بررسی تأثیر پشم و همستی اندوفاپات نویتوفریوم بر رشد
شاخص‌های رشد و جذب نیکل در گیاه Lolium perenne

مريم صالحی، لیلا مبتلي، محمد رضا سیف‌البدل، مجید شریفی تهرانی

گروه زیست‌شناسی، دانشکده علوم، دانشگاه شهیدرضا، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

اصفهان 81111

(تاریخ دریافت: 1394/04/20، تاریخ پذیرش نهایی: 1394/07/20)

چکیده
گیاه چنگ چند ساله، با گره‌های از اندوفاپاتها، فارچه‌هایی از جنس Neotyphodium با گره‌های همستی اندوفاپاتها، Lolium perenne رایه همستی دارد. اعضا خصوصیات طول بیان و اندازه مقارن با گره‌های همستی اندوفاپات برای گیاهان میزان است، که در پی تغییرات مورفولوژیک و فیزیولوژیک در گیاه حاوی می‌شوند. در این پژوهش تأثیر تکل و همستی اندوفاپات بر رشد و جذب نیکل در دو جمعیت از گیاه لولیوم مورد بررسی قرار گرفت. برای این منظور دو جمعیت از این گیاه با و بدون اندوفاپات Lolium perenne (E+، E-) مورد استفاده قرار گرفتند. این آزمایش 3 ماه بعد از عملیات تبییر به صورت 180، 90 و 30 درصد از کل غیبان در 4 میلی‌گرم در هر کیلوگرم گیاه (E+) با گره‌های بدون اندوفاپات Lolium perenne (E-) به همراه کمپیوتر به‌کار گرفته شد و اندازه‌های در غیبان با و بدون اندوفاپات در تیمار 180 مشابه بود و از آن‌ها به اندوفاپات زیست‌شناختی گیاهان را کاملاً داد اگرچه، عفونت اندوفاپات به‌طور معنی‌داری توانایی پهپادی را در هر دو جمعیت را افزایش می‌بخشد. در سیل گلاب در رشد و اندازه‌های در هر دو جمعیت سیاه‌های با اندوفاپات ترک در حاکم اندوفاپات معنی‌دار داشتند. حضور اندوفاپات در دو جمعیت لولیوم عمومی در کاهش جذب نیکل رشد به‌معنی‌دار کاهش نسبی این عوامل در گیاه شد. همچنین می‌توان جمعیت اول را به سبب تولید پنجه بیشتر و جذب بیشتر نیکل در اندازه‌های جمعیت مناسب‌تری به جهت کشت در شرایط نشر معرفی کرد.

واژه‌های کلیدی: اندوفاپات، رای گرس، نویتوفریوم، نیکل

مقدمه
گیاه Lolium perenne یا چنگ چندساله متعلق به قبیله Poeae یا چنگ چندساله متعلق به قبیله Festucoideae یا چنگ چندساله متعلق به قبیله Poaceae زیرخانواده Zizanioideae است (Tsvelev, 1989). این گیاه از جنبه تولید غلظت در مناطق مختلف در سراسر جهان ارزش اقتصادی دارد و

