهای موجود و فستون و اکسیداسیون می‌شود (میشرا و همکاران، ۲۰۰۵ و گاجفسکا و چرخیت، ۲۰۰۵) مشابه در می‌باشد.

میشن و یکی دیگر نیکل و هم‌رستی اندازه‌ها تونیفودوم بر رشد و رشد نباتی DNA (۱۹۸۹). همچنین گزارش‌ها نشان می‌دهد غلظت‌های سبب نیکل از طریق تغییر در ساختار غشاء سلول‌های ریشه و کاهش سطح جذب کننده آب، موجب به کاهش پتانسیل آب گیاه شده که تأثیر ملنی بر فرآیندهای فیزیولوژیکی نظر نمی‌کند، نتایج آزمون‌های گزارش در نهایت کاهش رشد گیاه را به دنبال داشته است (۲۰۰۶). (فونتو و همکاران، ۲۰۰۶) از سوی دیگر یکی از علل‌های مهم آسیب بافتی در گیاهان که در معرض فلزات سنگین قرار می‌گیرد، ایجاد نشان ایکسیداسیون است. رادیکالهای اکسیژن عمداً در کلرپلاست و میتکندری تولید می‌شوند و ایجاد آسیب‌های ایکسیداسیون بر جریه نیکلی و نیکلیک ایجاد می‌کند، سبب احتمال در نمودنی‌یونی طبیعی سلول، اختلال در فرآیندهای موجود و فستون و اکسیداسیون می‌شود (میشرا و همکاران، ۲۰۰۵ و گاجفسکا و چرخیت، ۲۰۰۵) مشابه در می‌باشد.
گیاهچه‌های فستوکای پلدن کاشه داده‌ای اخ حضوریت می‌تواند ناپذیران نشان رهسا را یارای کسب آب و مواد غذایی افزایش دهد. همچنین هنوز نظر دریوس در نیشخ ۳۰ (میلی گرم بر کیلوگرم) نیکل، گیاه افزایش طول ریشه را کره و انرژی مورد نیاز برای رشد و افزایش پژوهشی کرده است. طبق نتایج بدین آمده این پژوهش، گیاهان فاقد اندورفایتون وزن تر و شکسته ریشه و اندام هویی بیشتری در مقایسه با گیاهان دارای اندورفایتون داشتند. مشابه با همین نتایج کاهش تولید ماده خشک تحت تنش آلومینیوم در گیاهان Malinowski and (2000) هم گیاهان کاهش شاخص‌های رشد گیاه L. Belesky، 2000 در حضور اندورفایتون Tofaer (2000) و همکاران (2019) گزارش شده است. آنها (2000) بیشتر به کردنه که فارج اندورفایتون ممکن است هزینه معنی‌داری برای یارای تحت بینی شرایط محیطی داشته باشد. چرا که فارج گیاهان اندورفایتون از نظر تأمین انرژی کاملا به یارای میزان مناسب است که کاهش داده شده در جمعیت دوم وزن تر و شکسته اندام هویی در گیاهان دارای اندورفایتون بیشتر بود. هرودونه گیاهی ایندیل استیکاسی و آسپریک بکس بوسیله فارج اندورفایتون تونوتوپیم کونتورفایتون در فسکویی پلت ساخته شده و باعث افزایش قدرت پنج‌دهی و چهار و یکی میزان می‌شود (1999). در لایل متدی برای نزدیک تأثیر فارج اندورفایتون بر یکی‌های فنوتکاسی (2002) می‌تواند مکمل ایزی اثره می‌شه است. Fabien و همکاران (2011) گیاه ایزی‌های اثره گیاه می‌شه است. مشاهده کردنه که آلودگی به فارج اندورفایتون می‌تواند تعداد نیکل را تحت تأثیر فارج دهد که نشان دهنده افزایش تحمیل به روز در چند ساله است. همچنین مشاهده شده است، در شرایط نشان کایوی، حضور اندورفایتون توانایی پنج‌دهی گیاه را افزایش و طول برگ زیر کاهش می‌دهد (2006). Ren et al. توانایی پنج‌دهی بالای برای انواع و گونه‌های مختلف و همچنین انتشار اندورفایتون مکرر تحت شرایط نشان می‌دهد است و فعالیت فنوتکاسی بالاتر ممکن است به ابتدا نسبت توده بالاتر کمک کند. به‌طور پیچیده می‌توان انتقال برهمکنش‌های فستوکای پلدن-اندورفایتون غیرفعال شود و انتقال
Glutathione (GSH) as a major component of the antioxidant defense system, and its role in the protection of cells from oxidative stress is well understood. In plants, GSH plays a crucial role in various physiological processes, including the detoxification of heavy metals and the protection of photosynthetic membranes from oxidative damage. This is in line with the observation that nickel (Ni) is an essential nutrient for plant growth, but its toxicity can be mitigated by the upregulation of GSH biosynthesis. For instance, Chen et al. (2009) reported that nickel-induced oxidative stress in plants can be alleviated by the induction of GSH biosynthesis.

In addition to GSH, other antioxidants such as ascorbic acid (vitamin C) and tocopherols (vitamin E) also play a significant role in the protection against oxidative stress. Ascorbic acid acts as a powerful antioxidant by scavenging free radicals and preventing lipid peroxidation, while tocopherols are important in protecting membranes from lipid peroxidation.

The role of cell signaling proteins in stress response is also significant. For example, the mitogen-activated protein kinase (MAPK) cascade is involved in the regulation of gene expression in response to stress signals. The activation of MAPKs is mediated by various stress-related stimuli, including heavy metals. In plants, the MAPK signaling pathway is activated by nickel, leading to the induction of stress-responsive genes.

In summary, the biochemical responses of plants to nickel stress are complex and involve multiple interconnected pathways. Understanding these pathways is crucial for developing strategies to mitigate the adverse effects of heavy metal pollution in agricultural soils.