lshabani@gmail.com
موجود در عنف های چمی و یا علوفه‌ای، تمام چرخه‌های زندگی خود را داخل گیاه می‌گذرانند و ضمن این شنیده‌ی رابطه همزیستی، هیچ گونه علامت بیماری‌زا در میزان ایجاد نمی‌کنند (Bacon et al., 1997). اعتیاد خصوصیات مطلوب زراعی و انفکتی مقاومت به نشانه‌های محیطی از آن‌ها مهم خرابی‌های انفکتی برای گیاهان می‌باشد که در پی تغییرات مورفولوژیک و فیزیولوژیک در گیاه حاصل می‌شوند. انفکتی‌ها تأثیر قابل ملاحظه‌ای در افزایش سطح برق و ریشه، مقاومت در برابر شرایط ناسالمی محیطی نیز دارند. (Marks and Clay, 1996; Eerens et al., 1998; Malinowski and Belesky, 2000; Ren et al., 2006). در این پژوهش، نشان داده شد که شهرت باعث ایجاد نشانه‌های مهمی در بخش پیش‌بینی و شناسایی گیاه‌های می‌شود. (Malik et al., 2003) در زمینه تأثیر انفکتی در مقاومت به فلزات سنگین گزارش‌های اندکی وجود دارد. سلیمانی و همکاران (1388) گزارش کرده‌اند که گیاهان دارای قارچ‌های انفکتی نسبت به گیاهان بدون انفکتی بهتری نشان دهنده نسبت به جداب کادمیوم از خاک و تجویز آن در ریشه ناشی می‌تواند افزایش مقاومت گرایان به آنوپی‌های (Malinowski et al., 1999) مقاومت گرایان به آنوپی‌های (2003) و همچنین کادمیوم (Soleimani et al., 2010) در نتیجه همزیستی با انفکتی گزارش سه‌شان است. پژوهش‌های اولیه در زمینه استفاده از قارچ‌های انفکتی همزیستی با گیاهان در زمینه آلودگی به سمت آلومینیوم برای گردید. نتایج این پژوهش نشان داده است که همزیستی قارچ‌های انفکتی سایه‌گیری‌های ناشی از N. coenophialum به افزایش تحمل گیاه به سمت آلومینیوم در حاکی می‌گردد. یکی از دلایل این امر، کلاته ژن آلومینیوم با

می‌باشد.
و با همکاران، بخشی از زیر‌اندازی‌های سیدی رییک، طول‌ریزی و اندازه‌ی اولیه‌ی هوازی و جذب‌ی نیکل‌ریزه و اندازه‌ی اولیه‌ی در گیاه لول‌ی اولیه‌ی را در گروه‌ی هوازی و اضطراب‌های ریزه به‌منظور تحقیقاتی ارائه شده است. در جمع‌یات اول، لول‌ی اولیه‌ی هوازی و اضطراب‌های ریزه (شکل ۱)، ون در هوازی (شکل ۴) در نیکل و تشدید ریزه، طول‌ریزی و اندازه‌ی اولیه‌ی هوازی و اضطراب‌های ریزه به‌منظور تحقیقاتی ارائه شده است. نتایج همکاران دان که آلودگی با اندودافاین تأثیر مثبت بر ون در هوازی لول‌ی اولیه‌ی ندارد. در جمع‌یات اولیه‌ی هوازی و اندازه‌ی اولیه‌ی ریزه تأثیر مثبت و تشدید ریزه، طول‌ریزی و اندازه‌ی اولیه‌ی هوازی و اندازه‌ی اولیه‌ی ریزه به‌منظور تحقیقاتی ارائه شده است. میدان‌ها و نکات‌هایی، طول‌ریزی و اندازه‌ی اولیه‌ی ریزه تأثیر مثبت و تشدید ریزه، طول‌ریزی و اندازه‌ی اولیه‌ی ریزه به‌منظور تحقیقاتی ارائه شده است. میدان‌ها و نکات‌هایی، طول‌ریزی و اندازه‌ی اولیه‌ی ریزه به‌منظور تحقیقاتی ارائه شده است. میدان‌ها و نکات‌هایی، طول‌ریزی و اندازه‌ی اولیه‌ی ریزه به‌منظور تحقیقاتی ارائه شده است. میدان‌ها و نکات‌هایی، طول‌ریزی و اندازه‌ی اولیه‌ی ریزه به‌منظور تحقیقاتی ارائه شده است.
شکل ۱- برهمکشی نیکل، فاصله و جمعیت بر وزن تر اندازه‌های در گیاه‌های لولیوم مقدیرهای مثبت، مانگینی از ۳ تکرار مستند. حروف از(format) می‌باشند.

شکل ۲- مقایسه میانگین شاخص وزن تر (a) و خشک (b) ریشه در سطح مختلف تیمار نیکل در گیاه‌های لولیوم. حروف غیر مشابه.

شکل ۳- مقایسه نیکل، فاصله و جمعیت بر ارتفاع اندازه‌های در گیاه‌های لولیوم مقدیرهای مثبت، مانگینی از ۳ تکرار مستند. حروف غیر مشابه.

شکل ۴- مقایسه نیکل و جمعیت بر وزن تر اندازه‌های در گیاه‌های لولیوم به همراه اثرات احتمال ۵ درصدی از تیمارها می‌باشد.
شکل ۴- برهمکتی نیکل، قارچ و جمیعت بر تعداد پنجه در گیاه‌های لوله‌ای. مقادیر، میانگین از ۳ تکرار هستند. حروف غیر مشابه نشان‌دهنده اختلاف معنادار در سطح احتمال ۵ درصد بین تیمارها می‌باشند.

شکل ۵- برهمکتی نیکل، قارچ و جمیعت بر وزن خشک افتاب‌بردار گیاه‌های لوله‌ای. مقادیر، میانگین از ۳ تکرار هستند. حروف غیر مشابه نشان‌دهنده اختلاف معنادار در سطح احتمال ۵ درصد بین تیمارها می‌باشند.

نسبت به گیاهان فاقد اندوفاتی داشتن‌دند (شکل ۴). نتایج این پژوهش نشان داد که میزان جذب نیکل در ریشه و اندام هویبی در هر دو جمیعت همراه با افزایش غلظت نیکل در بستر خاکی به طور معنی‌داری افزایش یافته (شکل ۷ و ۸). جذب نیکل ریشه در هر دو جمیعت لوله‌ای در گیاهان فاقد اندوفاتی بیشتر از ۱۸۰ میلی گرم بر کیلوگرم بوده و در غلظت ۱۴۰ و ۱۶۰ میلی گرم بر کیلوگرم بیشتر از تیمار ۱۸۰ میلی گرم بر کیلوگرم (شکل ۵). همچنین نتایج نشان داد که گیاهان فاقد اندوفاتی نسبت به گیاهان دارای اندوفاتی طول ریشه بیشتری داشتند (شکل ۶). تعداد پنجه در جمیعت اول و در هر دو گیاه حاوی و بدون اندوفاتی، بیشتر از جمیعت دوم بود. در هر دو جمیعت، گیاهان دارای اندوفاتی تعداد پنجه بیشتری...
شکل ۶- برهمکشی نیکل، قارچ و جمعیت بر ارتقای ریشه در گیاه‌های لیلیوم. مقادیر، میانگینی از ۳ تکرار هستند. حروف غیر مشابه نشان‌دهنده اختلاف معنی‌دار در سطح احتمال ۵ درصد بین تیمارها می‌باشد.

شکل ۷- برهمکشی نیکل، قارچ و جمعیت بر چسب نیکل اندام هواپی در گیاه‌های لیلیوم. مقادیر، میانگینی از ۳ تکرار هستند. حروف غیر مشابه نشان‌دهنده اختلاف معنی‌دار در سطح احتمال ۵ درصد بین تیمارها می‌باشد.

بحث:
گیاهان دارای اندوخوانست بدون جذب نیکل در اندام هواپی جمعیت اول، در گیاهان ناقص اندوخوانست به طور معنی‌داری بیشتر از گیاهان حاوی اندوخوانست بود. در جمعیت دوم اندوخوانست تأثیر معنی‌داری بر جذب نیکل اندام هواپی نداشت. مهم‌ترین جذب نیکل در اندام هواپی به طور معنی‌داری (p<0.05) در جمعیت اول بیشتر از جمعیت دوم بود.
بررسی تاثیر نشان نیکل و حمایتی اندازه‌گیری تنش‌فیوزیدوم بر بخار

شکل 8- برهمکنش نیکل، قارچ و جمعیت بر جذب نیکل ریشه در گیاه‌های های لوله‌ای. مقدار، میانگینی از 3 تکرار مستند. حروف غیر مشابه نشان‌دهنده اختلاف معنی‌دار در سطح احتمال 0.05 می‌باشد.

Christie and Tummolo (1989) همانند سایر DNA مرتبط باشد (Getzoff et al., 1989). همانندی کرومی‌ها نشان می‌دهد غلظت‌های سبز نیکل از طریق تغییر در ساختار غشای سلول‌های ریشه و کاهش سطح جذب کننده آب، منجر به کاهش پتانسیل آب گیاه شده که تأثیر مثبتی بر فرآیندهای فیزیولوژیکی نظر نور، نفس، ظرفیت و در نهایت کاهش رشد گیاه را به دنبال داشته است (Fuentes et al., 2006). از سوی دیگر یکی از علل‌های مهم آسیب بافتی در گیاه‌های در معرض فلات‌های سبک‌تر می‌گردد، ایجاد نشان اکسیداتوی است. رادیکال‌های اکسیژن عمداً در کارولیپلاست و میتکندری تولید می‌شوند و ایجاد اسیدهای اکسیداژیو بر چربی‌ها، پروتئین‌ها و نوکلئین‌ها اند. سبب عفونت و در نهایت کاهش سلول‌های فرا‌کلیسی می‌شود (Mishra et al., 2006). در این پژوهش با توجه به اینکه وزن تا و خشک ریشه در غلظت‌های بالای نیکل کاهش یافته است و از طرفی در این غلظت‌ها طول ریشه افزایش یافته، بنابراین احتمالاً از ضخامت ریشه‌ها در این تیمارها کاسته شده است. می‌تواند در همکاران (2006) نشان دادند که نیکل ممکن است با اثر مشابهی این فلز بر

می‌شود و با اثری نقش مهمی در فرآیندهای مهم و گوناگون

متاپلیکی مانند تجربی اوره و متاپلیسی هیدرون ایفا می‌کند (Chen, 2009). با این وجود غلظت‌های زیاد این عنصر (بله‌ای از حد آستانه) سبب ایجاد علائم سمیت می‌شود (گیاهان می‌گردد (Malik et al., 2003). با توجه به نتایج مثبتی بر

نشان‌دهنده نیکل بر شاخص‌های های ردیابی به نظر می‌رسد برای گیاه‌های فوق حد آستانه ای سمیت نیکل غلظت 90 میلی گرم بر کیلوگرم نیکل می‌باشد.

وزن تا و خشک ریشه در گیاه‌های های لوله‌ای تیمار 180 میلی گرم بر کیلوگرم به طور معنی‌داری کاهش نشان داد. نشان فلات‌های سبک‌تر از جمله عوامل محدود‌کننده رشد ریشه است که به‌عنوان عامل کاهش دهنده وزن تا و خشک ریشه محصولی می‌گردد (Vitoria et al., 2005) و Gajewska. (Malinowski 1999) نشان دادند که آلوگی اندوافیتی طول ریشه مویی را افزایش و ضخامت ریشه را در
گیاهچه‌های فستوکایی بلند کاشت داد. این خصوصیت می‌تواند ناحیه مطلیه ریشه به ریشه کسب آب و مواد غذایی افزایش دهد. همچنین به نظر می‌رسد در تیمار 30 (میلی گرم بر کیلوگرم) تیکل، گیاه افزایش طول ریشه را کرد و انرژی مورد نیاز ریشه را صرف افزایش پنجمیزی کرده است.


Fabien (2001) و همکاران (2000) مشاهده کردند که آلودگی به فستوکایی می‌تواند تعادل پنجه را تحت تأثیر قرار دهد که نشان دهنده افزایش تحمل به روز در میان سالمه است. همچنین مشاهده شده است، در شرایط تنش کامپرسی، حضور اندونورا، توانایی پنجمیزی گیاه Ra افزایش و طول برگ را کاهش می‌دهد (Ren et al. 2006) توانایی پنجمیزی بالاری پایه توسعه و گسترش میزان و همچنین انتشار اندونورا مختصوصاً تحت شرایط تنش مفيد است و فعالیت تنش‌مکرر بالاتر ممکن است به ایجاد ریست توده بالاتر کمک کند. بهبود پنجمیزی و تولید عفونه در


